A Study of the Factors & Protocols that Influence Accurate Mass Measurement by FT-ICR MS to Improve the Confidence of Assignment of Elemental Composition

Louisa V M Wronska,1 G John Langley,1 Julie M Herniman,1 Gavin O’Connor2
1University of Southampton, School of Chemistry, UK; 2LGC Limited, Teddington, UK.
E-mail: lvmw@soton.ac.uk

Abstract

- The confidence in a single mass measurement, rather than an averaged mass measurement is the critical factor when defining elemental formula candidates following an accurate mass measurement.
- A high confidence level, coupled with good accuracy and precision, allows limits to be defined to restrict the number of candidates in this list.
- Here, an experimental protocol is discussed to determine the frequency of accurate mass measurements using a Bruker Apex III FT-ICR MS (no automatic gain control, AGC).
- This study expands previous work to encompass the presence of 2 compounds at varying concentrations rather than a single species at 3 set concentrations.
- External calibration is used at all times in order to decrease analysis time, a particularly crucial factor in a high throughput (HT) environment.

Previous Work

- The original work comprised of 1 compound at 3 set concentrations, externally calibrated with solutions of 4 different concentrations
- If sample ion abundance is low, then the accuracy and precision of accurate mass measurement is more tolerant of a wider range of calibration ion abundances, a valuable consideration for an HT environment
- This is at variance with the commonly accepted view that matching of ion populations is critical to achieving the best accuracy for externally calibrated accurate mass measurement
- If the sample ion abundance is high, then the calibration ion population must also be high to maintain the same level of confidence in the individual mass measurement

Experimental

- Instrumentation
 - Apex III FT-ICRMS, Bruker Daltonics (Billerica, MA)
 - Equipped with :
 - A 4.7 Tesla actively shielded superconducting magnet
 - An Infinity cylindrical analyzer cell
 - An Apollo electrospray ionisation source
- Samples, Standards and Reagents
 - Two unknowns (m/z 218 & 224 [M+Na]+), at 3 different concentrations; 0.1, 1, & 10 µg ml⁻¹ in methanol were cross mixed in a 1:3 ratio to give nine solutions: 0.1, 0.1/1, 0.1/3, 1, 1/3, 10, 10/3, 10/1, 1/10, 10/10 µg ml⁻¹.
 - Soton Mix was used as the calibrant at 0.1, 1, & 100 µg ml⁻¹ in methanol
- External Calibration & Sample Analysis
 - Calibration solutions & samples were infused using a syringe pump (Harvard Apparatus, Holliston, MA) at a constant rate of 3 µL min⁻¹
 - Accurate mass measurements were performed on the 9 solutions (3 x 3) & externally calibrated with the 4 calibration files = 180 sets of data per experiment

Results & Discussion

Figure 3a shows a & b series relate to ion 218.078 & 224.0253 respectively. Experiments were acquired over a 6 month period. (1) DS1 [Xmass], (2) DS2 [Xmass & DA] & (3) DS3 [Apex & DA], with software shown in brackets. Calibrant concentration: (○) 0.1 µg ml⁻¹, (□) 1 µg ml⁻¹, (△) 10 µg ml⁻¹, & (△) 100 µg ml⁻¹. Figure 4 shows the % error recorded for m/z 224.0253 over the 3 different conditions, with data shown in brackets. Calibrant concentration: (○), (□) & (△). Not all values are shown due to software issues.

Conclusions

- A high RA of sample/calibrant does not always give large mass measurement errors, inferring that ion population matching is not necessary to give the best accuracy
- Although the spread of errors varies with time, the actual number of errors <0.5 ppm does not vary to the same degree over time
- Only DS3 data fits with the previous work, i.e. with low sample abundance being more tolerant to a wide range of calibrant abundance

References

Future Work

- Repeat the experiments, including acquiring the data over a shorter period of time in order to assess if the results reflect the previous findings
- Alter the mass range and position of the analytes on the mass scale (i.e. the frequency scale) & repeat these experiments. Repeat the measurements in the presence of a high mass ion, e.g. a small protein
- Further increase the complexity of the sample to reflect real sample issues to assess the extent of the space charge effects.
- Determine what drives these different mass error trends

Acknowledgements