
Computational Science and Engineering in
Python

Hans Fangohr
September 21, 2016

Engineering and the Environment
University of Southampton
United Kingdom
fangohr@soton.ac.uk

1

Outline
Python prompt
Functions
About Python
Coding style
Conditionals, if-else
Sequences
Loops
Some things revisited
Reading and Writing files
Exceptions
Printing
Higher Order Functions

2

Modules
Default arguments
Namespaces
Python IDEs
List comprehension
Dictionaries
Recursion
Common Computational Tasks
Root finding
Derivatives
Numpy
Higher Order Functions 2: Functional tools
Object Orientation and all that
Numerical Integration

3

Numpy usage examples

Scientific Python

ODEs

Sympy

Testing

Object Oriented Programming

Some programming languages

What language to learn next?

4

Python prompt

The Python prompt

• Spyder (or IDLE, or python or python.exe from
shell/Terminal/MS-Dos prompt, or IPython)

• Python prompt waits for input:
>>>

• Interactive Python prompt waits for input:
In [1]:

• Read, Evaluate, Print, Loop→ REPL

6

Hello World program

Standard greeting:

print("Hello World")

Entered interactively in Python prompt:

>>> print("Hello World")
Hello World

Or in IPython prompt:

In [1]: print("Hello world")
Hello world

7

A calculator

>>> 2 + 3
5
>>> 42 - 15.3
26.7
>>> 100 * 11
1100
>>> 2400 / 20
120
>>> 2 ** 3 # 2 to the power of 3
8
>>> 9 ** 0.5 # sqrt of 9
3.0

8

Create variables through assignment

>>> a = 10
>>> b = 20
>>> a
10
>>> b
20
>>> a + b
30
>>> ab2 = (a + b) / 2
>>> ab2
15

9

Important data types / type()

>>> a = 1
>>> type(a)
<class int> # integer

>>> b = 1.0
>>> type(b)
<class float> # float

>>> c = '1.0'
>>> type(c)
<class str> # string

>>> d = 1 + 3j
>>> type(d)
<class complex> # complex number

10

Summary useful commands (introspection)

• print(x) to display the object x
• type(x) to determine the type of object x
• help(x) to obtain the documentation string
• dir(x) to display the methods and members of object x,
or the current name space (dir()).

Example:

>>> help("abs")
Help on built-in function abs:

abs(...)
abs(number) -> number

Return the absolute value of the argument.

11

Interactive documentation, introspection

>>> word = 'test'
>>> print(word)
test
>>> type(word)
<class str>
>>> dir(word)
['__add__', '__class__', '__contains__', ...,
'__doc__', ..., 'capitalize', <snip>,
'endswith', ..., 'upper', 'zfill']
>>> word.upper()
'TEST'
>>> word.capitalize()
'Test'
>>> word.endswith('st')
True
>>> word.endswith('a')
False

12

Functions

First use of functions

Example 1:

def mysum(a, b):
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

14

Functions should be documented

def mysum(a,b):
"""Return the sum of parameters a and b.
Hans Fangohr, fangohr@soton.ac.uk,
last modified 24/09/2013
"""
return a + b

main program starts here
print("The sum of 3 and 4 is", mysum(3, 4))

Can now use the help function for our new function:

>>> help(mysum)
Help on function mysum in module __main__:

mysum(a, b)
Return the sum of parameters a and b.
Hans Fangohr, fangohr@soton.ac.uk,
last modified 24/09/2013 LAB1 15

Function terminology

x = -1.5
y = abs(x)

• x is the argument given to the function
• y is the return value (the result of the function’s
computation)

• Functions may expect zero, one or more arguments
• Not all functions (seem to) return a value. (If no return
keyword is used, the special object None is returned.)

16

Function example

def plus42(n):
"""Add 42 to n and return""" # docstring
l = n + 42 # body of

function
return l

a = 8
b = plus42(a) # not part of function definition

After execution, b carries the value 50 (and a = 8).

17

Summary functions

• Functions provide (black boxes of) functionality: crucial
building blocks that hide complexity

• interaction (input, output) through input arguments and
return values (printing and returning values is not the
same!)

• docstring provides the specification (contract) of the
function’s input, output and behaviour

• a function should (normally) not modify input arguments
(watch out for lists, dicts, more complex data structures as
input arguments)

18

Functions printing vs returning values

Given the following two function definitions:

def print42():
print(42)

def return42():
return 42

we use the Python prompt to explore the difference:

19

>>> b = return42() # return 42, is assigned
>>> print(b) # to b
42

>>> a = print42() # return None, and
42 # print 42 to screen
>>> print(a)
None # special object None

20

If we use IPython, it shows whether a function returns
something (i.e. not None) through the Out [] token:

In [1]: return42()
Out[1]: 42 # Return value of 42

In [2]: print42()
42 # No 'Out []', so no

returned value

21

21

About Python

Python

What is Python?

• High level programming language
• interpreted
• supports three main programming styles
(imperative=procedural, object-oriented, functional)

• General purpose tool, yet good for numeric work with
extension libraries

Availability

• Python is free
• Python is platform independent (works on Windows,
Linux/Unix, Mac OS, …)

23

Python documentation

There is lots of documentation that you should learn to use:

• Teaching materials on website, including these slides and
a text-book like document

• Online documentation, for example
• Python home page (http://www.python.org)
• Pylab/Matplotlib (plotting as in Matlab)
• Numpy (fast vectors and matrices, (NUMerical PYthon)
• SciPy (scientific algorithms, odeint)
• Visual Python (3d visualisation)
• SymPy (Symbolic calculation)

• interactive documentation

24

http://www.python.org

Which Python version

• There are currently two versions of Python:
• Python 2.7 and
• Python 3.x

• We will use version 3.5 or later
• Python 2.x and 3.x are incompatible although the changes
only affect very few commands.

• Write new programs in Python 3 where possible.
• You may have to read / work with Python 2 code at some
point.

• See webpages for notes on installation of Python on
computers.

25

The math module (import math)

>>> import math
>>> math.sqrt(4)
2.0
>>> math.pi
3.141592653589793
>>> dir(math) #attributes of 'math' object
['__doc__', '__file__', < snip >
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',
'atanh', 'ceil', 'copysign', 'cos', 'e', 'erf',
'exp', <snip>, 'sqrt', 'tan', 'tanh', 'trunc']

>>> help(math.sqrt) #ask for help on sqrt
sqrt(...)

sqrt(x)
Return the square root of x.

26

Name spaces and modules

Three (good) options to access a module:

1. use the full name:
import math
print(math.sin(0.5))

2. use some abbreviation
import math as m
print(m.sin(0.5))
print(m.pi)

3. import all objects we need explicitly
from math import sin, pi
print(sin(0.5))
print(pi)

27

Python 2: Integer division

Dividing two integers in Python 1 and 2 returns an integer:

>>> 1 / 2
0 # might have expected 0.5, not 0

We find the same behaviour in Java, C, Fortran, and many other
programming languages.

Solutions:

• change (at least) one of the integer numbers into a
floating point number (i.e. 1→ 1.0).
>>> 1.0 / 2
0.5

27

• Or use float function to convert variable to float
>>> a = 1
>>> b = 2
>>> 1 / float(b)
0.5

• Or make use of Python’s future division:
>>> from __future__ import division
>>> 1 / 2
0.5

If you really want integer division, use // instead of /:

>>> 1 // 2
0

28

Python 3: Integer division

In Python 3:

>>> 1 / 2
0.5

Dividing 2 integers returns a float:

>>> 4 / 2
2.0
>>> type(4 / 2)
<class float>

29

If we want integer division (i.e. an operation that returns an
integer, and/or which replicates the default behaviour of
Python 2), we use //:

>>> 1 // 2
0

30

Coding style

Coding style

• Python programs must follow Python syntax.
• Python programs should follow Python style guide,
because

• readability is key (debugging, documentation, team effort)
• conventions improve effectiveness

32

Common style guide: PEP8

See http://www.python.org/dev/peps/pep-0008/

• This document gives coding conventions for the Python code
comprising the standard library in the main Python distribution.

• This style guide evolves over time as additional conventions are
identified and past conventions are rendered obsolete by changes in
the language itself.

• Many projects have their own coding style guidelines. In the event of
any conflicts, such project-specific guides take precedence for that
project.

• One of Guido van Rossum’s key insights is that code is read much
more often than it is written. The guidelines provided here are
intended to improve the readability of code and make it consistent
across the wide spectrum of Python code. ”Readability counts”.

• Sometimes we should not follow the style guide, for example:
• When applying the guideline would make the code less readable, even for someone who is used to
reading code that follows this PEP.

• To be consistent with surrounding code that also breaks it (maybe for historic reasons) – although
this is also an opportunity to clean up someone else’s mess (in true XP style).

33

http://www.python.org/dev/peps/pep-0008/

PEP8 Style guide

• Indentation: use 4 spaces
• One space around assignment operator (=) operator: c =
5 and not c=5.

• Spaces around arithmetic operators can vary: x = 3*a +
4*b is okay, but also okay to write x = 3 * a + 4 * b.

• No space before and after parentheses: x = sin(x) but
not x = sin(x)

• A space after comma: range(5, 10) and not range(5,10).
• No whitespace at end of line
• No whitespace in empty line
• One or no empty line between statements within function

34

• Two empty lines between functions

• One import statement per line

• import first standand Python library (such as math), then
third-party packages (numpy, scipy, ...), then our own
modules

• no spaces around = when used in keyword arguments
("Hello World".split(sep=' ') but not "Hello
World".split(sep = ' '))

35

PEP8 Style Summary

• Try to follow PEP8 guide, in particular for new code
• Use tools to help us, for example Spyder editor can show
PEP8 violations.
Similar tools/plugins are available for Emacs, Sublime
Text, and other editors.

• pep8 program available to check source code from
command line.

36

Conditionals, if-else

Truth values

The python values True and False are special inbuilt objects:

>>> a = True
>>> print(a)
True
>>> type(a)
<class bool>
>>> b = False
>>> print(b)
False
>>> type(b)
<class bool>

38

We can operate with these two logical values using boolean
logic, for example the logical and operation (and):

>>> True and True #logical and operation
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

39

There is also logical or (or) and the negation (not):

>>> True or False
True
>>> not True
False
>>> not False
True
>>> True and not False
True

40

In computer code, we often need to evaluate some expression
that is either true or false (sometimes called a “predicate”).
For example:

>>> x = 30 # assign 30 to x
>>> x >= 30 # is x greater than or equal to 30?
True
>>> x > 15 # is x greater than 15
True
>>> x > 30
False
>>> x == 30 # is x the same as 30?
True
>>> not x == 42 # is x not the same as 42?
True
>>> x != 42 # is x not the same as 42?
True

41

if-then-else

The if-else command allows to branch the execution path
depending on a condition. For example:

>>> x = 30 # assign 30 to x
>>> if x > 30: # predicate: is x > 30
... print("Yes") # if True, do this
... else:
... print("No") # if False, do this
...
No

42

The general structure of the if-else statement is

if A:
B

else:
C

where A is the predicate.

• If A evaluates to True, then all commands B are carried
out (and C is skipped).

• If A evaluates to False, then all commands C are carried
out (and B) is skipped.

• if and else are Python keywords.

A and B can each consist of multiple lines, and are grouped
through indentation as usual in Python.

43

if-else example

def slength1(s):
"""Returns a string describing the
length of the sequence s"""
if len(s) > 10:

ans = 'very long'
else:

ans = 'normal'

return ans

>>> slength1("Hello")
'normal'
>>> slength1("HelloHello")
'normal'
>>> slength1("Hello again")
'very long'

44

if-elif-else example

If more cases need to be distinguished, we can use the
keyword elif (standing for ELse IF) as many times as desired:

def slength2(s):
if len(s) == 0:

ans = 'empty'
elif len(s) > 10:

ans = 'very long'
elif len(s) > 7:

ans = 'normal'
else:

ans = 'short'

return ans

45

>>> slength2("")
'empty'
>>> slength2("Good Morning")
'very long'
>>> slength2("Greetings")
'normal'
>>> slength2("Hi")
'short'

LAB2

46

Sequences

Sequences overview

Different types of sequences

• strings
• lists (mutable)
• tuples (immutable)
• arrays (mutable, part of numpy)

They share common commands.

48

Strings

>>> a = "Hello World"
>>> type(a)
<class str>
>>> len(a)
11
>>> print(a)
Hello World

Different possibilities to limit strings:

'A string'
"Another string"
"A string with a ' in the middle"
"""A string with triple quotes can
extend over several
lines"""

49

Strings 2 (exercise)

• Define a, b and c at the Python prompt:
>>> a = "One"
>>> b = "Two"
>>> c = "Three"

• Exercise: What do the following expressions evaluate to?
1. d = a + b + c
2. 5 * d
3. d[0], d[1], d[2] (indexing)
4. d[-1]
5. d[4:] (slicing)

50

Strings 3 (exercise)

>>> s="""My first look at Python was an
... accident, and I didn't much like what
... I saw at the time."""

For the string s:

• count the number of (i) letters ’e’ and (ii) substrings ’an’
• replace all letters ’a’ with ’0’
• make all letters uppercase
• make all capital letters lowercase, and all lower case
letters to capitals

51

Lists

[] # the empty list
[42] # a 1-element list
[5, 'hello', 17.3] # a 3-element list
[[1, 2], [3, 4], [5, 6]] # a list of lists

• Lists store an ordered sequence of Python objects
• Access through index (and slicing) as for strings.
• use help(), often used list methods is append()

(In general computer science terminology, vector or array might be better name as the

actual implementation is not a linked list, but direct O(1) access through the index is

possible.)

52

Example program: using lists

>>> a = [] # creates a list
>>> a.append('dog') # appends string 'dog'
>>> a.append('cat') # ...
>>> a.append('mouse')
>>> print(a)
['dog', 'cat', 'mouse']
>>> print(a[0]) # access first element
dog # (with index 0)
>>> print(a[1]) # ...
cat
>>> print(a[2])
mouse
>>> print(a[-1]) # access last element
mouse
>>> print(a[-2]) # second last
cat

53

Example program: lists containing a list

>>> a = ['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a
['dog', 'cat', 'mouse', [1, 10, 100, 1000]]
>>> a[0]
dog
>>> a[3]
[1, 10, 100, 1000]
>>> max(a[3])
1000
>>> min(a[3])
1
>>> a[3][0]
1
>>> a[3][1]
10
>>> a[3][3]
1000

54

Sequences – more examples

>>> a = "hello world"
>>> a[4]
'o'
>>> a[4:7]
'o w'
>>> len(a)
11
>>> 'd' in a
True
>>> 'x' in a
False
>>> a + a
'hello worldhello world'
>>> 3 * a
'hello worldhello worldhello world'

55

Tuples

• tuples are very similar to lists
• tuples are immutable (unchangeable) whereas lists are
mutable (changeable)

• tuples are usually written using parentheses (↔ “round
brackets”):
>>> t = (3, 4, 50) # t for Tuple
>>> t
(3, 4, 50)
>>> type(t)
<class tuple>

56

>>> l = [3, 4, 50] # compare with l for List
>>> l
[3, 4, 50]
>>> type(l)
<class list>

57

Tuples are defined by comma

• tuples are defined by the comma (!), not the parenthesis
>>> a = 10, 20, 30
>>> type(a)
<class tuple>

• the parentheses are usually optional (but should be
written anyway):
>>> a = (10, 20, 30)
>>> type(a)
<class tuple>

58

Tuples are sequences

• normal indexing and slicing (because tuple is a sequence)
>>> t[1]
4
>>> t[:-1]
(3, 4)

59

Why do we need tuples (in addition to lists)?

1. use tuples if you want to make sure that a set of objects
doesn’t change.

2. allow to assign several variables in one line (known as
tuple packing and unpacking)
x, y, z = 0, 0, 1

• This allows ’ instantaneous swap’ of values:
a, b = b, a

60

3. functions return tuples if they return more than one
object
def f(x):

return x**2, x**3

a, b = f(x)

4. tuples can be used as keys for dictionaries as they are
immutable

61

(Im)mutables

• Strings — like tuples — are immutable:
>>> a = 'hello world' # String example
>>> a[4] = 'x'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object does not support item assignment

• strings can only be ’changed’ by creating a new string, for
example:
>>> a = a[0:3] + 'x' + a[4:]
>>> a
'helxo world'

62

Summary sequences

• lists, strings and tuples (and arrays) are sequences.
• sequences share the following operations

a[i] returns i-th element of a
a[i:j] returns elements i up to j− 1
len(a) returns number of elements in sequence
min(a) returns smallest value in sequence
max(a) returns largest value in sequence
x in a returns True if x is element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In the table above, a and b are sequences, i, j and n are
integers.

63

Conversions

• We can convert any sequence into a tuple using the tuple
function:
>>> tuple([1, 4, "dog"])
(1, 4, 'dog')

• Similarly, the list function, converts sequences into lists:
>>> list((10, 20, 30))
[10, 20, 30]

• Looking ahead to iterators, we note that list and tuple can
also convert from iterators:
>>> list(range(5))
[0, 1, 2, 3, 4]
And if you ever need to create an iterator from a sequence, the
iter function can this:
>>> iter([1, 2, 3])
<list_iterator object at 0x1013f1fd0> 64

Loops

Introduction loops

Computers are good at repeating tasks (often the same task
for many different sets of data).

Loops are the way to execute the same (or very similar) tasks
repeatedly (“ in a loop”).

Python provides the “for loop” and the “while loop”.

66

Example program: for-loop

animals = ['dog', 'cat', 'mouse']

for animal in animals:
print("This is the {}".format(animal))

produces

This is the dog
This is the cat
This is the mouse

The for-loop iterates through the sequence animals and
assigns the values in the sequence subsequently to the name
animal.

67

Iterating over integers

Often we need to iterate over a sequence of integers:

for i in [0, 1, 2, 3, 4, 5]:
print("the square of {} is {}"

.format(i, i**2))

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

68

Iterating over integers with the range iterator

The range(n) iterator is used to iterate over a sequence of
increasing integer values up to (but not including) n:

for i in range(6):
print("the square of {} is {}"

.format(i, i**2))

produces

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

69

The range iterator

• range is used to iterate over integer sequences
• range has its own type:
>>> type(range(6))
<class range>

• We can use iterators in for loops:
>>> for i in range(4):
... print("i={}".format(i))
i=0
i=1
i=2
i=3

70

• We can convert an iterator into a list:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]

• This conversion to list is useful to understand what
sequences the iterator would provide if used in a for loop:
>>> list(range(6))
[0, 1, 2, 3, 4, 5]
>>> list(range(0, 6))
[0, 1, 2, 3, 4, 5]
>>> list(range(3, 6))
[3, 4, 5]
>>> list(range(-3, 0))
[-3, -2, -1]

71

The range iterator
range([start,] stop [,step]) iterates over integers from
start to but not including stop, in steps of step.

start defaults to 0 and step defaults to 1.

Examples:

>>> list(range(0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 4))
[] # no iterations

(Note that range objects are sequences.)

72

Iterating over sequences with for-loop

for loop iterates over sequences

Examples:

for i in [0, 3, 4, 19]:
print(i)

for animal in ['dog', 'cat', 'mouse']:
print(animal)

for letter in "Hello World": # strings are
print(letter) # sequences

for i in range(5): # range objects
print(i) # are sequences

73

Reminder: If-then-else

• Example 1 (if-then-else)
a = 42
if a > 0:

print("a is positive")
else:

print("a is negative or zero")

74

Another iteration example

This example generates a list of numbers often used in hotels
to label floors (more info)

def skip13(a, b):
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

75

http://answers.yahoo.com/question/index?qid=20060917174241AAgpRlk

Exercise range_double

Write a function range_double(n) that generates a list of
numbers similar to list(range(n)). In contrast to
list(range(n)), each value in the list should be multiplied by
2. For example:

>>> range_double(4)
[0, 2, 4, 6]
>>> range_double(10)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

For comparison the behaviour of range:

>>> list(range(4))
[0, 1, 2, 3]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] LAB3 76

Exercise: First In First Out (FIFO) queue

Write a First-In-First-Out queue implementation, with
functions:

• add(name) to add a customer with name name (call this
when a new customer arrives)

• next() to be called when the next customer will be
served. This function returns the name of the customer

• show() to print all names of customers that are currently
waiting

• length() to return the number of currently waiting
customers

Suggest to use a global variable q and define this in the first
line of the file by assigning an empty list: q = [].

77

While loops

• Reminder: a for loop iterates over a given sequence or
iterator

• New: a while loop iterates while a condition is fulfilled

Example:

x = 64
while x > 10:

x = x // 2
print(x)

produces

32
16
8

78

While loop example 2 *

Determine ϵ:

eps = 1.0

while eps + 1 > 1:
eps = eps / 2.0

print("epsilon is {}".format(eps))

Output:

epsilon is 1.11022302463e-16

79

79

Some things revisited

What are variables?

In Python, variables are references (or names) to objects.
This is why in the following example, a and b represent the
same list: a and b are two different references to the same
object:

>>> a = [0, 2, 4, 6] # bind name 'a' to list
>>> a # object [0,2,4,6].
[0, 2, 4, 6]
>>> b = a # bind name 'b' to the same
>>> b # list object.
[0, 2, 4, 6]
>>> b[1] # show second element in list
2 # object.
>>> b[1] = 10 # modify 2nd elememnt (via b).
>>> b # show b.
[0, 10, 4, 6]
>>> a # show a.
[0, 10, 4, 6] 81

id, == and is

• Two objects a and b are the same object if they live in the
same place in memory.

• Python provides the id function that returns the identity
of an object. (It is the memory address.)

• We check with id(a) == id(b) or a is b wether a and b
are the same object.

• Two different objects can have the same value. We check
with == See “Equality and identity“, section 3.5

82

Example 1

>>> a = 1
>>> b = 1.0
>>> id(a); id(b)
4298187624 # not in the same place
4298197712 # in memory
>>> a is b # i.e. not the same objects
False
>>> a == b # but carry the same value
True

83

Example 2

>>> a = [1, 2, 3]
>>> b = a # b is reference to object of a
>>> a is b # thus they are the same
True
>>> a == b # the value is (of course) the same
True

84

Functions – side effect

• If we carry out some activity A, and this has an
(unexpected) effect on something else, we speak about
side effects. Example:

def sum(xs):
s = 0
for i in range(len(xs)):

s = s + xs.pop()
return s

xs = [10, 20, 30]
print("xs = {}; ".format(xs), end='')
print("sum(xs)={}; ".format(sum(xs)), end='')
print("xs = {}".format(xs))

Output:

xs = [10, 20, 30]; sum(xs)=60; xs = [] 85

Functions - side effect 2

Better ways to compute the sum of a list xs (or sequence in
general)

• use in-built command sum(xs)
• use indices to iterate over list

def sum(xs):
s=0
for i in range(len(xs)):

s = s + xs[i]
return s

• or (better): iterate over list elements directly
def sum(xs):

s=0
for elem in xs

s = s + elem
return s

86

To print or to return?

• A function that returns the control flow through the
return keyword, will return the object given after return.

• A function that does not use the return keyword, returns
the special object None.

• Generally, functions should return a value
• Generally, functions should not print anything
• Calling functions from the prompt can cause some
confusion here: if the function returns a value and the
value is not assigned, it will be printed.

• See slide 19.

87

Reading and Writing files

File input/output

It is a (surprisingly) common task to

• read some input data file
• do some calculation/filtering/processing with the data
• write some output data file with results

Python distinguishes between

• text files ('t')
• binary files 'b')

If we don’t specify the file type, Python assumes we mean text
files.

89

Writing a text file

>>> f = open('test.txt', 'w') # Write
>>> f.write("first line\nsecond line")
22 # returns number of chars written
>>> f.close()

creates a file test.txt that reads

first line
second line

90

• To write data, we need to open the file with 'w' mode:
f = open('test.txt', 'w')

By default, Python assumes we mean text files. However,
we can be explicit and say that we want to create a Text
file for Writing:

f = open('test.txt', 'tw')

• If the file exists, it will be overridden with an empty file
when the open command is executed.

• The file object f has a method f.write which takes a
string as in input argument.

• Must close file at the end of writing process using
f.close().

91

Reading a text file

We create a file object f using

>>> f = open('test.txt', 'r') # Read

and have different ways of reading the data:

1. f.readlines() returns a list of strings (each being one
line)

>>> f = open('test.txt', 'r')
>>> lines = f.readlines()
>>> f.close()
>>> lines
['first line\n', 'second line']

92

2. f.read() returns one long string for the whole file
>>> f = open('test.txt', 'r')
>>> data = f.read()
>>> f.close()
>>> data
'first line\nsecond line'

3. Use text file f as an iterable object: process one line in
each iteration (important for large files):
>>> f = open('test.txt', 'r')
>>> for line in f:
... print(line, end='')
...
first line
second line
>>> f.close()

93

Opening and automatic file closing through context manager

Python provides context managers that we use using with. For
the file access:

>>> with open('test.txt', 'r') as f:
... data = f.read()
...
>>> data
'first line\nsecond line'

If we use the file context manager, it will close the file
automatically (when the control flows leaves the indented
block).

Once you are familiar with file access, we recommend you use
this method.

94

Use case: Reading a file, iterating over lines

• Often we want to process line by line. Typical code
fragment:

f = open('myfile.txt', 'r')
lines = f.readlines()
f.close()
some processing of the lines object

lines is a list of strings, each representing one line of the
file.

• It is good practice to close a file as soon as possible.
• Equivalent example using the context manager:

with open('myfile.txt', 'r') as f:
lines = f.readlines()

some processing of the lines object

95

Splitting a string

• We often need to split a string into smaller parts: use
string method split():
(try help("".split) at the Python prompt for more info)

Example: Take a string and display each word on a separate
line:

>>> c = 'This is my string'
>>> c.split()
['This', 'is', 'my', 'string']
>>> c.split('i')
['Th', 's ', 's my str', 'ng']

96

Exercise: Shopping list

Given a list

bread 1 1.39
tomatoes 6 0.26
milk 3 1.45
coffee 3 2.99

Write program that computes total cost per item, and writes to
shopping_cost.txt:

bread 1.39
tomatoes 1.56
milk 4.35
coffee 8.97

97

One solution

One solution is shopping_cost.py

fin = open('shopping.txt', 'tr') # INput File
lines = fin.readlines()
fin.close() # close file as soon as possible

fout = open('shopping_cost.txt', 'tw') # OUTput File
for line in lines:

words = line.split()
itemname = words[0]
number = int(words[1])
cost = float(words[2])
totalcost = number * cost
fout.write("{:20} {}\n".format(itemname,

totalcost))
fout.close()

98

Exercise

Write function print_line_sum_of_file(filename) that
reads a file of name filename containing numbers separated
by spaces, and which computes and prints the sum for each
line. A data file might look like

1 2 4 67 -34 340
0 45 3 2
17

LAB4

99

Binary files

• Files that store binary data are opened using the 'b' flag
(instead of 't' for Text):

f = open('data.dat', 'br')

• For text files, we read and write str objects. For binary
files, use the bytes type instead.

• By default, store data in text files. Text files are human
readable (that’s good) but take more disk space than
binary files.

• Reading and writing binary data is outside the scope of
this introductory module. If you need it, do learn about
the struct module.

100

100

Exceptions

Exceptions

• Errors arising during the execution of a program result in
“exceptions” being ’raised’ (or ’thrown’).

• We have seen exceptions before, for example when
dividing by zero:
>>> 4.5 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: float division by zero
or when we try to access an undefined variable:

102

>>> print(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

• Exceptions are a modern way of dealing with error
situations

• We will now see how
• what exceptions are coming with Python
• we can “catch” exceptions
• we can raise (“throw”) exceptions in our code

103

In-built Python exceptions

Python’s in-built exceptions (from documentation)

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError

104

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError

105

| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning

106

+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

Somewhat advanced use of Python: We can provide our own
exception classes (by inheriting from Exception).

107

Exceptions example

• suppose we try to read data from a file:
f = open('myfilename.dat', 'r')
for line in f.readlines():

print(line)

• If the file doesn’t exist, then the open() function raises
the FileNotFoundError exception:
FileNotFoundError: [Errno 2] No such file or

directory: 'myfilename.txt↪→

108

Catching exceptions

• We can modify our code to ’catch’ this error:
1 import sys
2 try:
3 f = open('myfilename.txt', 'r')
4 except FileNotFoundError:
5 print("The file couldn't be found. " +
6 "This program stops here.")
7 sys.exit(1) # a way to exit the program
8

9 for line in f:
10 print(line, end='')
11 f.close()

109

which produces this message:
The file couldn't be found. This program stops

here.↪→

• The try branch (line 3) will be executed.
• Should an FileNotFoundError exception be raised, then
the except branch (starting line 5) will be executed.

• Should no exception be raised in the try branch, then the
except branch is ignored, and the program carries on
starting in line 9.

• the sys.exit(n) function call stops the program, and
returns the value of the integer n to the operating system
as an error code.

110

An alternative solution (compare with the exception
hierarchy on slide 104):
import sys
try:

f = open('myfilename.txt', 'r')
except OSError as error:

print("The file couldn't be opened. " +
"This program stops here.")

print("Details: {}".format(error))
sys.exit(1) #a way to exit the program

for line in f:
print(line, end='')

f.close()
which produces

111

The file couldn't be opened. This program stops here.
Details: [Errno 2] No such file or directory:

'myfilename.txt'↪→

112

Catching exceptions summary

• Catching exceptions allows us to take action on errors that
occur

• For the file-reading example, we could ask the user to
provide another file name if the file can’t be opened.

• Catching an exception once an error has occurred may be
easier than checking beforehand whether a problem will
occur (“It is easier to ask forgiveness than get
permission”.)

113

Raising exceptions

• Because exceptions are Python’s way of dealing with
runtime errors, we should use exceptions to report errors
that occur in our own code.

• To raise a ValueError exception, we use
raise ValueError("Message")
and can attach a message "Message" (of type string) to
that exception which can be seen when the exception is
reported or caught.

114

Raising exceptions example

>>> raise ValueError("Some problem occurred")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: Some problem occurred

115

Raising NotImplementedError Example

Often used is the NotImplementedError in incremental coding:

def my_complicated_function(x):
message = "Called with x={}".format(x)
raise NotImplementedError(message)

If we call the function:

>>> my_complicated_function(42)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in my_complicated_function

NotImplementedError: Called with x=42

116

Exercise

Extend print_line_sum_of_file(filename) so that if the
data file contains non-numbers (i.e. strings), these evaluate to
the value 0. For example

1 2 4 -> 7
1 cat 4 -> 5
coffee -> 0

LAB5

117

117

Printing

Printing basics

• the print function sends content to the “standard
output” (usually the screen)

• print() prints an empty line:
>>> print()

• Given a single string argument, this is printed, followed by
a new line character:
>>> print("Hello")
Hello

• Given another object (not a string), the print function will
ask the object for its preferred way to be represented as a
string:

119

>>> print(42)
42

• Given multiple objects separated by commas, they will be
printed separated by a space character:
>>> print("dog", "cat", 42)
dog cat 42

• To supress printing of a new line, use the end='' option:
>>> print("Dog", end=''); print("Cat")
DogCat
>>>

120

Common strategy for the print command

• Construct some string s, then print this string using the
print function
>>> s = "I am the string to be printed"
>>> print(s)
I am the string to be printed

• The question is, how can we construct the string s? We
talk about string formatting.

121

String formatting: the percentage (%) operator

% operator syntax
Syntax: A % B
where A is a string, and B a Python object, or a tuple of Python

objects.

The format string A needs to contain k format specifiers if the
tuple has length k. The operation returns a string.

Example: basic formatting of one number

122

>>> import math
>>> p = math.pi
>>> "%f" % p # format p as float (%f)
'3.141593' # returns string
>>> "%d" % p # format p as integer (%d)
'3'
>>> "%e" % p # format p in exponential style
'3.141593e+00'
>>> "%g" % p # format using fewer characters
'3.14159'

The format specifiers can be combined with arbitrary
characters in string:

123

>>> 'the value of pi is approx %f' % p
'the value of pi is approx 3.141593'
>>> '%d is my preferred number' % 42
'42 is my preferred number'

Combining multiple objects

>>> "%d times %d is %d" % (10, 42, 10 * 42)
'10 times 42 is 420'
>>> "pi=%f and 3*pi=%f is approx 10" % (p, 3*p)
'pi=3.141593 and 3*pi=9.424778 is approx 10'

124

Fixing width and/or precision of resulting string

>>> '%f' % 3.14 # default width and precision
'3.140000'

>>> '%10f' % 3.14 # 10 characters long
' 3.140000'

>>> '%10.2f' % 3.14 # 10 long, 2 post-dec digits
' 3.14'

>>> '%.2f' % 3.14 # 2 post-decimal digits
'3.14'

125

>>> '%.14f' % 3.14 # 14 post-decimal digits
'3.14000000000000'

There is also the format specifier %s that expects a string, or
an object that can provide its own string representation.

Combined with a width specifier, this can be used to align
columns of strings in tables:

>>> "%10s" % "apple"
' apple'
>>> "%10s" % "banana"
' banana'

126

Common formatting specifiers

A list of common formatting specifiers, with example output
for the astronomical unit (AU) which is the distance from Earth
to Sun [in metres]:

>>> AU = 149597870700 # astronomical unit [m]
>>> "%f" % AU # line 1 in table
'149597870700.000000'

specifier style Example output for AU
%f floating point 149597870700.000000
%e exponential notation 1.495979e+11
%g shorter of %e or %f 1.49598e+11
%d integer 149597870700
%s str() 149597870700
%r repr() 149597870700

127

Summary %-operator for printing

Create string using the %-operator, then pass the string to the
print function. Typically done in the same line:

>>> import math
>>> print("My pi = %.2f." % math.pi)
My pi = 3.14.

Print multiple values:

>>> print("a=%d b=%d" % (10, 20))
a=10 b=20

Very similar syntax exists in C and Matlab, amongst others for
formatted data output to screen and files.

128

New style string formatting (format method)

A new system of built-in formatting has been proposed, titled
Advanced String Formatting and is available in Python 3.

Basic ideas in examples:

• Pairs of curly braces are the placeholders.

>>> "{} needs {} pints".format('Peter', 4)
'Peter needs 4 pints'

• Can index into the arguments given to format:
>>> "{0} needs {1} pints".format('Peter',4)
'Peter needs 4 pints'
>>> "{1} needs {0} pints".format('Peter',4)
'4 needs Peter pints'

129

https://www.python.org/dev/peps/pep-3101/

• We can refer to objects through a name:
>>> "{name} needs {number} pints".format(\
... name='Peter',number=4)
'Peter needs 4 pints'

• Formatting behaviour of %f can be achieved through {:f},
(same for %d, %e, etc)
>>> "Pi is approx {:f}.".format(math.pi)
'Pi is approx 3.141593.'

• Width and post decimal digits can be specified as before:
>>> "Pi is approx {:6.2f}.".format(math.pi)
'Pi is approx 3.14.'
>>> "Pi is approx {:.2f}.".format(math.pi)
'Pi is approx 3.14.'

130

This is a powerful and elegant way of string formatting.

Further Reading

• Examples
http://docs.python.org/library/string.html#format-
examples

• Python Enhancement Proposal 3101

131

http://docs.python.org/library/string.html#format-examples
http://docs.python.org/library/string.html#format-examples
http://www.python.org/dev/peps/pep-3101/

What formatting should I use?

• The .format method most elegant and versatile

• % operator style okay, links to Matlab, C, ...

• Choice partly a matter of taste

• Should be aware (in a passive sense) of different possible
styles (so we can read code from others)

132

Changes from Python 2 to Python 3: print

One (maybe the most obvious) change going from Python 2 to
Python 3 is that the print command loses its special status. In
Python 2, we could print ”Hello World” using

print "Hello World" # allowed in Python 2

Effectively, we call the function print with the argument
"Hello World". All other functions in Python are called such
that the argument is enclosed in parentheses, i.e.

print("Hello World") # required in Python 3

This is the new convention required in Python 3 (and allowed
for recent version of Python 2.x.)

133

The str function and __str__ method

All objects in Python should provide a method __str__ which
returns a nice string representation of the object.

This method a.__str__ is called when we apply the str
function to object a:

>>> a = 3.14
>>> a.__str__()
'3.14'
>>> str(a)
'3.14'

134

The str function is extremely convenient as it allows us to
print more complicated objects, such as a list

>>> b = [3, 4.2, ['apple', 'banana'], (0, 1)]
>>> str(b)
"[3, 4.2, ['apple', 'banana'], (0, 1)]"

The string method x.__str__ of object x is called implicitly,
when we

• use the ”%s” format specifier in %-operator formatting to
print x

• use the ”{}” format specifier in .format to print x
• pass the object x directly to the print command

135

>>> b = [3, 4.2, ['apple', 'banana'], (0, 1)]
>>> b.__str__()
"[3, 4.2, ['apple', 'banana'], (0, 1)]"
>>> str(b)
"[3, 4.2, ['apple', 'banana'], (0, 1)]"
>>> "%s" % b
"[3, 4.2, ['apple', 'banana'], (0, 1)]"
>>> "{}".format(b)
"[3, 4.2, ['apple', 'banana'], (0, 1)]"
>>> print(b)
[3, 4.2, ['apple', 'banana'], (0, 1)]

136

The repr function and __repr__ method

• The repr function should convert a given object into an as
accurate as possible string representation

• The str function, in contrast, aims to return an “informal”
representation of the object that is useful to humans.

• The repr function will generally provide a more detailed
string than str.

• Applying repr to the object x will attempt to call
x.__repr__().

137

Example:

>>> import datetime
>>> t = datetime.datetime.now() # current date and time
>>> str(t)
'2016-09-08 14:28:48.648192' # inofficial representation

(nice for humans)
>>> repr(t) # official representation
'datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)'

138

The eval function

The eval function accepts a string, and evaluates the string (as
if it was entered at the Python prompt):

>>> x = 1
>>> eval('x + 1')
2
>>> s = "[10, 20, 30]"
>>> type(s)
<class str>
>>> eval(s)
[10, 20, 30]
>>> type(eval(s))
<class list>

139

The repr and eval function

Given an accurate representation of an object as a string, we
can convert that string into the object using the eval function.

>>> i = 42
>>> type(i)
<class int>
>>> repr(i)
'42'
>>> type(repr(i))
<class str>
>>> eval(repr(i))
42
>>> type(eval(repr(i)))
<class int>

140

The datetime example:

>>> import datetime
>>> t = datetime.datetime.now()
>>> t_as_string = repr(t)
>>> t_as_string
'datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)'
>>> t2 = eval(t_as_string)
>>> t2
datetime.datetime(2016, 9, 8, 14, 28, 48, 648192)
>>> type(t2)
<class datetime.datetime>
>>> t == t2
True

141

Higher Order Functions

Motivational exercise: function tables

• Write a function print_x2_table() that prints a table of
values of f(x) = x2 for x = 0, 0.5, 1.0, ..2.5, i.e.

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

• Then do the same for f(x) = x3

• Then do the same for f(x) = sin(x)

143

Can we avoid code duplication?

• Idea: Pass function f(x) to tabulate to tabulating function

Example: (print_f_table.py)

def print_f_table(f):
for i in range(6):

x = i * 0.5
print("{} {}".format(x, f(x)))

def square(x):
return x ** 2

print_f_table(square)

144

produces

0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

145

Can we avoid code duplication (2)?

def print_f_table(f):
for i in range(6):

x = i * 0.5
print("{} {}".format(x, f(x)))

def square(x):
return x ** 2

def cubic(x):
return x ** 3

146

print("Square"); print_f_table(square)
print("Cubic"); print_f_table(cubic)

produces:

Square
0.0 0.0
0.5 0.25
1.0 1.0
1.5 2.25
2.0 4.0
2.5 6.25

Cubic
0.0 0.0
0.5 0.125
1.0 1.0
1.5 3.375
2.0 8.0
2.5 15.625

147

Functions are first class objects

• Functions are first class objects↔ functions can be given
to other functions as arguments

• Example (trigtable.py):
import math
funcs = (math.sin, math.cos)
for f in funcs:

for x in [0, math.pi/2]:
print("{}({:.3f}) = {:.3f}".format(

f.__name__, x, f(x)))
produces
sin(0.000) = 0.000
sin(1.571) = 1.000
cos(0.000) = 1.000
cos(1.571) = 0.000

148

http://en.wikipedia.org/wiki/First-class_object

148

Modules

Writing module files

• Motivation: it is useful to bundle functions that are used
repeatedly and belong to the same subject area into one
module file (also called “library”)

• Every Python file can be imported as a module.
• If this module file has a main program, then this is
executed when the file is imported. This can be desired
but sometimes it is not.

• We describe how a main program can be written which is
only executed if the file is run on its own but not if is
imported as a library.

150

The internal __name__ variable (1)

• Here is an example of a module file saved as module1.py:

def someusefulfunction():
pass

print("My name is {}".format(__name__))

We can execute this module file, and the output is

My name is __main__

• The internal variable __name__ takes the (string) value
"__main__" if the program file module1.py is executed.

151

• On the other hand, we can import module1.py in another file,
for example like this:

import module1

The output is now:

My name is module1

• This means that __name__ inside a module takes the value of
the module name if the file is imported.

152

The internal __name__ variable (2)

• In summary
• __name__ is "__main__" if the module file is run on its own
• __name__ is the name (type string) of the module if the
module file is imported.

• We can therefore use the following if statement in module1.py
to write code that is only run when the module is executed on
its own:
def someusefulfunction():

pass

if __name__ == "__main__":
print("I am running on my own.")

• This is useful to keep test programs or demonstrations of the
abilities of a library module in this “conditional” main program.

153

Library file example

def useful_function():
pass

def test_for_useful_function():
print("Running self test ...")

if __name__ == "__main__":
test_for_useful_function()

else:
print("Setting up library")
initialisation code that might
be needed if imported as a
library

154

Default arguments

Default argument values

• Motivation:
• suppose we need to compute the area of rectangles and
• we know the side lengths a and b.
• Most of the time, b=1 but sometimes b can take other
values.

• Solution 1:
def area(a, b):

return a * b

print("The area is {}.".format(area(3, 1)))
print("The area is {}.".format(area(2.5, 1)))
print("The area is {}.".format(area(2.5, 2)))

156

• We can make the function more user friendly by providing
a default value for b. We then only have to specify b if it is
different from this default value:

• Solution 2 (with default value for argument b):
def area(a, b=1):

return a * b

print("the area is {}".format(area(3)))
print("the area is {}".format(area(2.5)))
print("the area is {}".format(area(2.5, 2)))

• If a default value is defined, then this parameter (here b)
is optional when the function is called.

• Default parameters have to be at the end of the argument
list in the function definition.

157

Keyword argument values

• We can call functions with a “keyword” and a value. (The
keyword is the name of the variable in the function
definition.)

• Here is an example
def f(a, b, c):

print("a = {}, b = {}, c = {}"
.format(a, b, c))

f(1, 2, 3)
f(c=3, a=1, b=2)
f(1, c=3, b=2)

158

which produces this output:
a = 1, b = 2, c = 3
a = 1, b = 2, c = 3
a = 1, b = 2, c = 3

• If we use only keyword arguments in the function call,
then we don’t need to know the order of the arguments.
(This is good.)

159

Combining keyword arguments with default argument values

• Can combine default value arguments and keyword
arguments

• Example: Imagine for a numerical integration routine we
use 100 subdivisions unless the user provides a number
def trapez(function, a, b, subdivisions=100):

#code missing here
pass

import math
int1 = trapez(a=0, b=10, function=math.sin)
int2 = trapez(b=0, function=math.exp,

subdivisions=1000, a=-0.5)

160

• Note that choosing meaningful variable names in the
function definition makes the function more user friendly.

• You may have met default arguments in use before, for
example

• the open function uses mode='r' as a default value
• the print function uses end='\n' as a default value

LAB6

161

161

Namespaces

Name spaces — what can be seen where?

• We distinguish between
• global variables (defined in main program) and
• local variables (defined for example in functions)
• built-in functions

• The same variable name can be used in a function and in
the main program but they can refer to different objects
and do not interfere:

163

def f():
x = 'I am local'
print(x)

x = 'I am global'
f()
print(x)

which produces this output

I am local
I am global

• Imported modules have their own name space.

164

So global and local variables can’t see each other?

• not quite. Let’s read the small print:
• If — within a function – we try to access an object through
its name, then Python will look for this name

• first in the local name space (i.e. within that function)
• then in the global name space

If the variable can not be found, then a NameError is
raised.

165

• This means, we can read global variables from functions.
Example:
def f():

print(x)

x = 'I am global'
f()
Output:
I am global

166

• but local variables “shadow” global variables:
def f():

y = 'I am local y'
print(x)
print(y)

x = 'I am global x'
y = 'I am global y'
f()
print("back in main:")
print(y)
Output:
I am global x
I am local y
back in main:
I am global y

167

• To modify global variables within a local namespace, we
need to use the global keyword.
(This is not recommended so we won’t explain it. See also next slide.)

168

Why should I care about global variables?

• Generally, the use of global variables is not
recommended:

• functions should take all necessary input as arguments
and

• return all relevant output.
• This makes the functions work as independent modules
which is good engineering practice and essential to control
complexity of software.

• However, sometimes the same constant or variable (such
as the mass of an object) is required throughout a
program:

169

• it is not good practice to define this variable more than
once (it is likely that we assign different values and get
inconsistent results)

• in this case — in small programs — the use of (read-only)
global variables may be acceptable.

• Object Oriented Programming provides a somewhat neater
solution to this.

170

Python’s look up rule

Python’s look up rule for Names
When coming across an identifier, Python looks for this in the
following order in

• the local name space (L)
• (if appropriate in the next higher level local name space),
(L2, L3, …)

• the global name space (G)
• the set of built-in commands (B)

This is summarised as “LGB” or “LnGB”.

If the identifier cannot be found, a NameError is raised.

171

Python IDEs

Integrated DeveLopment Environment: IDLE

• IDLE http://en.wikipedia.org/wiki/IDLE_(Python)__ (comes
with Python)

• two windows: program and python prompt
• F5 to execute Python program
• simple
• portable (written in Python)

173

http://en.wikipedia.org/wiki/IDLE_(Python)__

IPython (interactive python)

• Interactive Python (ipython from Command
Prompt/Unix-shell)

• command history (across sessions), auto completion,
• special commands:

• %run test will execute file test.py in current name space
(in contrast to IDLE this does not remove all existing
objects from global name space)

• %reset can delete all objects if required
• use range? instead of help(range)
• %logstart will log your session
• %prun will profile code
• %timeit can measure execution time
• %load loads file for editing

• Much (!) more (read at http://ipython.org)

174

http://ipython.org

IPython’s QT console

• Prompt as IPython (with all it’s features): running in a
graphics console rather than in text console

• can inline matplotlib figures
• Read more at http://ipython.org/ipython-
doc/dev/interactive/qtconsole.html

175

http://ipython.org/ipython-doc/dev/interactive/qtconsole.html
http://ipython.org/ipython-doc/dev/interactive/qtconsole.html

Jupyter Notebook

• Used to be the IPython Notebook, but now supports many
more languages than Python, thus a new name was
chosen.

• Jupyter Notebook creates an executable document that is
hosted in a web browser.

• We recommend you try this at some point, it has great
value for computational engineering and research.

• Read more at http://jupyter.org

176

http://jupyter.org

... and many others

Including

• Eclipse
• Spyder
• PyCharm (commercial)
• Emacs
• vi, vim
• Sublime Text (commercial)
• Kate

177

List comprehension

List comprehension

• List comprehension follows the mathematical “set builder
notation”

• Convenient way to process a list into another list (without
for-loop).

Examples

>>> [2 ** i for i in range(10)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

>>> [x ** 2 for x in range(10)]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

179

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/Set-builder_notation
http://en.wikipedia.org/wiki/Set-builder_notation

>>> [x for x in range(10) if x > 5]
[6, 7, 8, 9]

Can be useful to populate lists with numbers quickly

• Example 1:
>>> xs = [i for i in range(10)]
>>> xs
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> ys = [x ** 2 for x in xs]
>>> ys
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

• Example 2:

180

>>> import math
>>> xs = [0.1 * i for i in range(5)]
>>> ys = [math.exp(x) for x in xs]
>>> xs
[0.0, 0.1, 0.2, 0.3, 0.4]
>>> ys
[1.0, 1.1051709180756477, 1.2214027581601699,
1.3498588075760032, 1.4918246976412703]

• Example 3
>>> words = 'The quick brown fox jumps \
... over the lazy dog'.split()
>>> print words
['The', 'quick', 'brown', 'fox', 'jumps',
'over', 'the', 'lazy', 'dog']

181

>>> stuff = [[w.upper(), w.lower(), len(w)]
for w in words]

>>> for i in stuff:
... print(i)
...
['THE', 'the', 3]
['QUICK', 'quick', 5]
['BROWN', 'brown', 5]
['FOX', 'fox', 3]
['JUMPS', 'jumps', 5
['OVER', 'over', 4]
['THE', 'the', 3]
['LAZY', 'lazy', 4]
['DOG', 'dog', 3]

182

List comprehension with conditional

• Can extend list comprehension syntax with if CONDITION
to include only elements for which CONDITION is true.

• Example:
>>> [i for i in range(10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> [i for i in range(10) if i > 5]
[6, 7, 8, 9]

>>> [i for i in range(10) if i ** 2 > 5]
[3, 4, 5, 6, 7, 8, 9]

183

Dictionaries

Dictionaries

• Python provides another data type: the dictionary.
Dictionaries are also called “associative arrays” and “hash tables”.

• Dictionaries are unordered sets of key-value pairs.
• An empty dictionary can be created using curly braces:
>>> d = {}

• Keyword-value pairs can be added like this:
>>> d['today'] = '22 deg C' #'today' is key

#'22 deg C' is value
>>> d['yesterday'] = '19 deg C'

185

• d.keys() returns a list of all keys:
>>> d.keys()
['yesterday', 'today']

• We can retrieve values by using the keyword as the index:
>>> print d['today']
22 deg C

186

Dictionary example 1

order = {} # create empty dictionary

add orders as they come in
order['Peter'] = 'Pint of bitter'
order['Paul'] = 'Half pint of Hoegarden'
order['Mary'] = 'Gin Tonic'

deliver order at bar
for person in order.keys():

print("{} requests {}".format(
person, order[person]))

which produces this output:

Paul requests Half pint of Hoegarden
Peter requests Pint of bitter
Mary requests Gin Tonic

187

Dictionary

Some more technicalities:

• The dictionary key can be any (immutable) Python object.
This includes:

• numbers
• strings
• tuples.

• dictionaries are very fast in retrieving values (when given
the key)

188

Dictionary use case

• What are dictionnaries good for? Consider this example:

dic = {}
dic["Andy C"] = "room 1031"
dic["Ken"] = "room 1027"
dic["Hans"] = "room 1033"

for key in dic.keys():
print("{} works in {}"

.format(key, dic[key]))

Output:

Hans works in room 1033
Andy C works in room 1031
Ken works in room 1027

189

• Without dictionary:

people = ["Hans", "Andy C", "Ken"]
rooms = ["room 1033", "room 1031", \

"room 1027"]

possible inconsistency here since we have
two lists
if not len(people) == len(rooms):

raise ValueError("people and rooms " +
"differ in length")

for i in range(len(rooms)):
print ("{} works in {}".format(people[i],

rooms[i])

190

Iterating over dictionaries

Iterate over the dictionary itself is equivalent to iterating over the
keys. Example:

order = {} # create empty dictionary

order['Peter'] = 'Pint of bitter'
order['Paul'] = 'Half pint of Hoegarden'
order['Mary'] = 'Gin Tonic'

iterating over keys:
for person in order.keys():

print(person, "requests", order[person])

is equivalent to iterating over the dictionary:
for person in order:

print(person, "requests", order[person])
191

Summary dictionaries

What to remember:

• Python provides dictionaries
• very powerful construct
• a bit like a data base (and values can be dictionary
objects)

• fast to retrieve value
• likely to be useful if you are dealing with two lists at the
same time (possibly one of them contains the keyword
and the other the value)

• useful if you have a data set that needs to be indexed by
strings or tuples (or other immutable objects)

192

192

Recursion

Recursion

Recursion in a screen recording program, where the smaller
window contains a snapshot of the entire screen. Source:
http://en.wikipedia.org/wiki/Recursion

194

http://en.wikipedia.org/wiki/Recursion

Recursion example: factorial

• Computing the factorial (i.e. n!) can be done by computing
(n− 1)!n, i.e. we reduce the problem of size n to a
problem of size n− 1.

• For recursive problems, we always need a base case. For
the factorial we know that 0! = 1.

• For n = 4:

4! = 3! · 4 (1)
= 2! · 3 · 4 (2)
= 1! · 2 · 3 · 4 (3)
= 0! · 1 · 2 · 3 · 4 (4)
= 1 · 1 · 2 · 3 · 4 (5)
= 24. (6) 195

Recursion example

Python code to compute the factorial recursively:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)

Usage output:

>>> factorial(0)
factorial(0)
1
>>> factorial(2)
2
>>> factorial(4)
24 196

Recursion example Fibonacci numbers

Defined (recursively) as: f(n) = f(n− 1) + f(n− 2) for integers
n, and n > 0, and f(1) = 0 and f(2) = 1

Python implementation (fibonacci.py):

def f(n):
if n == 1:

return 0
elif n == 2:

return 1
else:

return f(n - 2) + f(n - 1)

197

Recursion exercises

1. Write a function recsum(n) that sums the numbers from 1
to n recursively

2. Study the recursive Fibonacci function from slide 197:
• what is the largest number n for which we can reasonable
compute f(n) within a minute?

• Can you write faster versions of the Fibonacci function?
(There are faster versions with and without recursion.)

198

Common Computational Tasks

Overview common computational tasks

• Data file processing, python & numpy (array)
• Random number generation and fourier transforms
(numpy)

• Linear algebra (numpy)
• Interpolation of data (scipy.interpolation.interp)
• Fitting a curve to data (scipy.optimize.curve_fit)
• Integrating a function numerically
(scipy.integrate.quad)

• Integrating a ordinary differential equation numerically
(scipy.integrate.odeint)

200

• Finding the root of a function (scipy.optimize.fsolve,
scipy.optimize.brentq)

• Minimising a function (scipy.optimize.fmin)

• Symbolic manipulation of terms, including integration,
differentiation and code generation (sympy)

• Data analytics (pandas)

201

201

Root finding

Rootfinding

Root finding
Given a function f(x), we are searching an x0 so f(x0) = 0. We
call x0 a root of f(x).

Why?

• Often need to know when a particular function reaches a
value, for example the water temperature T(t) reaching
373 K. In that case, we define

f(t) = T(t)− 373

and search the root t0 for f(t)

We introduce two methods:

• Bisection method
• Newton method 203

The bisection algorithm

• Function: bisect(f, a, b)
• Assumptions:

• Given: a (float)
• Given: b (float)
• Given: f(x), continuous with single root in [a,b], i.e.
f(a)f(b) < 0

• Given: ftol (float), for example ftol = 1e− 6

The bisection method returns x so that |f(x)| <ftol

1. x = (a+ b)/2
2. while |f(x)| > ftol do

• if f(x)f(a) > 0
then a← x # throw away left half
else b← x # throw away right half

• x = (a+ b)/2
3. return x 204

The bisection function from scipy

• Scientific Python provides an interface to the “Minpack”
library. One of the functions is

• scipy.optimize.bisect(f, a, b[, xtol])
• f is the function for which we search x such that f(x) = 0
• a is the lower limit of the bracket [a,b] around the root
• b is the upper limit of the bracket [a,b] around the root
• xtol is an optional parameter that can be used to modify
the default accuracy of xtol = 10−12

• the bisect function stops ’bisecting’ the interval around
the root when |b−a| < xtol.

205

Example

• Find root of function f(x) = x2(x− 2)
• f has a double root at x = 0, and a single root at x = 2.
• Ask algorithm to find single root at x = 2.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x

3

2

1

0

1

2

3

4

f(
x
)
=
x

3
−

2x
2

=
x

2
(x
−

2)

206

Using bisection algorithm from scipy

from scipy.optimize import bisect

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = bisect(f, a=1.5, b=3, xtol=1e-6)

print("Root x is approx. x={:14.12g}.".format(x))
print("The error is less than 1e-6.")
print("The exact error is {}.".format(2 - x))

produces

Root x is approx. x= 2.00000023842.
The error is less than 1e-6.
The exact error is -2.384185791015625e-07.

207

The Newton method

• Newton method for root finding: find x0 so that f(x0) = 0.
• Idea: close to the root, the tangent of f(x) is likely to point
to the root. Make use of this information.

• Algorithm:
while |f(x)| >ftol, do

x = x− f(x)
f′(x)

where f′(x) = df
dx(x).

• Much better convergence than bisection method
• but not guaranteed to converge.
• Need a good initial guess x for the root.

208

Using Newton algorithm from scipy

from scipy.optimize import newton

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = newton(f, x0=1.6)

print("Root x is approx. x={:14.12g}.".format(x))
print("The error is less than 1e-6.")
print("The exact error is {}.".format(2 - x))

produces

Root x is approx. x= 2.
The error is less than 1e-6.
The exact error is 9.769962616701378e-15.

209

Comparison Bisection & Newton method

Bisection method
• Requires root in bracket
[a,b]

• guaranteed to converge
(for single roots)

• Library function:
scipy.optimize.bisect

Newton method
• Requires good initial guess
x for root x0

• may never converge
• but if it does, it is quicker
than the bisection method

• Library function:
scipy.optimize.Newton

210

Root finding summary

• Given the function f(x), applications for root finding
include:

• to find x1 so that f(x1) = y for a given y (this is equivalent to
computing the inverse of the function f).

• to find crossing point xc of two functions f1(x) and f2(x) (by
finding root of difference function g(x) = f1(x)− f2(x))

• Recommended method: scipy.optimize.brentq which
combines the safe feature of the bisect method with the
speed of the Newton method.

• For multi-dimensional functions f(x), use
scipy.optimize.fsolve.

211

Using BrentQ algorithm from scipy

from scipy.optimize import brentq

def f(x):
"""returns f(x)=x^3-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

main program starts here
x = brentq(f, a=1.5, b=3, xtol=1e-6)

print("Root x is approx. x={:14.12g}.".format(x))
print("The error is less than 1e-6.")
print("The exact error is {}.".format(2 - x))

produces:

Root x is approx. x= 2.00000001896.
The error is less than 1e-6.
The exact error is -1.8958286496228993e-08.

212

Using fsolve algorithm from scipy

from scipy.optimize import fsolve # multidimensional solver

def f(x):
"""returns f(x)=x^2-2x^2. Has roots at
x=0 (double root) and x=2"""
return x ** 3 - 2 * x ** 2

x = fsolve(f, x0=[1.6]) # main program starts here

print("Root x is approx. x={}.".format(x))
print("The error is less than 1e-6.")
print("The exact error is {}.".format(2 - x[0]))

produces:

Root x is approx. x=[2.].
The error is less than 1e-6.
The exact error is 0.0. 213

Derivatives

Overview

• Motivation:

• We need derivatives of functions for some optimisation
and root finding algorithms

• Not always is the function analytically known (but we are
usually able to compute the function numerically)

• The material presented here forms the basis of the
finite-difference technique that is commonly used to solve
ordinary and partial differential equations.

• The following slides show

• the forward difference technique
• the backward difference technique and the

215

• central difference technique to approximate the derivative
of a function.

• We also derive the accuracy of each of these methods.

216

The 1st derivative

• (Possible) Definition of the derivative (or “differential
operator” d

dx)
df
dx(x) = lim

h→0

f(x+ h)− f(x)
h

• Use difference operator to approximate differential
operator

f ′(x) = df
dx(x) = lim

h→0

f(x+ h)− f(x)
h ≈ f(x+ h)− f(x)

h
• ⇒ can now compute an approximation of f ′ simply by
evaluating f.

• This is called the forward difference because we use f(x)
and f(x+ h).

• Important question: How accurate is this approximation?
217

Accuracy of the forward difference

• Formal derivation using the Taylor series of f around x

f(x+ h) =
∞∑
n=0

hn f
(n)(x)
n!

= f(x) + hf ′(x) + h2 f
′′(x)
2! + h3 f

′′′(x)
3! + . . .

• Rearranging for f ′(x)

hf ′(x) = f(x+ h)− f(x)− h2 f
′′(x)
2! − h3 f

′′′(x)
3! − . . .

f ′(x) =
1
h

(
f(x+ h)− f(x)− h2 f

′′(x)
2! − h3 f

′′′(x)
3! − . . .

)
=

f(x+ h)− f(x)
h −

h2 f
′′(x)
2! − h

3 f ′′′(x)
3!

h − . . .

=
f(x+ h)− f(x)

h − hf
′′(x)
2! − h2 f

′′′(x)
3! − . . .

218

Accuracy of the forward difference (2)

f ′(x) =
f(x+ h)− f(x)

h − hf
′′(x)
2! − h

2 f ′′′(x)
3! − . . .︸ ︷︷ ︸

Eforw(h)

f ′(x) =
f(x+ h)− f(x)

h + Eforw(h)

• Therefore, the error term Eforw(h) is

Eforw(h) = −h
f ′′(x)
2! − h

2 f ′′′(x)
3! − . . .

• Can also be expressed as

f ′(x) = f(x+ h)− f(x)
h +O(h)

219

The 1st derivative using the backward difference

• Another definition of the derivative (or “differential
operator” d

dx)

df
dx(x) = lim

h→0

f(x)− f(x− h)
h

• Use difference operator to approximate differential
operator

df
dx(x) = lim

h→0

f(x)− f(x− h)
h ≈ f(x)− f(x− h)

h

• This is called the backward difference because we use f(x)
and f(x− h).

• How accurate is the backward difference?

220

Accuracy of the backward difference

• Formal derivation using the Taylor Series of f around x

f(x− h) = f(x)− hf ′(x) + h2 f
′′(x)
2! − h

3 f ′′′(x)
3! + . . .

• Rearranging for f ′(x)

hf ′(x) = f(x)− f(x− h) + h2 f
′′(x)
2! − h3 f

′′′(x)
3! − . . .

f ′(x) =
1
h

(
f(x)− f(x− h) + h2 f

′′(x)
2! − h3 f

′′′(x)
3! − . . .

)
=

f(x)− f(x− h)
h +

h2 f
′′(x)
2! − h

3 f ′′′(x)
3!

h − . . .

=
f(x)− f(x− h)

h + hf
′′(x)
2! − h2 f

′′′(x)
3! − . . .

221

Accuracy of the backward difference (2)

f ′(x) =
f(x)− f(x− h)

h + hf
′′(x)
2! − h

2 f ′′′(x)
3! − . . .︸ ︷︷ ︸

Eback(h)

f ′(x) =
f(x)− f(x− h)

h + Eback(h) (7)

• Therefore, the error term Eback(h) is

Eback(h) = hf
′′(x)
2! − h

2 f ′′′(x)
3! − . . .

• Can also be expressed as

f ′(x) = f(x)− f(x− h)
h +O(h)

222

Combining backward and forward differences (1)

The approximations are

• forward:
f ′(x) = f(x+ h)− f(x)

h + Eforw(h) (8)

• backward

f ′(x) = f(x)− f(x− h)
h + Eback(h) (9)

Eforw(h) = −hf
′′(x)
2! − h2 f

′′′(x)
3! − h3 f

′′′′(x)
4! − h4 f

′′′′′(x)
5! − . . .

Eback(h) = hf
′′(x)
2! − h2 f

′′′(x)
3! + h3 f

′′′′(x)
4! − h4 f

′′′′′(x)
5! + . . .

⇒ Add equations (8) and (9) together, then the error cancels
partly.

223

Combining backward and forward differences (2)

Add these lines together

f ′(x) =
f(x+ h)− f(x)

h + Eforw(h)

f ′(x) =
f(x)− f(x− h)

h + Eback(h)

2f ′(x) =
f(x+ h)− f(x− h)

h + Eforw(h) + Eback(h)

Adding the error terms:

Eforw(h) + Eback(h) = −2h2
f ′′′(x)
3! − 2h4 f

′′′′′(x)
5! − . . .

The combined (central) difference operator is

f ′(x) = f(x+ h)− f(x− h)
2h + Ecent(h)

with
Ecent(h) = −h2

f ′′′(x)
3! − h4 f

′′′′′(x)
5! − . . . 224

Central difference

• Can be derived (as on previous slides) by adding forward
and backward difference

• Can also be interpreted geometrically by defining the
differential operator as

df
dx(x) = lim

h→0

f(x+ h)− f(x− h)
2h

and taking the finite difference form
df
dx(x) ≈

f(x+ h)− f(x− h)
2h

• Error of the central difference is only O(h2), i.e. better
than forward or backward difference

It is generally the case that symmetric differences
are more accurate than asymmetric expressions. 225

Example (1)

Using forward difference to estimate the derivative of
f(x) = exp(x)

f ′(x) ≈ f(x+ h)− f(x)
h =

exp(x+ h)− exp(x)
h

Since we compute the difference using values of f at x and
x+ h, it is natural to interpret the numerical derivative to be
taken at x+ h

2 :

f ′
(
x+ h

2

)
≈ f(x+ h)− f(x)

h =
exp(x+ h)− exp(x)

h
Numerical example:

• h = 0.1, x = 1
• f ′(1.05) ≈ exp(1.1)−exp(1)

0.1 = 2.8588
• Exact answers is f ′(1.05) = exp(1.05) = 2.8577

226

Example (2)

Comparison: forward difference and exact derivative of exp(x)

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25
f(x) = exp(x)

x

exact derivative
forward differences

227

Summary

• Can approximate derivatives of f numerically
• need only function evaluations of f
• three different difference methods

name formula error
forward f ′(x) = f(x+h)−f(x)

h O(h)
backward f ′(x) = f(x)−f(x−h)

h O(h)
central f ′(x) = f(x+h)−f(x−h)

2h O(h2)

• central difference is most accurate
• Euler’s method (ODE) can be derived from forward difference

• Newton’s root finding method can be derived from forward difference

LAB7

228

Note: Euler’s (integration) method — derivation using finite
difference operator

• Use forward difference operator to approximate
differential operator

dy
dx(x) = lim

h→0

y(x+ h)− y(x)
h ≈ y(x+ h)− y(x)

h
• Change differential to difference operator in dy

dx = f(x, y)

f(x, y) = dy
dx ≈ y(x+ h)− y(x)

h
hf(x, y) ≈ y(x+ h)− y(x)
=⇒ yi+1 = yi + hf(xi, yi)

• ⇒ Euler’s method (for ODEs) can be derived from the
forward difference operator.

229

Note: Newton’s (root finding) method — derivation from Taylor
series

• We are looking for a root, i.e. we are looking for a x so that
f(x) = 0.

• We have an initial guess x0 which we refine in subsequent
iterations:

xi+1 = xi − hi where hi =
f(xi)
f ′(xi)

. (10)
.

• This equation can be derived from the Taylor series of f around
x. Suppose we guess the root to be at x and x+ h is the actual
location of the root (so h is unknown and f(x+ h) = 0):

f(x+ h) = f(x) + hf ′(x) + . . .

0 = f(x) + hf ′(x) + . . .

=⇒ 0 ≈ f(x) + hf ′(x)

⇐⇒ h ≈ − f(x)
f ′(x) . (11) 230

230

Numpy

numpy

numpy

• is an interface to high performance linear algebra libraries
(ATLAS, LAPACK, BLAS)

• provides
• the array object
• fast mathematical operations over arrays
• linear algebra, Fourier transforms, Random Number
generation

• Numpy is not part of the Python standard library.

232

numpy arrays (vectors)

• An array is a sequence of objects
• all objects in one array are of the same type

Here are a few examples:

>>> import numpy as np
>>> a = np.array([1, 4, 10])
>>> type(a)
<class numpy.ndarray>
>>> a.shape
(3,)
>>> a ** 2
array([1, 16, 100])
>>> np.sqrt(a)
array([1. , 2. , 3.16227766])
>>> a > 3
array([False, True, True], dtype=bool) 233

Array creation

Can create from other sequences through array function:

• 1d-array (vector)
>>> from numpy import array
>>> a = array([1, 4, 10])
>>> a
array([1, 4, 10])
>>> print(a)
[1 4 10]

• 2d-array (matrix):
>>> B = array([[0, 1.5], [10, 12]])
>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> print(B)
[[0. 1.5]
[10. 12.]]

234

Array shape

The shape is a tuple that describes

• (i) the dimensionality of the array (that is the length of the
shape tuple) and

• (ii) the number of elements for each dimension.

Example:

>>> a.shape
(3,) # len(a.shape) is 1 -> 1d array with 3 elements
>>> B.shape
(2, 2) # len(B.shape) is 2 -> 2d array with 2 x 2

elements

235

Can use shape attribute to change shape:

>>> B
array([[0. , 1.5],

[10. , 12.]])
>>> B.shape
(2, 2)
>>> B.shape = (4,)
>>> B
array([0. , 1.5, 10. , 12.])

236

Array size

The total number of elements is given through the size
attribute:

>>> a.size
3
>>> B.size
4

The total number of bytes used is given through the nbytes
attribute:

>>> a.nbytes
12
>>> B.nbytes
32

237

Array type

• All elements in an array must be of the same type
• For existing array, the type is the dtype attribute
>>> a.dtype
dtype('int64')
>>> B.dtype
dtype('float64')

• We can fix the type of the array when the create the array,
for example:
>>> a2 = array([1, 4, 10], numpy.float)
>>> a2
array([1., 4., 10.])
>>> a2.dtype
dtype('float64')

238

Important array types

• For numerical calculations, we normally use double floats
which are knows as float64 or short float in this text.:
>>> a2 = array([1, 4, 10], numpy.float)
>>> a2.dtype
dtype('float64')

• This is also the default type for zeros and ones.
• A full list is available at
http://docs.scipy.org/doc/numpy/user/basics.types.html

239

http://docs.scipy.org/doc/numpy/user/basics.types.html

Array creation II

• Other useful methods are zeros and ones which accept a
desired matrix shape as the input:
>>> numpy.zeros((3, 3))
array([[0., 0., 0.],

[0., 0., 0.],
[0., 0., 0.]])

>>> numpy.zeros((4,)) # (4,) is tuple
array([0., 0., 0., 0.])
>>> numpy.zeros(4) # works as well,

although 4 is
not tuple.

array([0., 0., 0., 0.])

>>> numpy.ones((2, 7))
array([[1., 1., 1., 1., 1., 1., 1.],

[1., 1., 1., 1., 1., 1., 1.]]) 240

Array indexing (1d arrays)

>>> x = numpy.array(range(0, 10, 2))
>>> x
array([0, 2, 4, 6, 8])
>>> x[3]
6
>>> x[4]
8
>>> x[-1]

Can query length as for any sequence:

>>> len(x)
5
>>> x.shape
(5,) # <=> length of 1d array is 5

241

Array indexing (2d arrays)

>>> C = numpy.arange(12)
>>> C
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> C.shape = (3, 4)
>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, 0]
0
>>> C[2, 0]
8
>>> C[2, -1]
11
>>> C[-1, -1]
11 242

Array slicing (1d arrays)

Double colon operator ::

Read as START:END:INDEXSTEP

If either START or END are omitted, the respective ends of the
array are used. INDEXSTEP defaults to 1.

Examples:

>>> y = numpy.arange(10)
>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> y[0:5] # slicing as we know it
array([0, 1, 2, 3, 4])
>>> y[0:5:1] # slicing with index step 1

243

array([0, 1, 2, 3, 4])
>>> y[0:5:2] # slicing with index step 2
array([0, 2, 4])
>>> y[:5:2] # from the beginning
array([0, 2, 4])
>>> y[0:5:1] # positive index step size
array([0, 1, 2, 3, 4])
>>> y[0:5:-1] # negative index step size
array([], dtype=int64)
>>> y[5:0:-1] # from end to front
array([5, 4, 3, 2, 1])
>>> y[5:0:-2] # in steps of two
array([5, 3, 1])
>>> y[::-1] # reverses array elements
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

244

Creating copies of arrays

Create copy of 1d array:

>>> copy_y = y[:]

Could also use copy_y = y[::] to create a copy.

To create a copy with reverse order of elements, we can use:

>>> y[::-1]
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

To create new array z of the same size as y (filled with zeros, say) we
can use (for example):

>>> y
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> z = numpy.zeros(y.shape)
>>> z
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

245

Array slicing (2d)

Slicing for 2d (or higher dimensional arrays) is analog to 1-d
slicing, but applied to each component. Common operations
include extraction of a particular row or column from a matrix:

>>> C
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> C[0, :] # row with index 0
array([0, 1, 2, 3])
>>> C[:, 1] # column with index 1

(i.e. 2nd col)
array([1, 5, 9])

246

Other linear algebra tools

help(numpy.linalg) provides an overview, including

• pinv to compute the inverse of a matrix
• svd to compute a singular value decomposition
• det to compute the determinant
• eig to compute eigenvalues and eigenvectors

247

Curve fitting

• We typically fit lower order polynomials or other functions
(which are the model that we expect the data to follow)
through a number of points (often measurements).

• We typically have many more points than degrees of
freedom, and would employ techniques such as least
squared fitting.

• The function numpy.polyfit provides this functionality
for polynomials.

• The function scipy.optimize.curve_fit provides curve
fitting for generic functions (not restricted to polynomials).

248

Solving linear systems of equations

• numpy.linealg.solve(A, b) solves Ax = b for a square
matrix A and given vector b, and returns the solution
vector x as an array object:
>>> A = numpy.array([[1, 0], [0, 2]])
>>> b = numpy.array([1, 4])
>>> from numpy import linalg as LA
>>> x = LA.solve(A, b)
>>> x
array([1., 2.])
>>> numpy.dot(A, x) # Computing A*x
array([1., 4.]) # this should be b

249

Other comments

• numpy provides fast array operations (comparable to
Matlab’s matrices)

• fast if number of elements is large: for an array with one
element, numpy.sqrt will be slower than math.sqrt

• speed-ups of up to factor 50 to 300 are possible using
numpy instead of lists

• Consult Numpy documentation if used outside this course.
• Matlab users may want to read Numpy for Matlab Users

250

http://www.numpy.org
http://www.scipy.org/NumPy_for_Matlab_Users

Plotting arrays (vectors)

import pylab
import numpy as N

t = N.arange(0, 10 * N.pi, 0.01)
y = N.cos(t)

pylab.plot(t, y)
pylab.xlabel('t')
pylab.ylabel('y(t)')
pylab.show()

251

0 5 10 15 20 25 30 35
t

-1

-0.5

0

0.5

1
y
(t

)

252

Matplotlib / Pylab

• Matplotlib tries to make easy things easy and hard things
possible

• Matplotlib is a 2D plotting library which produces
publication quality figures (increasingly also 3d)

• Matplotlib can be fully scripted but interactive interface
available

253

Matplotlib in IPython QTConsole and Notebook

Within the IPython console (for example in Spyder) and the
Jupyter Notebook, use

• %matplotlib inline to see plots inside the console
window, and

• %matplotlib qt to create pop-up windows with the plot
when the matplotlib.show() command is used. We can
manipulate the view interactively in that window.

• Within the notebook, you can use %matplotlib notebook
which embeds an interactive window in the note book.

254

Pylab and Matplotlib

Pylab
Pylab is a Matlab-like (state-driven) plotting interface (and comes
with matplotlib).

• Convenient for ’simple’ plots

• Check examples in lecture note text book and

• Make use of help(pylab.plot) to remind you of line styles,
symbols etc.

• Check gallery at
http://matplotlib.org/gallery.html#pylab_examples

255

http://matplotlib.org/gallery.html#pylab_examples

Matplotlib.pyplot
Matplotlib.pyplot is an object oriented plotting interface.

• Very fine grained control over plots

• Check gallery at Matplotlib gallery

• Try Matplotlib notebook (on module’s home page) as an
introduction and useful reference.

LAB8

256

http://matplotlib.sourceforge.net/gallery.html
http://www.southampton.ac.uk/~fangohr/training/python/notebooks/Matplotlib.html

Higher Order Functions 2: Functional
tools

More list processing and functional programming

• So far, have processed lists by iterating through them
using for-loop

• perceived to be conceptually simple (by most learners)
but

• not as compact as possible and not always as fast as
possible

• Alternatives:
• list comprehension
• map, filter, reduce, often used with lambda

258

Anonymous function lambda

• lambda: anonymous function (function literal)
• Useful to define a small helper function that is only
needed once
>>> lambda a: a
<function <lambda> at 0x319c70>
>>> lambda a: 2 * a
<function <lambda> at 0x319af0>
>>> (lambda a: 2 * a)
<function <lambda> at 0x319c70>
>>> (lambda a: 2 * a)(10)
20
>>> (lambda a: 2 * a)(20)
40

259

>>> (lambda x, y: x + y)(10, 20)
30
>>> (lambda x, y, z: (x + y) * z)(10, 20, 2)
60
>>> type(lambda x, y: x + y)
<type 'function'>

260

Lambda usage example 1

Integrate f(x) = x2 from 0 to 2 (numerically)

• Without lambda (lambda1.py):
from scipy.integrate import quad
def f(x):

return x * x

y, abserr = quad(f, a=0, b=2)
print("Int f(x)=x^2 from 0 to 2 = {:f} +- {:g}"

.format(y, abserr))

261

• With lambda (lambda1b.py):
from scipy.integrate import quad
y, abserr = quad(lambda x: x * x, a=0, b=2)
print("Int f(x)=x^2 from 0 to 2 = {:f} +- {:g}"

.format(y, abserr))

Both programs produce the same output:

Int f(x)=x^2 from 0 to 2 = 2.666667 +- 2.96059e-14

262

Higher order functions

Roughly: “Functions that take or return functions” (see for
example (Wikipedia entry))

Rough summary (check help(COMMAND) for details)

• map(function, iterable)→ iterable:
apply function to all elements in iterable

• filter(function, iterable)→ iterable:
return items of iterable for which function(item) is true.

• reduce(function, iterable, initial)→ value:
apply function(x,y) from left to right to reduce iterable to a
single value.

Note that sequences are iterables.

263

http://en.wikipedia.org/wiki/Higher-order_function>

Map

• map(function, sequence)→ iterable: apply function to all
elements in sequence

• Example:

>>> def f(x): return x ** 2
...
>>> map(f, [0, 1, 2, 3, 4])
<map object at 0x1026a52e8> # this is iterable
>>> list(map(f, [0, 1, 2, 3, 4])) # convert to list
[0, 1, 4, 9, 16]

• lambda is often useful in map:
>>> list(map(lambda x: x ** 2, [0, 1, 2, 3, 4]))
[0, 1, 4, 9, 16]

• Equivalent operation using list comprehension:
>>> [x ** 2 for x in [0, 1, 2, 3, 4]]
[0, 1, 4, 9, 16] 264

Examples map

• Example (maths):
>>> import math
>>> list(map(math.exp, [0, 0.1, 1.]))
[1.0, 1.1051709180756477, 2.718281828459045]

• Example (slug):
>>> news="Python programming occasionally \
... more fun than expected"
>>> slug = "-".join(map(
... lambda w: w[0:6], news.split()))
>>> slug
'Python-progra-occasi-more-fun-than-expect'
Equivalent list comprehension expression:
>>> slug = "-".join([w[0:6] for w in news.split()])

265

Filter

• filter(function, iterable)→ iterable: return items
of iterable for which function(item) is true.

• Example:
>>> c = "The quick brown fox jumps".split()
>>> print(c)
['The', 'quick', 'brown', 'fox', 'jumps']
>>> def len_gr_4(s):
... return len(s) > 4
>>> list(map(len_gr_4, c))
[False, True, True, False, True]
>>> filter(len_gr_4, c)

266

<filter object at 0x10522e5c0>
>>> list(filter(len_gr_4, c))
['quick', 'brown', 'jumps']
>>> list(filter(lambda s: len(s) > 4, c)
['quick', 'brown', 'jumps']
Equivalent operation using list comprehension:
>>> [s for s in c if len(s) > 4]
['quick', 'brown', 'jumps']

267

Examples filter

• Example:

>>> def is_positive(n):
... return n > 0
>>> list(filter(is_positive,
... [-3, -2, -1, 0, 1, 2, 3, 4]))
[1, 2, 3, 4]
>>> list(filter(lambda n:n>0,
... [-3, -2, -1, 0, 1, 2, 3, 4]))
[1, 2, 3, 4]

List comprehension equivalent:

>>> [x for x in [-3, -2, -1, 0, 1, 2, 3, 4] if x > 0]
[1, 2, 3, 4]

268

Reduce

• functools.reduce(function, iterable, initial) → value:
apply function(x, y) from left to right to reduce iterable to a single
value.

• Examples:

>>> from functools import reduce
>>> def f(x, y):
... print("Called with x={}, y={}".format(x, y))
... return x + y
...
>>> reduce(f, [1, 3, 5], 0)
Called with x=0, y=1
Called with x=1, y=3
Called with x=4, y=5
9

269

>>> reduce(f, [1, 3, 5], 100)
Called with x=100, y=1
Called with x=101, y=3
Called with x=104, y=5
109
>>> reduce(f,"test","")
Called with x=, y=t
Called with x=t, y=e
Called with x=te, y=s
Called with x=tes, y=t
'test'
>>> reduce(f,"test","FIRST")
Called with x=FIRST, y=t
Called with x=FIRSTt, y=e
Called with x=FIRSTte, y=s
Called with x=FIRSTtes, y=t
'FIRSTtest'

270

Operator module

• operator module contains functions which are typically
accessed not by name, but via some symbols or special
syntax.

• For example 3 + 4 is equivalent to operator.add(3, 4).
Thus:
def f(x, y): return x + y
reduce(f, range(10), 0)
can also be written as:
reduce(operator.add, range(10), 0)
Note: could also use:
reduce(lambda x, y: x + y, range(10), 0)
but use of operator module is preferred (often faster).

271

Functional programming

• Functions like map, reduce and filter are found in just
about any lanugage supporting functional programming.

• provide functional abstraction for commonly written loops
• Use those (and/or list comprehension) instead of writing
loops, because

• Writing loops by hand is quite tedious and error-prone.
• The functional version is often clearer to read.
• The functional version can result in faster code (if you can
avoid lambda)

272

What command to use when?

• lambda allows to define a (usually simple) function
”in-place”

• map transforms a sequence to another sequence (of same
length)

• filter filters a sequence (reduces number of elements)
• reduce carries out an operation that ”collects”
information (sum, product, ...), for example reducing the
sequence to a single number.

• list comprehension transforms a list (can include
filtering).

• Hint: if you need to use a lambda in a map, you are
probably better off using list comprehension.

273

Standard example: squaring elements in list

Some alternatives:

>>> res = []
>>> for x in range(5):
... res.append(x ** 2)
...
>>> res
[0, 1, 4, 9, 16]

>>> [x ** 2 for x in range(5)]
[0, 1, 4, 9, 16]

>>> list(map(lambda x: x ** 2, range(5)))
[0, 1, 4, 9, 16]

274

Returning function objects

We have seen that we can pass function objects as arguments
to a function. Now we look at functions that return function
objects.

Example (closure_adder42.py):

def make_add42():
def add42(x):

return x + 42
return add42

add42 = make_add42()
print(add42(2)) # output is '44'

275

Closures

A closure (Wikipedia) is a function with bound variables. We often
create closures by calling a function that returns a (specialised)
function. For example (closure_adder.py):

import math

def make_adder(y):
def adder(x):

return x + y
return adder

add42 = make_adder(42)
addpi = make_adder(math.pi)
print(add42(2)) # output is 44
print(addpi(-3)) # output is 0.14159265359

LAB9 276

http://en.wikipedia.org/wiki/Closure_(computer_science)

276

Object Orientation and all that

Object Orientation (OO) and Closures

Earlier, we did an exercise for a first-in-first-out queue. At the
time, we used a global variable to keep the state of the queue.
To compare different approaches, the following slides show:

1. the original FIFO-queue solution (using a global variable,
generally not good)

2. a modified version where the queue variable is passed to
every function (→ this is object oriented programming
without objects)

3. an object oriented version (where the queue data is part
of the queue object). Probably the best solution, see OO
programming for details.

4. a version based on closures (where the state is part of the
closures)

278

Original FIFO solution (fifoqueue.py)

queue = []
def length():

"""Returns number of waiting customers"""
return len(queue)

def show():
"""print list of customers, longest waiting customer at end."""
for name in queue:

print("waiting customer: {}".format(name))

def add(name):
"""Customer with name 'name' joining the queue"""
queue.insert(0, name)

def next():
"""Returns name of next to serve, removes customer from queue"""
return queue.pop()

add('Spearing'); add('Fangohr'); add('Takeda')
show(); next() 279

Improved FIFO solution

Improved FIFO solution (fifoqueue2.py)

def length(queue):
return len(queue)

def show(queue):
for name in queue:

print("waiting customer: {}".format(name))

def add(queue, name):
queue.insert(0, name)

def next(queue):
return queue.pop()

q1 = []
q2 = []
add(q1, 'Spearing'); add(q1, 'Fangohr'); add(q1, 'Takeda')
add(q2, 'John'); add(q2, 'Peter')
print("{} customers in queue1:".format(length(q1)); show(q1)
print("{} customers in queue2:".format(length(q2)); show(q2) 280

Object-Oriented FIFO solution (fifoqueueOO.py)

class Fifoqueue:
def __init__(self):

self.queue = []

def length(self):
return len(self.queue)

def show(self):
for name in self.queue:

print("waiting customer: {}".format(name))

def add(self, name):
self.queue.insert(0, name)

def next(self):
return self.queue.pop()

q1 = Fifoqueue(); q2 = Fifoqueue()
q1.add('Spearing'); q1.add('Fangohr'); q1.add('Takeda')
q2.add('John'); q2.add('Peter')
print("{} customers in queue1:".format(q1.length())); q1.show()

281

Functional (closure) FIFO solution (fifoqueue_closure.py)

def make_queue():
queue = []
def length():

return len(queue)

def show():
for name in queue: print("waiting customer: {}".format(name))

def add(name):
queue.insert(0, name)

def next():
return queue.pop()

return add, next, show, length

q1_add, q1_next, q1_show, q1_length = make_queue()
q2_add, q2_next, q2_show, q2_length = make_queue()
q1_add('Spearing'); q1_add('Fangohr'); q1_add('Takeda')
q2_add('John'); q2_add('Peter')
print("{} customers in queue1:".format(q1_length()); q1_show()
print("{} customers in queue2:".format(q2_length()); q2_show()

282

Lessons (Object Orientation)

Object orientation (OO):

• one important idea is to combine data and functions
operating on data (in objects),

• objects contain data but
• access to data through interface (implementation details
irrelevant to user)

• can program in OO style without OO-programming
language:

• as in FIFO2 solution
• as in closure based approach

• OO mainstream programming paradigm (Java, C++, C#, ...)
• Python supports OO programming, and all things in
Python are objects (see also slides 32 pp)

283

283

Numerical Integration

Numerical Integration 1— Overview

Different situations where we use integration:

(A) solving (definite) integrals
(B) solving (ordinary) differential equations

• more complicated than (A)
• Euler’s method, Runge-Kutta methods

Both (A) and (B) are important.

We begin with the numeric computation of integrals (A).

285

(A) Definite Integrals

Often written as

I =
b∫
a

f(x)dx (12)

• example: I =
2∫
0
exp(−x2)dx

• solution is I ∈ R (i.e. a number)
• right hand side f(x) depends only on x
• if f(x) > 0 ∀x ∈ [a,b], then we can visualise I as the area
underneath f(x)

• Note that the integral is not necessarily the same as the
area enclosed by f(x) and the x-axis:

•
2π∫
0
sin(x)dx = 0

•
1∫
0
(−1)dx = −1

286

(B) Ordinary Differential Equations (ODE)

Often written as
y ′ ≡ dy

dx = f(x, y) (13)

• example: dv
dt =

1
m(g− cv

2)

• solution is y(x) : R→ R
x 7→ y(x)

(i.e. a function)

• right hand side f(x, y) depends on x and on solution y
• Can write (13) formally as y =

∫ dy
dxdx =

∫
f(x, y)dx. That’s why we

“integrate differential equations” to solve them.

287

Numeric computation of definite integrals

Example:

I =
2∫
0

exp(−x2)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)

288

Simple trapezoidal rule

• Approximate function by straight line

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
trapezoidal approximation

289

Simple trapezoidal rule (2)

• Compute area underneath straight line p(x)

f(a)+f(b)
 2

ba

f(b)

f(a)

• Result

A =

b∫
a

p(x)dx = (b− a) f(a) + f(b)
2

290

Simple trapezoidal rule (3)

Aim: compute

I =
b∫
a

f(x)dx

Strategy:

• approximate f(x) with a linear function p(x):

p(x) ≈ f(x)

• compute the area A underneath that function p(x):

A =

b∫
a

p(x)dx = (b− a) f(a) + f(b)
2

• approximate

I =
b∫
a

f(x)dx ≈
b∫
a

p(x)dx = A = (b− a) f(a) + f(b)
2

291

Simple trapezoidal rule (4) Example

• Integrate f(x) = x2

I =
2∫
0

x2dx

• What is the (correct) analytical answer?
Integrating polynomials:

I =
b∫
a

xkdx =
[

1
k+ 1x

k+1
]b
a

• for a = 0 and b = 2 and k = 2

I =
[

1
2+ 1x

2+1
]2
0
=
1
32

3 =
8
3 ≈ 2.6667

292

• Using the trapezoidal rule

A = (b− a) f(a) + f(b)
2 = 20+ 4

2 = 4

• The correct answer is I = 8/3 and the approximation is A = 4.
We thus overestimate I by A−I

I ≈ 50%.
• Plotting f(x) = x2 together with the approximation reveals why we
overestimate I

0 0.5 1 1.5 2
x

0

1

2

3

4
f(x) = x^2
trapezoidal approximation p(x)

• The linear approximation, p(x), overestimates f(x) everywhere (except
at x = a and x = b).
Therefore, the integral of p(x) is greater than the integral of f(x).
(More formally: f(x) is convex on [a, b] ⇐⇒ f′′(x) ≥ 0 ∀x ∈ [a, b].)

293

Composite trapezoidal rule

Example f(x) = exp(−x2):

I =
2∫
0

f(x)dx =
2∫
0

exp(−x2)dx

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1

f(x) = exp(-x2)
composite trapezoidal
approximation (n=4)

I =
0.5∫
0

f(x)dx+
1∫

0.5

f(x)dx+
1.5∫
1

f(x)dx+
2∫

1.5

f(x)dx

294

General composite trapezoidal rule

For n subintervals the formulae for the composite trapezoidal
rule are

h =
b− a
n

xi = a+ ih with i = 1, . . . ,n− 1

A =
h
2

(
f(a) + 2f(x1) + 2f(x2) + . . .

+2f(xn−2) + 2f(xn−1) + f(b)
)

=
h
2

(
f(a) +

n−1∑
i=1

2f(xi) + f(b)
)

295

Error of composite trapezoidal rule

One of the important (and difficult) questions in numerical analysis
and computing is:

• How accurate is my approximation?

For integration methods, we are interest in how much the error
decreases when we decrease h (by increasing the number of
subintervals, n).

For the composite trapezoidal rule it can be shown that:
b∫
a

f(x)dx = h
2

(
f(a) + f(b) + 2

n−1∑
i=1

f(xi)
)

+O(h2)

The symbol O(h2) means that the error term is (smaller or equal to
an upper bound which is) proportional to h2:

• If we take 10 times as many subintervals then h becomes 10
times smaller (because h = b−a

n) and the error becomes 100
times smaller (because 1

102 =
1
100).

296

Error of composite trapezoidal rule, example

• The table below shows how the error of the approximation, A, decreases with
increasing n for

I =
2∫
0

x2dx.

n h A I ∆ = A–I rel.err.=∆/I
1 2.000000 4.000000 2.666667 1.333333 50.0000%
2 1.000000 3.000000 2.666667 0.333333 12.5000%
3 0.666667 2.814815 2.666667 0.148148 5.5556%
4 0.500000 2.750000 2.666667 0.083333 3.1250%
5 0.400000 2.720000 2.666667 0.053333 2.0000%
6 0.333333 2.703704 2.666667 0.037037 1.3889%
7 0.285714 2.693878 2.666667 0.027211 1.0204%
8 0.250000 2.687500 2.666667 0.020833 0.7813%
9 0.222222 2.683128 2.666667 0.016461 0.6173%
10 0.200000 2.680000 2.666667 0.013333 0.5000%
50 0.040000 2.667200 2.666667 0.000533 0.0200%
100 0.020000 2.666800 2.666667 0.000133 0.0050%

• The accuracy we actually require depends on the problem under investigation –
no general statement is possible. 297

Summary trapezoidal rule for numerical integration

• Aim: to find an approximation of

I =
b∫
a

f(x)dx

• Simple trapezoidal method:
• approximate f(x) by a simpler (linear) function p(x) and
• integrate the approximation p(x) exactly.

• Composite trapezoidal method:
• divides the interval [a,b] into n equal subintervals
• employs the simple trapezoidal method for each
subinterval

• has an error term of order h2.

298

298

Numpy usage examples

Making calculations fast with numpy

• Calculations using numpy are faster (∼ 100 times) than
using pure Python (see example next slide).

• Imagine we need to compute the mexican hat function
with many points

6 4 2 0 2 4 6
1.0

0.5

0.0

0.5

1.0

1.5

2.0

Mexican hat function

300

Making calculations fast with numpy

"""Demo: practical use of numpy (mexhat-numpy.py)"""
import time
import math
import numpy as np

N = 10000

def mexhat_py(t, sigma=1):
"""Computes Mexican hat shape, see
http://en.wikipedia.org/wiki/Mexican_hat_wavelet for
equation (13 Dec 2011)"""
c = 2. / math.sqrt(3 * sigma) * math.pi ** 0.25
return c * (1 - t ** 2 / sigma ** 2) * \

math.exp(-t ** 2 / (2 * sigma ** 2))

301

def mexhat_np(t, sigma=1):
"""Computes Mexican hat shape using numpy, see
http://en.wikipedia.org/wiki/Mexican_hat_wavelet for
equation (13 Dec 2011)"""
c = 2. / math.sqrt(3 * sigma) * math.pi ** 0.25
return c * (1 - t ** 2 / sigma ** 2) * \

np.exp(-t ** 2 / (2 * sigma ** 2))

def test_is_really_the_same():
"""Checking whether mexhat_np and mexhat_py produce
the same results."""
xs1, ys1 = loop1()
xs2, ys2 = loop2()
deviation = math.sqrt(sum((ys1 - ys2) ** 2))
print("error:", deviation)
assert deviation < 1e-15

302

def loop1():
"""Compute arrays xs and ys with mexican hat function
in ys(xs), returns tuple (xs,ys)"""
xs = np.linspace(-5, 5, N)
ys = []
for x in xs:

ys.append(mexhat_py(x))
return xs, ys

def loop2():
"""As loop1, but uses numpy to be faster."""
xs = np.linspace(-5, 5, N)
return xs, mexhat_np(xs)

def time_this(f):
"""Call f, measure and return number of seconds
execution of f() takes"""
starttime = time.time()

303

f()
stoptime = time.time()
return stoptime - starttime

def make_plot(filenameroot):
import pylab
pylab.figure(figsize=(6, 4))
xs, ys = loop2()
pylab.plot(xs, ys, label='Mexican hat function')
pylab.legend()
pylab.savefig(filenameroot + '.png')
pylab.savefig(filenameroot + '.pdf')

def main():
test_is_really_the_same()
make_plot('mexhat1d')
time1 = time_this(loop1)
time2 = time_this(loop2)

304

print("Numpy version is %.1f times faster"
% (time1 / time2))

if __name__ == "__main__":
main()

Produces this output:

error: 2.223029320536979e-16
Numpy version is 109.6 times faster

A lot of the source code above is focussed on measuring the execution time.
Within IPython, we could just have used %timeit loop1 and %timeit loop2

to get to the same timing information.

305

Array objects of shape () behave like scalars

>>> import numpy as np
>>> np.sqrt(4.) # apply numpy-sqrt to scalar
2.0 # looks like float
>>> type(np.sqrt(4.)) # but is numpy-float
<class numpy.float64>
>>> float(np.sqrt(4.)) # but can convert to float
2.0
>>> a = np.sqrt(4.) # what shape is the

numpy-float?
>>> a.shape
()
>>> type(a) # just to remind us

306

<class numpy.float64> # of the type
>>>

So numpy-scalars (i.e. arrays with shape ()) can be converted to
float. In fact, this happens implicitly:

>>> import numpy as np
>>> import math
>>> math.sqrt(np.sqrt(81))
3.0

Conversion to float fails if array has more than one element:

307

>>> import numpy as np
>>> a = np.array([10., 20., 30.])
>>> a
array([10., 20., 30.])
>>> print(a)
[10. 20. 30.]
>>> type(a)
<class numpy.ndarray>
>>> a.shape
(3,)
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: only length-1 arrays can be converted
to Python scalars

>>> math.sqrt(a)
Traceback (most recent call last):

308

File "<stdin>", line 1, in <module>
TypeError: only length-1 arrays can be converted

to Python scalars

However, if the array contains only one number, then the conversion
is possible:

>>> b = np.array(4.0)
>>> type(b)
<class numpy.ndarray>
>>> b.shape
()
>>> b
array(4.0)
>>> float(b)
4.0

309

>>> math.sqrt(b)
2.0

Note: an array with shape (1,) can also be converted to a float:

>>> c = np.array([3])
>>> c.shape
(1,)
>>> float(c)
3.0

This allows us to write functions f(x) that can take an input
argument x which can either be a numpy.array or a scalar. The
mexhat_np(t) function is such an example:

310

>>> a = mexhat_np(3.)
>>> float(a) # array with shpe ()
-0.13662231969702732 # converts to python float
>>> b = mexhat_np(np.arange(0, 11, 2))
>>> type(b) # array with shape (6,)
<class numpy.ndarray>
>>> b
array([1.53729366e+00, -6.24150219e-01,

-7.73556857e-03, -8.19453296e-07,
-1.22651811e-12, -2.93540437e-20])

311

311

Scientific Python

SciPy (SCIentific PYthon)

(Partial) output of help(scipy):

stats --- Statistical Functions
sparse --- Sparse matrix
lib --- Python wrappers to external

libraries
linalg --- Linear algebra routines
signal --- Signal Processing Tools
misc --- Various utilities that don't

have another home.
interpolate --- Interpolation Tools
optimize --- Optimization Tools
cluster --- Vector Quantization / Kmeans
fftpack --- Discrete Fourier Transform
io --- Data input and output
integrate --- Integration routines
lib.lapack --- Wrappers to LAPACK library
special --- Special Functions
lib.blas --- Wrappers to BLAS library

313

Interpolation of data

Given a set of N points (xi, yi) with i = 1, 2, . . .N, we sometimes
need a function f̂(x) which returns yi = f(xi) and interpolates
the data between the xi.

• → y0 = scipy.interpolate.interp1d(x, y) does this
interpolation. Note that the function

• interp1d returns a function y0 which will interpolate the
x-y data for any given x when called as y0(x).

• Data interpolation of yi = f(xi) may be useful to
• create smoother plots of f(x)
• find minima/maxima of f(x)
• find xc so that f(xc) = yc, provide inverse function x = f−1(y)
• integrate f(x)

• Need to decide how to interpolate (nearest, linear,
quadratic or cubic splines, ...)

314

Interpolation of data example

import numpy as np
import scipy.interpolate
import pylab

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.
x = np.linspace(0, xmax, n)
y = - x**2
make x-data somewhat irregular
y += 1.5 * np.random.normal(size=len(x))
return x, y

315

main program
n = 10
x, y = create_data(n)

use finer and regular mesh for plot
xfine = np.linspace(0.1, 4.9, n * 100)
interpolate with piecewise constant function (p=0)
y0 = scipy.interpolate.interp1d(x, y, kind='nearest')
interpolate with piecewise linear func (p=1)
y1 = scipy.interpolate.interp1d(x, y, kind='linear')
interpolate with piecewise constant func (p=2)
y2 = scipy.interpolate.interp1d(x, y, kind='quadratic')

pylab.plot(x, y, 'o', label='data point')
pylab.plot(xfine, y0(xfine), label='nearest')
pylab.plot(xfine, y1(xfine), label='linear')
pylab.plot(xfine, y2(xfine), label='cubic')
pylab.legend()

316

pylab.xlabel('x')
pylab.savefig('interpolate.pdf')
pylab.show()

317

0 1 2 3 4 5
x

30

25

20

15

10

5

0

5

data point
nearest
linear
cubic

318

Curve fitting example

import numpy as np
import scipy.optimize
import pylab

def create_data(n):
"""Given an integer n, returns n data points
x and values y as a numpy.array."""
xmax = 5.
x = np.linspace(0, xmax, n)
y = - x**2
make x-data somewhat irregular
y += 1.5 * np.random.normal(size=len(x))
return x, y

def model(x, a, b, c): # Equation for fit
return a * x ** 2 + b * x + c

319

main program
n = 10
x, y = create_data(n)
do curve fit
p, pcov = scipy.optimize.curve_fit(model, x, y)
a, b, c = p
plot fit and data
xfine = np.linspace(0.1, 4.9, n * 5)
pylab.plot(x, y, 'o', label='data point')
pylab.plot(xfine, model(xfine, a, b, c), \

label='fit')
pylab.title('fit parameters (a,b,c)=%s' % p)
pylab.legend()
pylab.xlabel('x')
pylab.savefig('curvefit2.pdf')
pylab.show()

320

0 1 2 3 4 5
x

25

20

15

10

5

0

5
fit parameters (a,b,c)=[-1.10893118 0.53799548 0.06887985]

data point
fit

321

Function integration example

from math import cos, exp, pi
from scipy.integrate import quad

function we want to integrate
def f(x):

return exp(cos(-2 * x * pi)) + 3.2

call quad to integrate f from -2 to 2
res, err = quad(f, -2, 2)

print("The numerical result is {:f} (+-{:g})".format(res, err))

which produces this output:

The numerical result is 17.864264 (+-1.55117e-11)
LAB10

322

Optimisation (Minimisation)

• Optimisation typically described as:
given a function f(x), find xm so that f(xm) is the (local)
minimum of f.

• To maximise f(x), create a second function g(x) = −f(x)
and minimise g(x).

• Optimisation algorithms need to be given a starting point
(initial guess x0 as close as possible to xm)

• Minimum position x obtained may be local (not global)
minimum

323

Optimisation example

from scipy import arange, cos, exp
from scipy.optimize import fmin
import pylab

def f(x):
return cos(x) - 3 * exp(-(x - 0.2) ** 2)

find minima of f(x),
starting from 1.0 and 2.0 respectively
minimum1 = fmin(f, 1.0)
print("Start search at x=1., minimum is", minimum1)
minimum2 = fmin(f, 2.0)
print("Start search at x=2., minimum is", minimum2)

324

plot function
x = arange(-10, 10, 0.1)
y = f(x)
pylab.plot(x, y, label='$\cos(x)-3e^{-(x-0.2)^2}$')
pylab.xlabel('x')
pylab.grid()
pylab.axis([-5, 5, -2.2, 0.5])

add minimum1 to plot
pylab.plot(minimum1, f(minimum1), 'vr', label='minimum 1')
add start1 to plot
pylab.plot(1.0, f(1.0), 'or', label='start 1')

add minimum2 to plot
pylab.plot(minimum2,f(minimum2),'vg', label='minimum 2')
add start2 to plot
pylab.plot(2.0,f(2.0),'og',label='start 2')

325

pylab.legend(loc='lower left')
pylab.savefig('fmin1.pdf')
pylab.show()

Code produces this output:

Optimization terminated successfully.
Current function value: -2.023866
Iterations: 16
Function evaluations: 32

Start search at x=1., minimum is [0.23964844]
Optimization terminated successfully.

Current function value: -1.000529
Iterations: 16
Function evaluations: 32

Start search at x=2., minimum is [3.13847656]

326

4 2 0 2 4
x

2.0

1.5

1.0

0.5

0.0

0.5

cos(x)− 3e−(x− 0. 2)2

minimum 1
start 1
minimum 2
start 2

LAB11

327

ODEs

Ordinary Differential Equations

• Many processes, in particular time-dependent processes,
can be described as Ordinary Differential Equations
(ODEs). This includes dynamics of engineering systems,
quantum physics, chemical reactions, biological systems
modelling, population dynamics, and many other models.

• ODEs have exactly one independent variable, and we
assume for simplicity this is the time t.

• The easiest ODE type has one degree of freedom, y, which
depends on the time t, i.e. y = y(t). (For example
temperature as a function of time, the distance a car has
moved as function of time, the angular velocity of a
rotating motor, etc.)

329

• In general, a vector y with k components can depend on
the independent variable, in which case we are looking at
a system of ordinary differential equations with k degrees
of freedom.

• We are seeking the function y(t) – this is the solution of
the ODE.

• We are typically being given an initial value y0 of y(t) at
some time t0 and

• the ODE itself which relates the change of y with t to some
function f(t, y), i.e.

dy
dt = f(y, t) (14)

330

Interface odeint

• aim: solve
dy
dt = f(y, t)

• get access to “odeint”:
from scipy.integrate import odeint

• odeint has the following input and output parameters:
ys = odeint(f, y0, ts)
Input:

• f is function f(y, t) that returns the right-hand side
• y0 is the initial value of the solution at time t0
• ts is a numpy array containing times ti for which we
would like to know the solution y(ti)

• the first value in the array has to be t0 (with y(t0) = y0)
Output:

• ys is the numpy array that contains the solution

331

Using odeint – example 1

Require solution y(t) from t = 0 to t = 2 of
dy
dt = −2y with y(0) = 17

import numpy as np
from scipy.integrate import odeint

def f(y,t):
return -2 * y

ts = np.arange(0, 2.1, 0.1)
y0 = 17
ys = odeint(f, y0, ts)

import pylab
pylab.plot(ts, ys, 'x')
pylab.grid(); pylab.savefig('odeintexample1.pdf')
pylab.show()

332

Using odeint – example 1, solution

Solution:

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

12

14

16

18

333

Using odeint – example 2

Require solution y(t) from t = 0 to t = 2 of
dy
dt = − 1

100y+ sin(10πt) with y(0) = −2

import math
import numpy as np
from scipy.integrate import odeint

def f(y, t):
return -0.01 * y + \

math.sin(10 * math.pi * t)

ts = np.arange(0, 2.01, 0.01)
y0 = -2
ys = odeint(f, y0, ts)

import pylab
pylab.plot(ts, ys)
pylab.savefig('odeintexample2.pdf'); pylab.show() 334

Using odeint – example 2, solution

Solution:

0.0 0.5 1.0 1.5 2.0
2.00

1.98

1.96

1.94

1.92

1.90

1.88

335

2nd order ODE

• Any second order ODE can be re-written as two coupled
first order ODE

• Example: Harmonic Oscillator (HO)
• Differential equation d2r

dt2 = −ω
2r or short r′′ = −ω2r

• Introduce v = r′
• rewrite equation as two first order equations

r′′ = −ω2r −→ v′ = −ω2r
r′ = v

• General strategy:
• convert higher order ODE into a set of (coupled) first order
ODE

• use computer to solve set of 1st order ODEs

336

2nd order ODE – using odeint

• One 2nd order ODE→ 2 coupled 1st order ODEs
• Integration of system of 1st order ODEs:

• “pretty much like integrating one 1st order ODE” but
• y is now a vector (and so is f):

dy
dt = f(y, t) ⇐⇒

(
dy1
dt
dy2
dt

)
=

(
f1(y, t)
f2(y, t)

)
• need to pack and unpack variables into the state vector y:
• Example harmonic oscillator:

• decide to use this packing: y = (r, v)
• then f needs to return f =

(dr
dt ,

dv
dt
)

• odeint returns a vector y for every time step→ a matrix
• need to extract results for r and v from that matrix (rows are
time, first column is r, second column is v)→ see next slide

337

2nd order ODE – Python solution harmonic oscillator (HO)

from numpy import array, arange
from scipy.integrate import odeint

def f(y, t): # right hand side, takes array(!) y
omega = 1
r = y[0] # extract r from array y
v = y[1] # extract v from array y
drdt = v # compute right hand side
dvdt = -omega ** 2 * r
return array([drdt, dvdt]) # return array

ts = arange(0, 20, 0.1) # required times for solution
r0 = 1 # initial r
v0 = 0 # initial v
y0 = array([r0, v0]) # combine r and v into y

ys = odeint(f, y0, ts) # solve ODEs

rs = ys[:, 0] # extract results: r(t)
vs = ys[:, 1] # extract results: v(t) 338

2nd order ODE – result

Solution (not annotated):

0 5 10 15 20
1.0

0.5

0.0

0.5

1.0

r(t)
v(t)

339

Summary 2nd order system

• Strategy:
• transform one 2nd order ODE into 2 (coupled) first order
ODEs

• solve both first order ODEs simultaneously

• nothing conceptually complicated
• but need to use matrices (“arrays”) in Python to shuffle
the data around.

• Warning: the meaning of y, x depends on context: often
x = t and y = x. It helps to write down equations before
coding them.

• Use example on previous slides as guidance.

340

2 Coupled ODEs: Predator-Prey problem

• Predator and prey. Let
• p1(t) be the number of rabbits
• p2(t) be the number of foxes

• Time dependence of p1 and p2:
• Assume that rabbits proliferate at a rate a. Per unit time a
number ap1 of rabbits is born.

• Number of rabbits is reduced by collisions with foxes. Per
unit time cp1p2 rabbits are eaten.

• Assume that birth rate of foxes depends only on food
intake in form of rabbits.

• Assume that foxes die a natural death at a rate b.

• Numbers

341

• rabbit birth rate a = 0.7
• rabbit-fox-collision rate c = 0.007
• fox death rate b = 1

• Put all together in predator-prey ODEs

p′1 = ap1 − cp1p2
p′2 = cp1p2 − bp2

• Solve for p1(0) = 70 and p2(0) = 50 for 30 units of time:

342

import numpy as np
from scipy.integrate import odeint

def rhs(y, t):
a = 0.7; c = 0.007; b = 1
p1 = y[0]
p2 = y[1]
dp1dt = a * p1 - c * p1 * p2
dp2dt = c * p1 * p2 - b * p2
return np.array([dp1dt, dp2dt])

p0 = np.array([70, 50]) # initial condition
ts = np.arange(0, 30, 0.1)

res = odeint(rhs, p0, ts) # compute solution

343

p1 = res[:, 0] # extract p1 and
p2 = res[:, 1] # p2

import pylab # plot result
pylab.plot(ts, p1, label='rabbits')
pylab.plot(ts, p2, '-og', label='foxes')
pylab.legend()
pylab.xlabel('t')
pylab.savefig('predprey.eps')
pylab.savefig('predprey.png')
pylab.show()

344

0 5 10 15 20 25 30
t

0

50

100

150

200

250

300

rabbits
foxes

345

Outlook

Suppose we want to solve a (vector) ODE based on Newton’s equation of
motion in three dimensions:

d2r
dt2 =

F(r, v, t)
m

Rewrite as two first order (vector) ODEs:
dv
dt =

F(r, v, t)
m

dr
dt = v

Need to pack 6 variables into “y”: for example

y = (rx, ry, rz, vx, vy, vz)

Right-hand-side function f(y, t) needs to return:

f =
(

drx
dt ,

dry
dt ,

drz
dt ,

dvx
dt ,

dvy
dt ,

dvz
dt

)
(15)

346

Outlook examples

• Example: Molecular dynamics simulations have one set of 6 degrees of
freedom as in equation (15) for every atom in their simulations.

• Example: Material simulations discretise space into finite elements,
and for dynamic simulations the number of degrees of freedom are
proportional to the number of nodes in the mesh.

• Very sophisticated time integration schemes for ODEs available (such
as ”sundials” suite).

• The tools in scipy.integrate are pretty useful already (odeint and
ode).

347

Sympy

Symbolic Python - basics

>>> import sympy
>>> x = sympy.Symbol('x') # define symbolic
>>> y = sympy.Symbol('y') # variables
>>> x + x
2*x
>>> t = (x + y)**2
>>> print t
(x + y)**2
>>> sympy.expand(t)
x**2 + 2*x*y + y**2
>>> sympy.pprint(t) # PrettyPRINT

2
(x + y)
>>> sympy.printing.latex(t) # Latex export
'\\left(x + y\\right)^{2}'

349

Substituting values and numerical evalution

>>> t
(x + y)**2
>>> t.subs(x, 3) # substituting variables
(y + 3)**2 # or values
>>> t.subs(x, 3).subs(y, 1)
16
>>> n = t.subs(x, 3).subs(y, sympy.pi)
>>> print n
(3 + pi)**2
>>> n.evalf() # EVALuate to Float
37.7191603226281
>>> p = sympy.pi
>>> p
pi

350

>>> p.evalf()
3.14159265358979
>>> p.evalf(47) # request 47 digits
3.1415926535897932384626433832795028841971693993

351

Working with infinity

>>> from sympy import limit, sin, oo
>>> limit(1/x, x, 50) # what is 1/x if x --> 50
1/50
>>> limit(1/x, x, oo) # oo is infinity
0
>>> limit(sin(x) / x, x, 0)
1
>>> limit(sin(x)**2 / x, x, 0)
0
>>> limit(sin(x) / x**2, x, 0)
oo

352

Integration

>>> from sympy import integrate
>>> a, b = sympy.symbols('a, b')
>>> integrate(2*x, (x, a, b))
-a**2 + b**2
>>> integrate(2*x, (x, 0.1, b))
b**2 - 0.01
>>> integrate(2*x, (x, 0.1, 2))
3.99000000000000

353

Taylor series

>>> from sympy import series
>>> taylorseries = series(sin(x), x, 0)
>>> taylorseries
x - x**3/6 + x**5/120 + O(x**6)
>>> sympy.pprint(taylorseries)

3 5
x x

x - -- + --- + O(x**6)
6 120

>>> taylorseries = series(sin(x), x, 0, n=10)
>>> sympy.pprint(taylorseries)

3 5 7 9
x x x x

x - -- + --- - ---- + ------ + O(x**10)
6 120 5040 362880

354

Solving equations

Finally, we can solve non-linear equations, for example:

>>> (x + 2)*(x - 3) # define quadratic equation
with roots x=-2, x=3

(x - 3)*(x + 2)
>>> r = (x + 2)*(x - 3)
>>> r.expand()
x**2 - x - 6
>>> sympy.solve(r, x) # solve r = 0
[-2, 3] # solution is x = -2, 3

355

Sympy summary

• Sympy is purely Python based
• fairly powerful (although better open source tools are
available if required)

• we should use computers for symbolic calculations
routinely alongside pen and paper, and numerical
calculations

• can produce LATEX output
• can produce C and fortran code (and wrap this up as a
python function automatically (“autowrap”))

• In the Jupyter Notebook, run sympy.init_printing() to
set up (LATEX-style) rendered output

356

356

Testing

Testing - context

• Writing code is easy – debugging it is hard
• When debugging, we always test code
• Later code changes may require repeated testing
• Best to automate testing by writing functions that contain
tests

• A big topic: here we provide some key ideas
• We use Python extension tool py.test, see pytest.org

358

http://pytest.org

Example 1:mixstrings.py

def mixstrings(s1, s2):
"""Given two strings s1 and s2, create and return a new
string that contains the letters from s1 and s2 mixed:
i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
s[3] = s2[1], s[4] = s1[2], ...
If one string is longer than the other, the extra
characters in the longer string are ignored.

Example:

In []: mixstrings("Hello", "12345")
Out[]: 'H1e2l3l4o5'
"""
what length to process
n = min(len(s1), len(s2))
collect chars in this list
s = []

359

for i in range(n):
s.append(s1[i])
s.append(s2[i])

return "".join(s)

def test_mixstrings_basics():
assert mixstrings("hello", "world") == "hweolrllod"
assert mixstrings("cat", "dog") == "cdaotg"

def test_mixstrings_empty():
assert mixstrings("", "") == ""

def test_mixstrings_different_length():
assert mixstrings("12345", "123") == "112233"
assert mixstrings("", "hello") == ""

if __name__ == "__main__":
test_mixstrings_basics()
test_mixstrings_empty()
test_mixstrings_different_length()

360

• tests are run if mixstrings.py runs on its own
• No output if all tests pass (“no news is good news”)

• tests are not run if imported

361

Example 2: mixstrings-pytest

import pytest

def mixstrings(s1, s2):
"""Given two strings s1 and s2, create and return a new
string that contains the letters from s1 and s2 mixed:
i.e. s[0] = s1[0], s[1] = s2[0], s[2] = s1[1],
s[3] = s2[1], s[4] = s1[2], ...
If one string is longer than the other, the extra
characters in the longer string are ignored.

Example:

In []: mixstrings("Hello", "12345")
Out[]: 'H1e2l3l4o5'
"""
what length to process
n = min(len(s1), len(s2))

362

collect chars in this list
s = []

for i in range(n):
s.append(s1[i])
s.append(s2[i])

return "".join(s)

def test_mixstrings_basics():
assert mixstrings("hello", "world") == "hweolrllod"
assert mixstrings("cat", "dog") == "cdaotg"

def test_mixstrings_empty():
assert mixstrings("", "") == ""

def test_mixstrings_different_length():
assert mixstrings("12345", "123") == "112233"
assert mixstrings("", "hello") == ""

if __name__ == "__main__": # need filename
pytest.main("-v mixstrings-pytest.py") # to test here

363

• pytest finds functions starting with test_ automatically

• and executes them. Output when tests pass:

$> python mixstrings-pytest.py
======================= test session starts =======================
platform darwin -- Python 3.5.2, pytest-2.9.2
collected 3 items
mixstrings-pytest.py::test_mixstrings_basics PASSED
mixstrings-pytest.py::test_mixstrings_empty PASSED
mixstrings-pytest.py::test_mixstrings_different_length PASSED
==================== 3 passed in 0.01 seconds =====================

• pytest provides beautiful error messages when tests fail. If you can
use pytest, do it.

364

py.test

We can use the standalone program py.test to run test functions in any
python program:

• py.test will look for functions with names starting with test_

• and execute each of those as one test.
• Example:
$> py.test -v mixstrings.py
======================= test session starts =======================
platform darwin -- Python 3.5.2, pytest-2.9.2
collected 3 items

mixstrings.py::test_mixstrings_basics PASSED
mixstrings.py::test_mixstrings_empty PASSED
mixstrings.py::test_mixstrings_different_length PASSED
==================== 3 passed in 0.01 seconds =====================

• This works, even if the file to be tested (here mixstrings) does not
refer to pytest at all.

365

Advanced Example 3: factorial.py

For reference: In this example, we check that an exception is raised if a particular
error is made in calling the function.

import math
import pytest

def factorial(n):
""" Compute and return n! recursively.
Raise a ValueError if n is negative or non-integral.

>>> from myfactorial import factorial
>>> [factorial(n) for n in range(5)]
[1, 1, 2, 6, 24]
"""

if n < 0:
raise ValueError("n should be not-negative, but n = {}"

366

.format(n))

if isinstance(n, int):
pass

else:
raise ValueError("n must be integer but type(n)={}"

.format(type(n)))

actual calculation
if n == 0:

return 1
else:

return n * factorial(n - 1)

def test_basics():
assert factorial(0) == 1
assert factorial(1) == 1
assert factorial(3) == 6

def test_against_standard_lib():
for i in range(20):

367

assert math.factorial(i) == factorial(i)

def test_negative_number_raises_error():
with pytest.raises(ValueError): # this will pass if

factorial(-1) # factorial(-1) raises
an ValueError

def test_noninteger_number_raises_error():
with pytest.raises(ValueError):

factorial(0.5)

Output from successful testing:

$> py.test -v factorial.py
======================= test session starts =======================
platform darwin -- Python 3.5.2, pytest-2.9.2
collected 4 items

factorial.py::test_basics PASSED
factorial.py::test_against_standard_lib PASSED
factorial.py::test_negative_number_raises_error PASSED

368

factorial.py::test_noninteger_number_raises_error PASSED
==================== 4 passed in 0.01 seconds =====================

369

Notes on pytest

• Normally, we call an executable py.test from the command line
• Either give filenames to process (will look for functions starting with
test in those files

• or let py.test autodiscover all files (!) starting with test to be
processed.

Example:

$> py.test -v factorial.py mixstrings.py
======================= test session starts =======================
platform darwin -- Python 3.5.2, pytest-2.9.2 -- python
collected 7 items
factorial.py::test_basics PASSED
factorial.py::test_against_standard_lib PASSED
factorial.py::test_negative_number_raises_error PASSED
factorial.py::test_noninteger_number_raises_error PASSED
mixstrings.py::test_mixstrings_basics PASSED
mixstrings.py::test_mixstrings_empty PASSED
mixstrings.py::test_mixstrings_different_length PASSED
==================== 7 passed in 0.01 seconds =====================

370

Testing summary

• Unit testing, integration testing, regression testing, system
testing

• absolute key role in modern software engineering
• good practice to always write tests when code is written
• bigger projects have ”continuous integration testing”
• ”eXtreme Programming” (XP) philosophy suggests to write
tests before you write code (”test-driven-development
(TDD)”)

• More on this in FEEG6002 Advanced Computational
Methods

Executable py.test and python module pytest are not part of
the standard python library.

371

Object Oriented Programming

Overview

• Motivation and terminology
• Time example

• encapsulation
• defined interfaces to hide data and implementation
• operator overloading
• inheritance
• (teaching example only: normally datetime and others)

• Geometry example
• Objects we have used already
• Summary

373

Motivation

• When programming we often store data
• and do something with the data.
• For example,

• an array keeps the data and
• a function does something with it.

• Programming driven by actions (i.e. calling functions to do
things) is called imperative or procedural programming.

Object Orientation

• merge data and functions (that operate on this data)
together into classes.

(…and objects are “instances of a class”)

374

Terminology

• a class combines data and functions
(think of a class as a blue print for an object)

• objects are instances of a class
(you can build several objects from the same blue print)

• a class contains members
• members of classes that store data are called attributes
• members of classes that are functions are called methods
(or behaviours)

375

Example 1: a class to deal with time

class Time:
def __init__(self, hour, min):

self.hour = hour
self.min = min

def print24h(self):
print("{:2}:{:2}".format(self.hour, self.min))

def print12h(self):
if self.hour < 12:

ampm = "am"
else:

ampm = "pm"

print("{:2}:{:2} {}".format(self.hour % 12,
self.min, ampm))

376

if __name__ == "__main__":
t = Time(15, 45)

print("print as 24h: "),
t.print24h()
print("print as 12h: "),
t.print12h()

print("The time is %d hours and %d minutes." % (t.hour, t.min))

which produces this output:

print as 24h:
15:45
print as 12h:
3:45 pm
The time is 15 hours and 45 minutes.

377

• class Time: starts the definition of a class with name Time

• __init__ is the constructor and is called whenever a new object is
created

• all methods in a class need self as the first argument. Self represents
the object. (This will make more sense later.)

• variables can be stored and are available everywhere within the object
when assigned to self, such as self.hour in the example.

• in the main program:

• t = Time(15, 45) creates the object t
↔ t is an instance of the class Time

• methods of t can be called like this t.print24h().

This was a mini-example demonstrating how data attributes (i.e. hour and
min) and methods (i.e. print24h() and print12h()) are combined in the
Time class.

378

Members of an object

• In Python, we can use dir(t) to see the members of an object t. For
example:

>>> t = Time(15, 45)
>>> dir(t)
['__class__', '__doc__', ...<entries removed here>....,

'hour', 'min', 'print12h', 'print24h']

• We can also modify attributes of an object using for example t.hour =
10. However, direct access to attributes is sometimes supressed
(although it may look like direct access→ property).

379

Data Hiding

• A well designed class provides methods to get and set attributes.
• These methods define the interface to that class.
• This allows

• to perform error checking when values are set, and
• to hide the implementation of the class from the user. This is
good because

• the user doesn’t need to know what is going on behind the
scenes

• we can change the implementation of the class without
changing the interface.

• The next slides show an extended version of the Time class with such
get and set methods.

• We introduce set and get methods as one would use in Java and C++ to
reflect the common ground in OO class design.
In Python, the use of property is often recommended over set and get
methods.

380

Example 2: a class to deal with time

class Time:
def __init__(self, hour, min):

self.setHour(hour)
self.setMin(min)

def setHour(self, hour):
if 0 <= hour <= 23:

self.hour = hour
else:

raise ValueError("Invalid hour value: %d" % hour)

def setMin(self, min):
if 0 <= min <= 59:

self.min = min
else:

raise ValueError("Invalid min value: %d" % min)

381

def getHour(self):
return self.hour

def getMin(self):
return self.min

def print24h(self):
print("{:2}:{:2}".format(self.getHour(),

self.getMin()))
def print12h(self):

if self.getHour() < 12:
ampm = "am"

else:
ampm = "pm"

print("{:2}:{:2} {}".format(self.getHour() % 12,
self.getMin(), ampm))

if __name__ == "__main__":

382

t = Time(15, 45)

print("print as 24h: "),
t.print24h()
print("print as 12h: "),
t.print12h()
print("that is %d hours and %d minutes" % \

(t.getHour(), t.getMin()))

which produces

print as 24h:
15:45
print as 12h:
3:45 pm
that is 15 hours and 45 minutes

383

Data Hiding (2)

• providing set and get methods for attributes of an object
• prevents incorrect data to be entered
• ensures that the internal state of the object is consistent
• hides the implementation from the user (more black box),
• and make future change of implementation easier

• there are more sophisticated ways of “hiding” variables
from users: using Python properties we can bind certain
functions to be called when attributes in the class are
accessed. (See for example here).

384

http://en.wikibooks.org/wiki/Python_Programming/Classes#Properties

Operator overloading

• We constantly use operators to “do stuff” with objects.
• What the operator does, depends on the objects it operates on. For
example:
>>> a = "Hello "; b = "World"
>>> a + b # concatenation
'Hello World'
>>> c = 10; d = 20
>>> c + d # addition
30

• This is called operator overloading because the operation is
overloaded with more than one meaning.

• Other operators include -,* , **, [], (), >, >=, ==, <=, <,
str(), repr(), ...

• We can overload these operators for our own objects. The next slide
shows an example that overloads the > operator for the Time class.

• It also overloads the “str” and “repr“ functions.
385

class Time:
def __init__(self, hour, min):

self.hour, self.min = hour, min

def __str__(self):
"""overloading the str operator (STRing)"""
return "[%2d:%2d]" % (self.hour, self.min)

def __repr__(self):
"""overloading the repr operator (REPResentation)"""
return "Time(%2d, %2d)" % (self.hour, self.min)

def __gt__(self, other):
"""overloading the GreaTer operator"""
selfminutes = self.hour * 60 + self.min
otherminutes = other.hour * 60 + other.min
if selfminutes > otherminutes:

return True
else:

return False

386

if __name__ == "__main__":
t1 = Time(15, 45)
t2 = Time(10, 55)

print("String representation of the object t1: %s" % t1)
print("Representation of object = %r" % t1)

print("compare t1 and t2: "),
if t1 > t2:

print("t1 is greater than t2")

Output:

String representation of the object t1: [15:45]
Representation of object = Time(15, 45)
compare t1 and t2:
t1 is greater than t2

387

Inheritance

• Sometimes, we need classes that share certain (or very
many, or all) attributes but are slightly different.

• Example 1: Geometry
• a point (in 2 dimensions) has an x and y attribute
• a circle is a point with a radius
• a cylinder is a circle with a height

• Example 2: People at universities
• A person has an address.
• A student is a person and selects modules.
• A lecturer is a person with teaching duties.
• …

• In these cases, we define a base class and derive other
classes from it.

• This is called inheritance. The next slides show examples

388

Inheritance example Time

class Time:
def __init__(self, hour, min):

self.hour = hour
self.min = min

def __str__(self):
"""overloading the str operator (STRing)"""
return "[{:2}:{:2}]".format(self.hour, self.min)

def __gt__(self, other):
"""overloading the GreaTer operator"""
selfminutes = self.hour * 60 + self.min
otherminutes = other.hour * 60 + other.min
if selfminutes > otherminutes:

389

return True
else:

return False

class TimeUK(Time):
"""Derived (or inherited class)"""
def __str__(self):

"""overloading the str operator (STRing)"""
if self.hour < 12:

ampm = "am"
else:

ampm = "pm"

return "[{:2}:{:2}{}]".format(self.hour % 12,
self.min, ampm)

if __name__ == "__main__":

390

t3 = TimeUK(15, 45)
print("TimeUK object = %s" % t3)
t4 = Time(16, 15)
print("Time object = %s" % t4)
print("compare t3 and t4: ")
if t3 > t4:

print("t3 is greater than t4")
else:

print("t3 is not greater than t4")

Output:

TimeUK object = [3:45pm]
Time object = [16:15]
compare t3 and t4:
t3 is not greater than t4

391

Inheritance example Geometry

import math

class Point: # this is the base class
"""Class that represents a point """
def __init__(self, x=0, y=0):

self.x = x
self.y = y

class Circle(Point): # is derived from Point
"""Class that represents a circle """
def __init__(self, x=0, y=0, radius=0):

Point.__init__(self, x, y)
self.radius = radius

392

def area(self):
return math.pi * self.radius ** 2

class Cylinder(Circle): # is derived from Circle
"""Class that represents a cylinder"""

def __init__(self, x=0, y=0, radius=0, height=0):
Circle.__init__(self, x, y, radius)
self.height = height

def volume(self):
return self.area() * self.height

if __name__ == "__main__":
d = Circle(x=0, y=0, radius=1)
print("circle area:", d.area())
print("attributes of circle object are")
print([name for name in dir(d) if name[:2] != "__"])

393

c = Cylinder(x=0, y=0, radius=1, height=2)
print("cylinder volume:", c.volume())
print("attributes of cylinder object are")
print([name for name in dir(c) if name[:2] != "__"])

Output:

circle area: 3.141592653589793
attributes of circle object are
['area', 'radius', 'x', 'y']
cylinder volume: 6.283185307179586
attributes of cylinder object are
['area', 'height', 'radius', 'volume', 'x', 'y']

394

Inheritance (2)

• if class A should be derived from class B we need to use
this syntax:
class A(B):

• Can call constructor of base class explicitly if necessary
(such as in Circle calling of Point.__init__(...))

• Derived classes inherit attributes and methods from base
class (see output on previous slide: for example the
cylinder and circle object have inherited x and y from the
point class).

395

Objects in Python

• All “things” in Python are objects, including numbers,
strings and functions.

• Try this at the prompt:
>>> dir(42) # numbers are objects
>>> dir(list) # list is an object
>>> import math
>>> dir(math) # modules are objects
>>> dir(lambda x: x) # functions are objects

396

Summary Object Oriented Programming

Summary

• Object orientation is about merging data and functions
into one object.

• There is a number of helpful concepts, including data
hiding and operator overloading.

• Classes can provide get and set methods and hide their
implementation.

• Classes can be derived from other classes.

397

Some software engineering observations

• OOP needs some time to get used to.
• Good use of OOP

• makes large codes easier to maintain,
• encourages re-use of existing code,
• requires some thought (finding the right classes for a given
problem can be difficult).

Note: Fortran 2003 supports Object Oriented Programming.

398

398

Some programming languages

Some Programming Languages
for Computational Science

see also: http://www.levenez.com/lang/
for an overview of general programming languages

400

Requirements

In the early days …

• computers were slow and rare
• computing time was very precious
• invest effort to run programs as fast as possible

Nowadays …

• increasingly more computing power available
• major cost factor is the time it takes to write (and debug
and test) software

This is not always true (because it depends on the application)
but it seems to be generally correct.

401

Fortran

• FORmula TRANslator (design goal is to translate formulae)
• 1957: Fortran I
• commonly used:

• Fortran 66 and 77
• Fortran 90 and 95
(“matrix notation”)

• compiled language, “low level”
• inbuilt complex numbers→ popular with scientists
• very fast
• many numerical libraries are written in Fortran
• Fortran 2003 introduced “Objects”

402

C

• developed 1972 in Bell laboratories
• 1978 Kerninghan & Ritchie C (often called K&R)
• 1989 ANSI C
• design goals:

• economy of expression
• absence of restriction

• compiled language, “low level”
• UNIX/Linux written in C
• no in-built complex numbers (pre C99)
• very fast
• some numerical libraries are written in C
• general purpose language (in comparision to Fortran)

403

C++

• developed 1983 Bjarne Stroustrup
• compiled language, “low level”
• Object Oriented
• set of higher-level tools (STL)
• fast
• C is subset of C++ but
• knowing C does not mean knowing C++
• general purpose language

404

MATLAB

• MATrix LABoratory (1984)
• started as collection of linear algebra functions
• scripting language grew to combine these functions
• visualisation features were added
• this is what we call MATLAB today
• the MATLAB scripting language is interpreted and slow
• the numerical libraries that come with MATLAB are
compiled and fast

• designed for numerical work (and very good at this)
• can be fast if used carefully
• “high-level language”→ higher coding efficiency
• commercial product

• need to pay
• users can not see (and check) source code

• very popular in engineering community 405

Python

• 1990 Python (named after Monty Python)
• high coding efficiency due to

• “high-level language”
• interpreted
• simple syntax and clean design
• huge tool box, including GUIs, internet, XML, data bases,
graphics, gaming, numerical processing

• general purpose language
• easy to include compiled Fortran and C code

• re-use of existing libraries
• way to make Python programs fast

• fully supports Object Orientation
• performance comparable to MATLAB
• growing popularity in commerce, science and industry

406

Comparison

Selected criteria:

Fortran C C++ Matlab Python
performance + + + ◦ ◦

object orientation – – + – +
exceptions – – + – +

open source + + + – +
easy to learn ◦+ ◦ ◦– + +

legend:

+ = good/yes
◦ = so-so
– = poor/no

407

How do Python and MATLAB relate?

• both MATLAB and Python share (good) ideas:
• provide high-level scripting language (slow) to glue
together

• fast compiled libraries

• Some differences are:
• MATLAB is written for Engineering and Computational
Science tasks and leading in combining computation and
visualisation.

• MATLAB is a commercial product.
• Python is a modern, general purposes language and easier
to extend.

• “Large” projects are better advised to use Python as the
glueing language.

408

Summary

• Need Fortran and C for extreme speed
• Need high-level language to reduce development time
(that is time for writing the program)

• This is particularly important in a research environment
where requirements often change.

• Strategy:
• write parts of the code that take most of the execution
time in C/Fortran

• write the remaining program (for visualisation, data input
output, …) in high-level language.

• For large computational programs, generally > 99% of the
CPU time are spend in a few % of the code.

409

409

What language to learn next?

What language to learn next?

• …it all depends what you want to achieve:

• To learn C or Fortran, get a book or on-line tutorial.

• To learn object oriented programming (OOP), read “How to think like a
computer Scientist” (for Python), or try “Python – how to program” (see
next slides).

• To learn C++, learn OOP using Python first, then switch to C++.

• To learn Java or C#, you should consider learning OOP using Python
first (but you could risk switching language straight away).

Note:

• Python provides an excellent platform for all possible tasks

⇒ it could well be all you need for some time to come.

411

Further reading

• “How to Think Like a Computer
Scientist: Learning with Python”.
(ISBN 0971677506) free at
http://greenteapress.com/wp/think-
python-2e/

• Very systematic presentation of
all important programming
concepts, including OOP.

• Aimed at first year computer
science students.

• Recommended if you like
programming and want to know
more about the concepts.

412

http://greenteapress.com/wp/think-python-2e/
http://greenteapress.com/wp/think-python-2e/

Other tools and topics

Tools to extend your computational toolkit / suggested
self-study topics

• Systematic testing (py.test or nose) and
• Test Driven Development (TDD)
• Version control (try Mercurial or Git)
• Automate everything
• IPython Notebook
• LATEX (professional document creation)
• Cool editor (Emacs? Sublime? ...)

413

Acknowledgements

Thanks go to Ondrej Hovorka and Neil O’Brien for contributing
to these slides.

414

	Python prompt
	Functions
	About Python
	Coding style
	Conditionals, if-else
	Sequences
	Loops
	Some things revisited
	Reading and Writing files
	Exceptions
	Printing
	Higher Order Functions
	Modules
	Default arguments
	Namespaces
	Python IDEs
	List comprehension
	Dictionaries
	Recursion
	Common Computational Tasks
	Root finding
	Derivatives
	Numpy
	Higher Order Functions 2: Functional tools
	Object Orientation and all that
	Numerical Integration
	Numpy usage examples
	Scientific Python
	ODEs
	Sympy
	Testing
	Object Oriented Programming
	Some programming languages
	What language to learn next?

