
Newsletter

C++ for Scientific
Computing

Autumn 2007

MEMBERS OF THE COMMITTEE

Roger Barrett R.Barrett@surrey.ac.uk
Peter Borcherds (chairman) p.h.borcherds@birmingham.ac.uk
Alan DuSautoy alan.dusautoy@npl.co.uk
Hans Fangohr (newsletter) h.fangohr@soton.ac.uk
Andrew Horsfield a.horsfield@ucl.ac.uk
Geraint Lewis dg.lewis@physics.org

(vice-chairman,travel bursaries)
Ian Morrison i.morrison@salford.ac.uk
Matt Probert (honary secretary,treasurer) mijp1@york.ac.uk
Jesus Rogel j.rogel@imperial.ac.uk
Michael Sleigh Michael.Sleigh@awe.co.uk

Our web page can be found here:
http://www.iop.org/activity/groups/subject/comp

Comments about the newsletter, letters and contributions for future editions are
welcome and can be sent to Hans Fangohr.

Figure on cover (see also article on page 1):
Molecular dynamics trajectory of the formation of DMSO-induced water pores in lipid

membranes. To aid clarity the alkyl chains of the bilayer are not shown. The water

molecules are coloured red/white and DMSO is in yellow. The research aims to aid the

design of molecules that facilitate the transport of drug molecules through skin and other

membranes. (Reproduced from A. Gurtovenko and J. Anwar (2007) J. Phys. Chem.

B, 111, 10453-10460. Copyright 1988 American Chemical Society.)

http://www.iop.org/activity/groups/subject/comp
mailto:fangohr@soton.ac.uk

This Newsletter will change . . .
Dear newsletter readership,

due to budgetary constraints, this will be the last printed and (snail) mailed
newsletter. In future, the newsletter will be distributed electronically.

You can find the current newsletter in electronic form at
http://www.soton.ac.uk/∼fangohr/randomnotes/iop cpg newsletter/index.html.

The Computational Physics Group Committee.

http://www.soton.ac.uk/~fangohr/randomnotes/iop_cpg_newsletter/index.html

Newsletter Contents
This Newsletter will change . . . 1

C++ Object Oriented Programming for Scientific Programming 1
Introduction . 1
Molecular simulation . 1
Data-driven programming is inappropriate for large projects 2
The OOP paradigm . 3
C++, Java, Smalltalk? . 5
OOP features of C++ . 5
molecule.h++: Objects for molecular simulation 7
Dynamic memory allocation . 11
Obscure programming by design . 12
Correct behaviour above all else . 13
Concluding remarks . 13
Acknowledgement . 14

Computational Physics Group News 16
The Computational Physics Thesis Prize 2007 16
The Computational Physics Thesis Prize 2006 16

Student Conference Fund 17
Eligibility . 17
Financial support . 17
Application procedure . 17
Reporting from the meeting . 17

IUPAP Young Scientist Prize 18
Applications invited . 18

Reports on meetings 19
Mainz Materials Simulation Days 2007 19
2007 APS March Meeting . 20
Non-Adiabatic Molecular Dynamics - A Discussion 21

Upcoming events 23
Multiphysics 2007 . 23
Theory, Modelling and Computational Methods for Semiconductor Ma-

terials and Nanostructures . 23

International Conference on Computational Science (ICCS) 2008 . . . 23

Computational tools: Unit conversions 24

C++ Object Oriented Programming for Scientific
Computing

Jamshed Anwar, Institute of Pharmaceutical Innovation, University of Bradford,
Bradford, W. Yorkshire BD7 1DP U.K. Email: j.anwar@bradford.ac.uk

Introduction

Comparing the virtues of different computer languages and programming tech-
niques in any rational way can be a daunting task. It is a bit like discussing
religion. Both can evoke considerable emotion with little or no exchange of ideas
taking place. However, I perceive that this problem may now be less of an issue
as it might have been some 6-8 years back. Now, whenever I mention useful
attributes of C++ and object orientated programming (OOP) to my Fortran-
programming colleagues, the response typically is that ’you can do that in F2003’.
So it appears, fortunately, that we are converging.

My research group committed itself to the OOP approach using C++ about
10 years ago. My intention here is to relate some of that experience to you. The
article looks at limitations of structured programming, the essential features of
the OOP paradigm, choice of programming languages for implementing scientific
problems in OOP, and OOP features of C++. I illustrate the object oriented
approach to modelling scientific problems with reference to molecule.h++, which
is a framework of objects that have been developed by us for molecular simu-
lations. While I advocate lucid code, there may be instances when such advice
may be inappropriate, and I present some pointers for writing obscure code by
design. Finally, I address the need for building in quality into the code and the
discipline of testing code using a bottom up approach.

For those new to C++, I would recommend the text by Schildt (1) and the
on line free book ’Thinking in C++’ by Eckel (2). For advanced users the text
by Meyer (3) would be invaluable. The C++ specification (4) is also likely to be
useful.

Molecular simulation

The discussion on OOP using C++ makes reference to molecule.h++, which is
a framework of objects that we have developed for carrying out molecular sim-
ulations. To make the discussion accessible, I briefly review the nature of these

1

C++ OBJECT ORIENTED PROGRAMMING FOR SCIENTIFIC PROGRAMMING

calculations. The molecular forces between atoms and molecules are now suffi-
ciently well characterized to simulate the molecular interactions and behaviour
of large collections O(10,000) of molecules including their molecular trajectories.
The simulation of the molecular trajectory yields a molecular level view of the
system, which may not be accessible by experiment. The molecular interactions
may be considered at the quantum mechanical level where bond making and/or
breaking may be involved or at a more approximate level (molecular mechan-
ics) where the molecular integrity remains intact and electrons are not consid-
ered explicitly. molecule.h++ is restricted to the molecular mechanics domain.
The link between molecular level quantities and the real world is the domain
of statistical thermodynamics. Therefore, to calculate real world properties it
is necessary to generate a large number of configurations of the system at the
appropriate temperature (and pressure) and then to employ the machinery of sta-
tistical thermodynamics. The configurations may be generated using the Monte
Carlo (MC) technique which is a stochastic method or using molecular dynamics
(MD) in which the molecular trajectory is generated using Newtonian mechanics.
The MD technique, being deterministic, has the advantage of yielding molecular
pathways and dynamical properties such as diffusion constants. System sizes are
of O(10000) atoms. To access the nanosecond timescale for such systems the
cpu resource requirement is about 4 weeks using about eight 2.6GHz processors.
Clearly, computational efficiency is an important requirement for any code.

Data-driven programming is inappropriate for large projects

Traditional structured or data-driven programming (5) involves the use of sub-
routines or functions. As the code becomes large it becomes increasingly difficult
to maintain a mental grasp of the interactions between the functions. Further-
more, even for codes where programmers have a good overview of the structure
and flow of the program, it may be difficult to retain this overview over an
extended period or after periods of inactivity. From personal experience, main-
taining a scientific code based on traditional structured programming of about
20,000 lines can be hard work. It is particularly challenging when one has to make
changes or amendments to the code after some inactivity. In such instances, on
each occasion, there will be a significant gestation period as the programmer
re-familiarises him/herself with the flow of the program and the interactions be-
tween the functions or subroutines before the amendments can be incorporated.
With scientific codes in excess of 100,000 lines it becomes almost impossible to
maintain the code in a research group environment, though it may be less of
an issue for dedicated programmers. As it becomes difficult to carry a mental

2

The OOP paradigm

map of the program flow, possible side effects of amendments or modifications
in one part of the code on another part can no longer be foreseen, and one
begins to rely on test functions to pick up errors that might be introduced by
the amendments. A consequence is a loss of confidence in the code. The latter
may not be a significant issue for codes whose main function is graphics orien-
tated e.g. games, where any errors are likely to show up visually. Although I
do not know of any systematic study of error (defect) rates in scientific codes,
in the mainstream programming world defect rates have been quoted from 50-
100 defects/1000 lines for new programs to 5-6 defects/1000 lines in production
code. It would be instructive to get an estimate for defect rates in a molecular
simulation code. The MD code DL POLY (6), which is written in Fortran, is
extensively used by the molecular simulation community throughout the world.
The code is highly accessible and the molecular simulation community appear
to test and examine the code in intimate detail. As a result of this interest at
the code level, defects in the code continue to be picked up and are corrected
by the maintenance team at Daresbury Laboratory. These defects are corrected
in the primary source code but also brought to the notice of the community in
a highly transparent way by means of ’bugmails’. The DL POLY version 2.15
contained 203 files comprising a total of about 57,000 lines of code. For this code
there have been about 25 bugmails each giving details of a number of bugs re-
ported in the last period. Assuming for our purposes that each bugmail referred
to say 4 defects, gives a defect rate of (25 x 4) bugs / 57,000 lines i.e. about
two bugs/1000 lines, which in relative terms is excellent. However, on a personal
level this could still mean having to issue an erratum to your published study!
The upshot of these considerations is that for scientific codes we need to build
in quality and to maintain it, and that traditional data-driven programming is
unable to meet this objective for large projects.

The OOP paradigm

The OOP approach (7) promises the development of massive projects (>1,000,000
lines) that are robust, easier to maintain, and less prone (in principle) to intro-
duction of defects. The basis of OOP is to model the system of interest as closely
as possible to the tangible reality, which makes the interactions within the code
(the interactions between the objects) easier to comprehend and maintain in an
individual’s memory. Coupled to this are enabling technical features such data
locality and abstraction. With traditional programming the emphasis is on doing
or action and the key components of the code are functions or subroutines e.g.
subroutine InvertMatrix(). In contrast, in OOP the focus is on the object

3

C++ OBJECT ORIENTED PROGRAMMING FOR SCIENTIFIC PROGRAMMING

which comprises data members (the attributes that define the object) and func-
tions (referred to as methods in OOP) that specify what the object can do. For a
CMatrix object the data members would be the elements of the matrix whilst the
methods would include Invert(), Transpose(), Multiply(CMatrix). Another
illustrative example, a CAtom object, is given below.

CAtom
{ // variables defining characteristics

int index;
string label;
double charge;
double mass;
CVector3d r; // coordinates
CVector3d v; // velocity
CVector3d f; // force

// behaviour/actions/functions/methods
Get.. // get data member
Set.. // set data member
BondDistance(CAtom2);
BondAngle(CAtom2,CAtom3);
TranslateTo(r);
TranslateBy(r);
VerletStep(timestep);
...

}

Whilst functions in traditional programming can take any parameters as vari-
ables in their arguments, functions associated with objects only work in conjunc-
tion with those objects; neither the data members nor the functions can be ac-
cessed without the object. This encapsulation of the object minimizes the chance
of changes in one part of the code causing inadvertent problems elsewhere. The
relationship between the functions in traditional data-driven programming to
objects in OOP is akin to that between a verb and a noun in language syntax.
The shift of focus from isolated functions to objects in practice means that once
an object has been specified, it would be natural to code all important methods
for that object even though many such methods may not be required for the
project at hand. This will result in some effort being expended in what might be
considered to be peripheral activity. However, well specified and implemented
objects can result in elegant libraries which should pay dividends in new projects

4

C++, Java, Smalltalk?

or in making enhancements to the original project.

C++, Java, Smalltalk?

OOP-based programs can be implemented in most modern programming lan-
guages, including F2003. However, certain languages such as smalltalk were
designed specifically for OOP and therefore have built-in elegance for this ap-
proach. For implementing scientific problems in the OOP mode, the two main
contenders are probably C++ and Java; smalltalk is not really designed for
scientific applications, whilst F2003 (although it contains OOP features) has
had to contend with some F77 baggage. C++ has numerous features that
add unnecessary complexity and these result in a very steep learning curve.
An important feature of C++, which is missing in Java, is operator overload-
ing, where operators such as +, -, /, and * can serve as names of methods.
Thus it is possible to write tMatrixA = tMatrixB * (tMatrixC + tMatrixZ).
Without operator overloading this instruction would take the form tMatrixA =
tMatrixB.Multiply(tMatrixC.Plus(tMatrixZ)). Clearly, the operator over-
loaded form is much more lucid and expresses the operations in a form that we
readily comprehend.

Java is essentially a subset of C++. Indeed it is possible to translate Java
code automatically into C++. The reverse, of course, would not be possible.
Java has some excellent design features, a particularly important one of which
is to eliminate all unnecessary complexity and to retain only those features that
minimize run-time errors. All memory is allocated dynamically but is deleted by
an automatic garbage collector. In C++ the programmer is responsible for delet-
ing any memory that has been allocated dynamically. Also, multi-threaduing is
part of the Java language and graphics are built-in making the development
of front ends easy. I understand that Java compiled code is almost as fast as
C/C++ code. The major limitation is that there is no operator overloading.

OOP features of C++

C++ has all the OOP features that one may desire or expect. The language
offers strong type-casting, separation of interface from implementation, encapsu-
lation, polymorphism, templates, and inheritance. The strong type-casting helps
to eliminate certain errors at compile-time. For example, function calls that do
not match the arguments specified in the header file (.h) in terms of data types
as well as their other characteristics such as ’constantness’ will be picked up as
errors during compilation. Separation of the interface (the specification of func-

5

C++ OBJECT ORIENTED PROGRAMMING FOR SCIENTIFIC PROGRAMMING

tion calls) from the implementation (the actions within the function) enables
changes to be made to the implementation without changes to the interface.
For example, the call to a function associated with a CMolecule object that
calculates the forces on the atoms could remain the same, whilst one could im-
plement a more efficient method of calculating the forces. For libraries of code,
this means that users do not have to change their existing code. Enscapsulation
prevents data from being accessed without referring to an object, which min-
imizes the possibility of errors being introduced elsewhere whilst making local
changes to the code. Indeed, in one’s first encounter with C++, a novice is likely
to find it difficult to get the objects to interact! Polymorphism allows function
calls to have the same names but different arguments. This is more intuitive
and results in a consistent interface. For instance, in the molecule.h++ frame-
work we have a series of functions all called force but with different arguments:
Force(CAtom1,CAtom2,Cutoff)
Force(tMolecule1,tMolecule2,Cutoff) and
Force(tMolecule1,tMoleculeSpecies2,Cutoff).

Templates are a powerful feature that can significantly reduce the amount
of coding. For scientific code it would be invaluable to have vector and matrix
objects as a part of a library. Because of strong type-casting, we would need
separate objects for each of the data types, int, bool, double (and float if
required). Templates represent a single bit of general code that can work for
different objects. This, of course, is fine for functions and behaviour that is
common for all the desired objects. When specific functionality is required for
a particular object, say a dot product for a CVector<double> object (which
would be meaningless for CVector<bool>), then that function would need to be
incorporated on an ad hoc basis.

Inheritance involves extending the functionality of a particular object by cre-
ating a new object that inherits all the features (data members and methods) of
the parent object and adds to it the new required functionality. This approach
facilitates reuse of previous code. Parent or base objects should be general with
the specificity being enhanced by the derived objects. Novices to C++ often
find it difficult to decide whether an extending object should inherit from the
base object or include the base object in its definition. The decision, for most
cases, is relatively easy. The appropriate question to ask is ’is the derived object
a kind-of parent object?’ If the answer is yes, then inherit. Let me illustrate
this with a couple of simple examples. We take the base object to be CAtom. We
want to extend the functionality to a molecule. Is a molecule a kind of CAtom?
No! So inheritance is inappropriate and the relationship between that of CAtom
and CMolecule objects would be of the include or containment-type. Clearly,

6

molecule.h++: Objects for molecular simulation

whenever the derived object consists of multiples of base objects, the relationship
is that of containment. For the second example, the base object is CMolecule.
We need to extend the behaviour of this object to rigid molecules. Is the rigid
molecule a kind of molecule? Sure, so we inherit from CMolecule.

molecule.h++: Objects for molecular simulation

The major problem with OOP is not the issue of getting to grips with a particular
programming language but rather one of design, more specifically the design of
a model that describes our physical system of interest. It would not be unusual
to spend up to two-thirds of the time on the design phase (this excludes the
specification period) and just a third on coding. Novices to C++ are often very
keen to actually begin coding and do not expend enough effort on designing the
model. A consequence is that they regularly break up their objects and redesign,
with much ensuing pain. The various objects defined in molecule.h++ as well as
their interactions are shown in Figure 1, which serve as an illustrative example of
a computational model for molecular simulations. The bread and butter objects
are CVector and CMatrix, which are template based. As a significant part of the
code deals with trajectories of particles, 3d vector objects are used extensively
for handling coordinates, velocities and forces. These vector objects introduce
a certain elegance into the code. The underlying mathematical relationships
(e.g. Newtonian mechanics for molecular dynamics) are commonly expressed in
vector notation. The 3d vector objects enable the code to be written effectively in
vector notation, which makes the code terse, more accessible, and easier to read,
leading to a reduction in coding errors. Let me illustrate this aspect using the
implementation of the leapfrog integration scheme as an example. The objective
here is to calculate the new coordinates r(t + δt) of a particle at (t + δt), given
the previous coordinates r(t) and velocity v(t − 0.5δt), and the current force f
that acts on the particle due to its environment.

The equations to be implemented take the form

v
(

t +
1
2
δt

)
= v

(
t− 1

2
δt

)
+ δt

f(t)
m

r(t + δt) = r(t) + δtv
(

t +
1
2
δt

)
v(t) =

1
2

[
v

(
t +

1
2
δt

)
+ v

(
t− 1

2
δt

)]
For which the implementation is

7

C++ OBJECT ORIENTED PROGRAMMING FOR SCIENTIFIC PROGRAMMING

// advance velocity to v(t+0.5dt)
v fhdt = v bhdt + dt * (f / m)
// advance coordinates using new velocity
r fdt = r + (dt * v fhdt)
// calculate velocity at t
v = half * (v fhdt + v bhdt)

where r, r fdt, v, v fhdt, v bhdt, and f are all 3d vector objects.

Figure 1: molecule.h++: objects for molecular simulation

The fundamental object in molecule.h++ is CAtom. A collection of CAtom
objects make up a CMolecule object. A collection of CMolecule objects in turn
comprise a CMolecularSpecies object. A number of distinct molecule types
i.e. CMolecularSpecies objects, make up an assembly of species of molecules
termed CMolecularEnsemble. This assembly of different molecular species is
encapsulated in a CSimulationCell object, which is the highest level object and
represents the overall system. The CSimulationCell also includes CThermostat
and CBarostat objects to control the temperature and pressure respectively
in the system, and a number of distinct forcefield objects whose purpose is to

8

molecule.h++: Objects for molecular simulation

calculate the interaction forces. CSimulationCell is derived from a generic
CCell object. All the essential molecular simulation algorithms e.g. Monte Carlo,
molecular dynamics, and thermodynamic integration for free energy calculations,
are implemented as functions within CSimulationCell.

The design of the forcefield objects and their interaction with the rest of the
system is not straight forward. Attempting to be faithful to the physical system
substantially increases memory requirements and makes the code inefficient and
cumbersome. The intuitive approach of associating forcefield parameters and
methods to CAtom, CMolecule or CMolecularSpecies objects turns out to be
inappropriate in practice. The van der Waals interaction between two atoms is
commonly represented by the Lennard-Jones form U = 4ε

[
(σ/r)12 − (σ/r)6

]
,

where the parameters ε and σ characterise the particular interaction between
atoms i and j, and r is the distance between the two atoms. An interaction
between any two distinct atom-types is therefore characterised, in general, by a
different set of ε and σ values. The usual input to molecular simulation code
consists of the homo-parameters i.e. the interaction between two like atoms (ii
or jj) for each atom type. For a typical system the number of different atom
types (C, N, O, H etc) rarely exceeds 10. The first step then is to calculate and
store the various hetero-parameters. The hetero-parameters are obtained from
the homo-parameters using the so called mixing rules: e.g. εij = (εiiεjj)0.5 ;
σij = 0.5(σii + σjj).

How should one incorporate the van der Waals forcefield into the molecular
simulation objects? We could make the two parameters, ε and σ, for a homo-
interaction data members of a CAtom object. So, for a particular atom type, say a
carbon atom, ε and σ would be assigned values that characterise a C..C interac-
tion. There are at least two serious problems in pursuing this approach. Firstly,
each atom object will carry two variables of the double type, which means a
memory allocation of about 50 kb for a system comprising 20,000 atoms. This in
itself is not much but it is important to keep data members of the CAtom object
to a minimum to keep the overall memory footprint of the code small. The issue
here is one of redundancy; all atoms of a particular type (e.g. all carbon atoms)
have the same parameters. The second aspect is one of efficiency. Each time
a pair interaction is calculated between two unlike atoms, say a carbon atom
with a nitrogen atom, the first step is to calculate the hetero-parameters (C..N)
from the homo-parameters (C..C and N..N), and then to employ these in the
calculation. In calculating the hetero-parameters we note that one of the mixing
rules involves a square root operation, which tends to be computationally very
expensive. For a system of N atoms there will be N(N-1) pair-wise interactions
at each MD timestep and a typical simulation may consist of 106 timesteps.

9

C++ OBJECT ORIENTED PROGRAMMING FOR SCIENTIFIC PROGRAMMING

Wasting valuable cpu resources in carrying out these square root operations in
a bid to keep the OOP model close to the physical reality would be unforgiv-
able. An alterative approach, which circumvents the continual re-calculation of
the hetero-parameters, is to make all the hetero-parameters, with respect to a
single atom-type, data members of the CAtom object. There may be other vari-
ations on this theme. Such approaches again could significantly increase the
memory requirement. In view of these considerations, we have opted for the
forcefield components to be independent objects that contain the van der Waals
parameters as data members and interact with the CAtom object and CMolecule,
CMolecularSpecies and CMolecularEnsemble. The forcefield is comprised of
three objects, CForcefield, a base class that contains a neighbourlist for speed-
ing up pair interaction calculations, and two derived classes, CForcefieldQQ and
CForcefieldQQSUM. CForcefieldQQ truncates the coulombic interaction between
the atoms or employs a reaction field, while CForcefieldQQSUM incorporates
Ewald summation.

The problem of minimizing storage of redundant data also arises with the
CMolecule object. A particular molecule’s intramolecular connectivity is defined
in terms of bonds, bond angles, and dihedrals or torsions. Furthermore, in some
instances, parts of the molecule may be kept rigid by means of constraints and
there will be parameters associated with these. Therefore, ideally, each molecule
should have all the atom indices and parameters that define the bonds, bond
angles, torsions and constraints as its data members. This will increase the
memory footprint of the CMolecule object and consequently the overall memory
requirement of the code. These molecular parameters that define the molecule are
in fact identical for all the molecules comprising a particular molecular species
i.e. an instance of CMolecularSpecies. One might think that making these
parameters static (i.e global to the molecule class), so that there is only one
instance of the these parameters, would resolve the problem. This does not work
as we may have two or more distinct molecular species in the system, and each
requires a different set of molecular parameters. An efficient alternative, which
we have adopted in molecule.h++, is to make the molecular parameters data
members of the CMolecularSpecies object rather than the CMolecule object.

Finally, OOP, because of the nature of objects, tends to give rise to code
with general functionality. General code invariably means slower code. It is still
possible to write specific, fast code using appropriate functions associated with
objects but this needs a certain discipline.

10

Dynamic memory allocation

Dynamic memory allocation

Other than design issues, another challenging aspect in coding objects is imple-
menting dynamic memory allocation. C++ requires that any objects created
on the heap in a program must also be deleted (when no longer required) by
the program. An infamous example is that of the hurriedly marketed SGI Irix
5.1 version of the unix operating system from Silicon Graphics. The base SGI
workstation was Indy which came with 16 MB of memory. The memory alloca-
tion/deletion in this operating system was so bad that the workstation became
completely unusable in 3-4 days as the machine inexorably increased its hard-disk
pagefile requirement, effectively transforming the respectable R4000 processor to
an Intel 386SX. SGI’s short term solution was to give additional 16 MB of mem-
ory for free! When allocating memory dynamically for objects, one must write
an explicit assignment operator and a copy constructor. An assignment operator
enables one object to be assigned to another of the same type i.e tMolecule1
= tMolecule2. A copy constructor enables a new identical object to be con-
structed from another. Default versions of both functions are provided by the
compiler but these will not work for dynamically allocated objects. The problem
encountered is that on assigning one object to another, the pointer to the object
in the assigned object points to the same memory as that being pointed to by
the first object. Both objects thus point to the same bit of memory. Deletion of
one of the objects causes no problems but deletion of the second object results
in an attempt to delete the already deleted object again resulting in an error.

// create vector object for velocity
CVector *v = new CVector(3);
// Assignment operation
tAtom1 = tAtom2; {e.g. tAtom1.v = tAtom2.v}

Since v is a pointer, then tAtom1.v → tAtom2.v i.e. pointer v of object
tAtom1 points to the same memory location as pointer v of object tAtom2.

// delete tAtom1
delete tAtom1.v; // this deletes tAtom1.v
// delete tAtom2
delete tAtom2.v; // this attempts to delete tAtom1.v again→ ERROR

To eliminate memory allocation errors one should use tools to check the heap
before and after running components of the code, which should show no change.
It is interesting to note that F2003 does not suffer from the above memory
allocation problems outlined for C++.

11

C++ OBJECT ORIENTED PROGRAMMING FOR SCIENTIFIC PROGRAMMING

Obscure programming by design
Whilst in general the emphasis of the article has been on writing lucid code, there
is at least one legitimate reason for writing obscure code (other than simply being
inclined towards such behaviour), that is, to ensure the longevity of one’s code.
For scientific problems it is not uncommon to see ’me too’ programs emerging
soon after the original program becomes established. How might one discourage
the development and uptake of these ’me-too’ competitive codes? I reproduce
some advice (with minor amendments of my own) from ISI (8).

1. The program must be robust; it should produce sensible numbers even
when used for purposes for which it was not intended by someone who has
lost the instructions (if there were any).

2. Do not include any comment lines or employ any form of structured pro-
gramming (OOP is completely out!). Any such attempt to make the code
lucid will make it easier for others to ’improve’ it and to re-issue it as
their own. Refrain from using variable names that are in any of the main
languages; English and Indian are out.

3. Never publish the original algorithms employed (if they were any), or you
will encourage cheap imitations.

4. Make sure that the program contains one or two undocumented ’features’ or
even ’bugs’. This will make the users dependent on you and the expectation
of getting the final/enhanced version will encourage users to cite you.

5. By definition, the final version is always six months from completion, so it
can never be released.

In crystallography, there are two citation classics, the crystal structure de-
termination and refinement codes SHELX76 (9) and SHELX-90 (10) by G.M.
Sheldrick. SHELX76 had citations in excess of 4000 in 1989, whilst SHELX-90,
which superseded SHELX76, currently has citations approaching 14,000! I had
an opportunity to look at the source code of SHELX76 in the late 80s when I
was a PhD student at Birkbeck College London. For a relatively small program
(∼ 1000 lines), I found SHELX76 to be brilliantly opaque.

The more conventional route to enhancing the longevity of one’s code is to
protect the copyright. This is best done by posting at least two copies of the code
(at each significant stage of development) to yourself by special delivery. One
must keep the certificates of postings and not open the packages until the lawyers
need to. The certificates of postings serve as date stamps for the code. Also, it

12

Correct behaviour above all else

is important to include a personal (or a group) signature throughout the code.
This could take the form of ’do-nothing code’ comprising important-looking do
loops or if statements that appear to be an integral part of the code. Evidence of
the signature appearing in a competitor’s code would suggest copyright violation.

Correct behaviour above all else

The traditional approach to testing code was to include print or write statements
within the code with the objective of determining the contents of key variables.
Within the production code the print statements would be commented out or
in some instances removed altogether. The sophisticated programmers would
include the print statements within a compiler ’debug’ directive, which enabled
one to select either the production code or the debug version at compile time.
For large codes, such an approach is wholly insufficient. I would advocate that
the test code is part and parcel of the production code, and that only a bottom
up approach where we test each and every function (which is often termed as
unit testing) can assure the quality that the scientific community expects. The
test code is typically about one-third of the source code. Furthermore, writing
good quality test code often takes longer than the main source code, as one needs
to devise appropriate input for each of the functions and ascertain the correct
output. Our approach is to have a static test function for each object. The
static keyword enables a call to the function from the class rather than having
to create an instance of the object. The test function tests each of the functions
of the object, be they big or small, trivial or complex, using appropriate input
and pre-calculated output. For each function, both the ouput and the expected
output are printed out. The expected output is determined using tools such as
Mathcad or Mathematica. The test code becomes increasingly difficult to devise
as the functions become of higher level, but is more than worth the effort. The
test code is also invaluable when identifying inadvertent editing when the code
is amended or its functionality extended. The discipline of testing code should
never be neglected because the lack of confidence in the results (does the system
really behave like this or is there a bug in the code?) at some later stage can be
soul destroying.

Concluding remarks

The experience of the software industry is that OO code is significantly more ac-
cessible, easier to maintain and modify, and promotes higher quality, particularly
for large projects. In developing or maintaining OOP-based scientific code the

13

REFERENCES

rate limiting step is typically the design stage. It is not unusual to spend 5 days
pondering and only half a day implementing the required amendments, which
of course should be followed with testing of all the new functions incorporated.
The OO approach is practically useless for small utility codes, for which the 5
days of pondering will simply become 5 days of wasted time. However, utility
codes based on OO libraries can be developed extremely rapidly. The choice of
the programming language is not so important provided all the essential con-
structs for intuitive OO design are available. For new programmers the first
choice would probably be Java. Finally, for mainstream academics, it is impor-
tant that they do not lose sight of their primary end goal, namely publications.
Do not spend excessive time in adding ’all singing and dancing’ functionality.
Most codes rarely venture outside the originating laboratory.

Acknowledgement
I would like to thank Keith Refson, Rutherford Appleton Laboratory, for valuable
discussions and a critical reading of the manuscript.

References
[1] H. Schildt (1997) Teach yourself C++, 3rd edition, McGraw-Hill Companies.

[2] B. Eckel (2007) Thinking in C++, 2nd edition, Free online resource at
http://www.freeprogrammingresources.com/cppbooks.html.

[3] S. Meyers (2005) Effective C++: 55 specific ways to improve your programs
and designs, 3rd edition, Addison-Wesley Professional.

[4] B. Stroustrup (2000) The C++ programming language, 3rd edition,
Addison-Wesley Professional.

[5] B. W. Kernighan and P. J. Plaugher (1978) Elements of programming style,
McGraw-Hill Education.

[6] W. Smith and T. Forester (1996) DL POLY 2.0: A general-purpose parallel
molecular dynamics simulation package J. Molec. Graphics, 14, 136-141.

[7] G. Booch (1993) Object-oriented analysis and design with applications, 2nd
edition, Addison-Wesley Professional.

[8] Current Contents 41, Oct 9, 1989, ISI.

14

REFERENCES

[9] G.M. Sheldrick (1976) SHELX76, program for crystal structure determina-
tion, Cambridge, England: University of Cambridge.

[10] G.M. Sheldrick (1990) SHELX-90, computer program for determining crys-
tal structures, Acta Cryst. A 46, 467-73.

Jamshed Anwar holds a Chair in Computational Pharmaceutical Sciences at the
Institute of Pharmaceutical Innovation (IPI), University of Bradford, and can be
contacted by email at j.anwar@bradford.ac.uk.

15

COMPUTATIONAL PHYSICS GROUP NEWS

Computational Physics Group News

The Computational Physics Thesis Prize 2007
The Committee of the Institute of Physics Computational Group has endowed
an annual thesis prize for the author of the PhD thesis that, in the opinion of
the Committee, contributes most strongly to the advancement of Computational
Physics. A total prize fund of up to £250 will be divided between the prize-
winner and the runners up. The number of awards is at the discretion of the
Committee. The winner(s) would be expected to provide an article for the IoP
Computational Physics Group Newsletter.

. The deadline for applications is February 29th, 2008.

. The submission format is a 4 page (A4) abstract together with a citation
(max. 500 words) from the PhD supervisor and a confidential report from
the external thesis examiner. Further details may be requested from short-
listed candidates.

. The submission address is:
Dr M Probert
Department of Physics
University of York
York, YO10 5DD
email: mijp1@york.ac.uk

. Please enclose full contact details, including an email address.
Applications are encouraged across the entire spectrum of Computational

Physics. The competition is open to all students who have carried out their
thesis work at a University in the United Kingdom or the Republic of Ireland,
and whose PhD examination has taken place in 2007.

The Computational Physics Thesis Prize 2006
The computational physics thesis prize for 2006 has been awarded to Vera Hazel-
worth – Congratulations!

16

IoP Computational Physics Group - Research Stu-
dent Conference Fund
The Institute of Physics provides financial support to research students to attend
international meetings and major national meetings.

Eligibility
Bursaries are available only to research students who are members of the Institute
and of an appropriate Institute group. For example, if an applicant is a member
of the Women in Physics Group only then they could only seek support to attend
a conference related to women in physics and not to low temperature physics.
To be eligible for that meeting, the applicant would also need to be a member
of the Low Temperature Group.

Financial support
Students may apply for up to £250 during the course of their PhD. Students
may apply more than once, for example they may request the full amount or
decide to request a smaller amount and then apply for funding again for another
conference at a later stage. Note that grants will normally cover only part of
the expenses incurred in attending a conference and are intended to supplement
grants from other sources.

Application procedure
Details of how to apply and an application form are available at
http://www.iop.org/activity/grants/Research Student Conference Fund/page 26535.html

Applications are considered on a quarterly basis and should reach the Insti-
tute by: 1 March, 1 June, 1 September or 1 December. A decision will be made
within eight weeks of the closing date, so the deadline chosen should be at least
three months before your event. We strongly recommend that you submit your
application early.

Reporting from the meeting
All recipients are asked to produce a report on return from their conference
before receiving payment. The report will be published in this Newsletter.

For further information please contact supportandgrants@iop.org.

17

http://www.iop.org/activity/grants/Research_Student_Conference_Fund/page_26535.html
mailto:supportandgrants@iop.org

IUPAP YOUNG SCIENTIST PRIZE

International Union of Pure and Applied Physics:
Young Scientist Prize in Computational Physics

Applications invited
The “International Union of Pure and Applied Physics Young Scientist Prize
in Computational Physics” (IUPAP Young Scientist Prize) can be awarded to
researchers who have a maximum of 8 years research experience following their
PhD. See http://c20.iupap.org/prizes.htm for details.

18

http://c20.iupap.org/prizes.htm

Reports on meetings

Mainz Materials Simulation Days 2007

Report by: Mikhail Yakutovich, Sheffield Hallam University

The Mainz Materials Simulation Days are a series of discussion meetings
focusing on method developments in computational materials science. In this,
the second such meeting, the focus was on biopolymers, surfaces and interfaces,
colloids and advanced sampling techniques. Thus, this workshop-style meeting
attracted scientists from a number of different but related areas in computational
physics and gave a good opportunity for exchange of ideas between specialists
working in adjacent areas.

The meeting lasted for two days, each day comprising one main oral session
and one poster session. The organizers aimed to limit participant numbers so
as to promote close discussions, which in my opinion proved a great advantage
over big conferences. For example, conference lunches and dinners were taken
all together, so participants could continue their discussions informally and get
to know each other better. The conference fee also included a dinner in a nice
restaurant. As a result, the networking possibilities were excellent during this
meeting.

During the oral and poster sessions, a great variety of simulation techniques
were presented, ranging from atomistic to continuum models, in the context of
a broad number of applications areas. These gave me a wider perspective on
both my particular field of research and the relative advantages and shortcom-
ings of other available techniques. The meeting commenced with an invited talk
by Jean-Louis Barrat from Lyon. He spoke about importance of a proper inter-
face description in nano structured systems. Continuum and atomistic levels of
description were presented and the results from simulations compared. Another
remarkable invited presentation was given by a Mike Allen from Warwick. He
presented a talk on interfaces in liquid crystals and techniques for studying them.
Colloidal particles adsorbed at liquid crystal isotropic fluid interfaces were also
considered, which is currently a very active field of research.

I presented a poster entitled Smoothed dissipative particle nemato dynamics:
from atomistic to application scale. It attracted good attention from a number
of people the resulting discussions led me to both gain a different outlook on
my project and learn how to communicate it effectively. The poster session was

19

REPORTS ON MEETINGS

spread over two days, so I also had enough time to thoroughly study the other
contributed posters.

I found the conference both very interesting and educational and I gained a
significant benefit from its attendance. I would recommend all research students
to attend the future events. I am very thankful to the Institute of Physics
Computational Physics Group for partially funding my attendance.

2007 APS March Meeting

Report by: Marco Pinna, (University of Central Lancashire, Preston), Confer-
ence took place in March 2007; Denver, Colorado (US)

The APS March Meeting at Denver was my first international conference with
oral and poster presentations about computer simulation of block copolymers. I
talked about sphere and gyroid morphologies of diblock copolymers under exter-
nal fields using Cell Dynamics Simulation.

The conference hall was very huge, and for me it was unbelievable that so
many people can present so many works in different fields. The duration of
each talk was very short (only ten minutes) plus two minutes for the questions.
Sometimes it was really hard to understand the aim or the final results of the
work done. Although the time was really short, there was no delay during the
oral sessions. Moreover, there was a focus session every day which anyone can
attend (for example, my talk was in the session Phase transitions in polymeric
systems). What was also very interesting is the poster session where a lot of
different works were presented and where you can ask more questions compared
to the oral session presentations. For me it was very useful to see the poster by
D. Meng and Q. Wang Symmetric diblock copolymers under Nano-Confinement.
The methods used in this work are a lattice Monte Carlo simulation and real-
space self-consistent field calculation, which help to understand the formation
of the structures and phase transitions of the various morphologies (for example
cylinder) in pores of different diameters and different surface preferences. An-
other interesting poster was about mechanical properties of healthy and tumor
tissue by Adriana Dickman. The subject was different from mine, but it was
interesting to note that the equations used were similar to the dissipative model
where a random force is used.

It is difficult to point a single oral presentation because there were so many
very useful talks for continuing my PhD project like one by Venkat Ganesan on

20

Non-Adiabatic Molecular Dynamics - A Discussion

Shear induced phase transition in ternary polymer blend. The system used is
only polymer blends, however, the method can be used to study also three-block
copolymers.

My talk was appreciated by an experimental group that can lead to a fu-
ture collaboration on better understanding of polymeric systems under different
conditions.

Not all talks on the APS March Meeting were only ten minutes long. Invited
talks were longer, which made them easier to understand. Moreover, there were
special talks during the special session Polymer Physics Prize. The length of
these talks were about 30 minutes plus 6 minutes for questions. They were given
by G. H. Fredrikson, F. Bates, E. J. Kramer and other very famous people in
the field on polymer physics.

This conference was not only organized to present talks and poster but also
to present books, software packages and experimental istruments. There was
software to make plots or package to look up for references. The most interesting
was the book exibition where anyone can find a book useful for own research
field. In my field there were several books in computational and polymer physics.
This conference was very useful to understand where the research (for me it is
polymer research) is going and what are the possibilities in the future. Such
a big conference gives possibility to interact with a lot of different people that
work in the same research field and allows for exchange of ideas. This will help
to improve the work I am doing in my PhD project.

Non-Adiabatic Molecular Dynamics - A Discussion
Report by Andrew Horsfield. Meeting 10 September 2007, Institute of Physics,
London, UK

This one day meeting was held on 10 September 2007, at 76 Portland Place,
and constituted a discussion on the subject of non-adiabatic molecular dynamics.
Five experts (see below) representing various different methodologies each gave a
talk explaining how their particular method works, and how it relates to the other
methods discussed. The talks were invariably interrupted every few minutes as
people wished to discuss the details. There was a small poster session so delegates
could present specific results in some detail obtained using the various methods.
About 20 people turned up in all (including a group from the Russian Academy
of Sciences).

21

REPORTS ON MEETINGS

We were very lucky indeed to have such a select group of speakers for so
modest a meeting. They were:

1. Giovanni Ciccotti [Quantum/classical propagators]

2. Todd Martinez [Multiple spawning Gaussian wavepackets]

3. Tchavdar Todorov [Correlated Electron-Ion Dynamics]

4. Nikos Doltsinis [Density Functional Theory surface hopping]

5. Claudio Verdozzi [Open boundary Ehrenfest dynamics]

This is a difficult field, and the talks were highly techical. But the meeting
was enjoyed by many who turned up: including the organizer.

22

Upcoming Computational Physics Events

Multiphysics 2007
. Conference 12 December 2007 to 14 December in Manchester, UK
. webpage: http://www.multiphysics.org/

Theory, Modelling and Computational Methods for Semicon-
ductor Materials and Nanostructures

. Workshop on 31 January 2008 and 1 February

. Abstract Deadline: 30th November 2007

. Further information: max.migliorato@manchester.ac.uk

. Webpage:
http://www.eee.manchester.ac.uk/research/groups/mandn/events/workshop/

International Conference on Computational Science (ICCS)
2008

. ICCS 2008 : ”Advancing Science and Society through Computation”

. Conference 23 June 2008 to June 25 in Krakow, Poland

. Paper submission deadline: 22 December 2007

. webpage: http://www.iccs-meeting.org/

23

http://www.multiphysics.org/
mailto:max.migliorato@manchester.ac.uk
http://www.eee.manchester.ac.uk/research/groups/mandn/events/workshop/
http://www.iccs-meeting.org/

COMPUTATIONAL TOOLS: UNIT CONVERSIONS

Computational tools: Unit conversions
A re-occcuring problem in physics (and in computer simulations of physics) is
the correct conversion of one unit (say metre) into another (say yard). Usually,
this should just be a matter of working out the right conversation factor but – if
this goes wrong or is forgotten – can be the cause for dramatic accidents.

A software is available (with the name units) which can be of great assistence
in these situations. We describe the very fundamental way of using it but note
for completeness that it is a framework that is much more powerful.

Suppose we need to know how many centimeters there are in one inch. After
starting the unit program, it displays

You have:

and we complete this by typing inch

You have: inch

The unit program then displays the next line

You want:

and we enter cm

You want: cm

After pressing return, the unit program prints the following answer

* 2.54

/ 0.39370079

which tells us that there are 2.54cm in one inch. The second number (0.39370079)
can be used for the inverse conversion: there are approximately 0.4 inch within
one centimetre.

We summarise this dialog for the following examples as follows (and it will
look like this on the screen)

You have: inch

You want: cm

* 2.54

/ 0.39370079

The unit program knows many units and constants, and these can be queried.
For example, if we need to know what an erg is, we could type erg, and just
press return when unit asks You want:

24

You have: erg

You want:

Definition: cm dyne = 1e-07 kg m^2 / s^2

This may raise the question what a dyne is

You have: dyne

You want:

Definition: cm gram / s^2 = 1e-05 kg m / s^2

Alternatively, if we are interested in how this erg energy relates to Joule, we can
do this

You have: erg

You want: joule

* 1e-07

/ 10000000

to find that 107 erg are equivalent to one Joule.
We can further provide a number in addition to the units for the conversion

process. Here is an example to see what 32 psi are in bar

You have: 32 psi

You want: bar

* 2.2063223

/ 0.45324293

In fact, much more complicated calculations can be carried out (see
http://www.gnu.org/software/units/#examples).

Finally, we can also provide products and quotients of known units. For
example, to convert 70 miles per hour into metre per second

You have: 70 miles/hour

You want: m/s

* 31.2928

/ 0.031956233

Putting all this together, and exploiting one of the many known constants of
the unit program, we computer what fraction of the velocity of light (abbreviated
c within the units program) the velocity of 70 miles represents

You have: 70 miles / hour

You want: c

* 1.0438155e-07

/ 9580237.6

25

http://www.gnu.org/software/units/#examples

COMPUTATIONAL TOOLS: UNIT CONVERSIONS

It is – as expected – a somewhat small fraction.
It is worth noting that the program will complain if units are inconsistent.

For example, magnetic fields and magnetic induction are oft used interchangably
in some areas of research (and an implicit multiplication or division with the
vacuum permeability is required for the conversion of one into the other). If we
try to convert 1 milli Tesla into A/m we get the following message

You have: 1mT

You want: A/m

conformability error

0.001 kg / A s^2

1 A / m

Dividing the milli Tesla by µ0, makes the units equivalent

You have: 1mT/mu0

You want: A/m

* 795.77472

/ 0.0012566371

where

You have: mu0

You want:

Definition: 4 pi 1e-7 H/m = 1.2566371e-06 kg m / A^2 s^2

There is much more to say about this useful tool, and further information can
be found on the webpage http://www.gnu.org/software/units/.

The programme is available in all major Linux distributions as a standard
package, via Fink for Mac OS X, Cygwin for MS Windows, or can be compiled
from source.

(Hans Fangohr)

26

http://www.gnu.org/software/units/

	This Newsletter will change …
	C++ Object Oriented Programming for Scientific Programming
	Introduction
	Molecular simulation
	Data-driven programming is inappropriate for large projects
	The OOP paradigm
	C++, Java, Smalltalk?
	OOP features of C++
	molecule.h++: Objects for molecular simulation
	Dynamic memory allocation
	Obscure programming by design
	Correct behaviour above all else
	Concluding remarks
	Acknowledgement

	Computational Physics Group News
	The Computational Physics Thesis Prize 2007
	The Computational Physics Thesis Prize 2006

	Student Conference Fund
	Eligibility
	Financial support
	Application procedure
	Reporting from the meeting

	IUPAP Young Scientist Prize
	Applications invited

	Reports on meetings
	Mainz Materials Simulation Days 2007
	2007 APS March Meeting
	Non-Adiabatic Molecular Dynamics - A Discussion

	Upcoming events
	Multiphysics 2007
	Theory, Modelling and Computational Methods for Semiconductor Materials and Nanostructures
	International Conference on Computational Science (ICCS) 2008

	Computational tools: Unit conversions

