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1 University of Southampton, Southampton, UK
pp1v17@soton.ac.uk
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Abstract. The Shapes Constraint Language (SHACL) has been rec-
ently introduced as a W3C recommendation to define constraints that
can be validated against RDF graphs. Interactions of SHACL with other
Semantic Web technologies, such as ontologies or reasoners, is a matter
of ongoing research. In this paper we study the interaction of a subset
of SHACL with inference rules expressed in datalog. On the one hand,
SHACL constraints can be used to define a “schema” for graph datasets.
On the other hand, inference rules can lead to the discovery of new
facts that do not match the original schema. Given a set of SHACL con-
straints and a set of datalog rules, we present a method to detect which
constraints could be violated by the application of the inference rules
on some graph instance of the schema, and update the original schema,
i.e, the set of SHACL constraints, in order to capture the new facts that
can be inferred. We provide theoretical and experimental results of the
various components of our approach.

1 Introduction

Information about the type of data contained in a dataset is a critical piece of
information both to understand data, and to interface with databases. While
the relational model explicitly defines a schema, graph data representations are
inherently schemaless, in the sense that any RDF triple could, in principle, be
stored in any RDF triplestore. The Shapes Constraint Language (SHACL) [10], is
a W3C recommendation recently introduced to define properties of RDF datasets.
SHACL allows the definition of constraints that can be validated against RDF
graphs. Such constraints can be seen as the schema of the graphs that do not
violate them. Schemas are not static objects, and they can evolve over time to
reflect changes in the datasets they model. One important source of change in
graph datasets comes from the application of inference rules. Inference rules can
be used to reason about ontological properties, such as class membership. They
can also be used for non-ontological types of inference, such as aggregating sensor
data to detect important facts such as the presence of a fire, or the temperature
of a room. This paper focuses on datalog rules [6] without negation (the exact
subset of datalog that we consider is defined in Sect. 2).

The application of inference rules might generate new facts, not captured by
the original schema definition. Given a set of SHACL constraints and a set of
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inference rules, we would like to determine whether a graph, initially valid with
respect to the SHACL constraints, remains valid after computing its closure
with the inference rules. If constraint violations can occur, a domain expert
could decide whether to remove the inference rules that cause these violations,
or to update the violated SHACL constraints. Updating the violated constraints
to account for the new facts that can be produced via inference effectively creates
a new schema.

This research is motivated by use cases in the area of Occupational Health
and Safety (OHS), and in particular in the mining sector. In these areas, schemas
are used to model and understand the underlying data sources, and to ensure
interoperability between different applications. Inference rules, usually devel-
oped separately, are used to aggregate raw sensor data into more useful abstrac-
tions and encode OHS policies (e.g. to detect unsafe working environments).
At the moment, domain experts are needed to define such rules. However this
process is slow, expensive and error prone. Our research aims to better inform
experts about the effects of applying certain rules (which could affect the schema,
and thus interoperability) and automatically detect conflicts between rules and
schemas. For example, as schemas frequently change (e.g. sensors malfunction,
or new ones are deployed), it is essential to automatically detect schema changes
that render important rules (and policies) no longer applicable, on unforeseen
datasets.

In this paper we present an approach that models triplestore schemas as
triplets of sets: a set of triple patterns that can be appropriately instantiated by
RDF triples, a set of positions in those triples that cannot be instantiated by
literal values (e.g. object positions in triples), and a set of existential validity rules
(such as tuple-generating dependencies [8]) which must hold on the instatiated
triples in order for our graph to be valid. Our triplestore schema captures a
fragment of SHACL, but abstracts away from its particular syntax and can be
used as a logical tool to model properties of RDF graphs in general. However,
it is not meant to provide a complete formal semantic representation of the core
SHACL components, such as the one presented in [7].

Furthermore, we investigate how our triplestore schemas interact with infer-
ence rules and evolve into new schemas, that we call schema consequences; these
are schemas that model all possible RDF graphs extended with the inferred
facts. Given an input schema S, we want to reason about the applicability of
inference rules on all potential instances of S, and compute the schema conse-
quence. This problem proves challenging even without taking existential validity
rules into account in our schemas; i.e., for what we call our simple schema con-
sequence. To reason with inference rules in this version of the problem we have
to make use of the notion of a “canonical” instance of S, representative of all
other instances. For this, we first explore such an instance known as the criti-
cal instance and investigated in relational databases [13]; running the inference
rules on this graph enables us to produce our schema consequence. However, the
critical instance is inefficient, as it has a very large size, and so we turn our atten-
tion to finding a much smaller representative instance, that we call the sandbox
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graph. We then present a novel query rewriting algorithm that can compute the
simple schema consequence on the sandbox graph, much more efficiently than
in the critical instance case.

Building on top of our simple schema consequence we use a novel combination
of techniques, variations of datalog rewriting [1] and the Chase algorithm [4], to
produce our existential-preserving schema consequence, a triplestore schema the
identifies and removes from its description the existential validity rules that
could potentially be violated on some instance produced by the inference rules.
We provide both theoretical and experimental evaluations of our approach.

2 Background

We consider triplestores containing a single RDF graph. Such a graph is a set of
triples U×U× (U∪L) where U is the set of all IRIs and L the set of all literals.
Although we do not explicitly discuss blank nodes, it should be noted that, for
the purpose of this paper, when they occur in a graph they can be treated exactly
as IRIs. We use the term constants to refer to both literals and IRIs. A graph
pattern is a set of triple patterns defined in: (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V),
where V the set of all variables. Given a pattern P , vars(P ) and const(P ) are the
sets of variables and constants in the elements of P , respectively. We represent
IRIs as namespace-prefixed strings of characters, where a namespace prefix is
a sequence of zero or more characters followed by a colon e.g. :a; literals as
strings of characters enclosed in double-quotes, e.g. "l"; and variables as strings
of characters prefixed by a question-mark, e.g. ?v. The first, second and third
elements of a triple t are called, respectively, subject, predicate and object, and
are denoted by t[x], x ∈ τ with τ = {1, 2, 3} throughout the paper.

A variable substitution is a partial function . A mapping is a
variable substitution defined as . Given a mapping m, if m(?v) = n,
then we say m contains binding ?v → n. The domain of a mapping m is the set of
variables dom(m). Given a triple or a graph pattern p and a variable substitution
m we abuse notation and denote by m(p) the pattern generated by substituting
every occurrence of a variable ?v in p with m(?v) if ?v ∈ dom(m) (otherwise ?v
remains unchanged in m(p)). A grounding is a mapping that transforms a graph
pattern into a graph.

Given a graph pattern P and a graph I, we denote the SPARQL evaluation
of P over I as the set of mappings �P �I , as defined in [14]. A graph pattern
matches a graph if its evaluation on the graph returns a non-empty set of map-
pings. We consider inference rules A → C, where A and C are graph patterns,
and can be expressed as SPARQL construct queries. Note that essentially both
A and C in an inference rule are conjunctive queries [1]. The consequent C of
the rule is represented in the construct clause of the query, which is instan-
tiated using the bindings obtained by evaluating the antecedent A, expressed
in the where clause. For technical reasons, we restrict the subset of datalog
that we consider with the requirement that each triple pattern in the conse-
quent C of a rule: (1) has a constant in the predicate position; and (2) does
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not have the same variable in the subject and object position. A single appli-
cation of an inference rule r : A → C to a dataset I, denoted by r(I), is
I ∪ ⋃

m∈�A�I
{m(C), if m(C) is a valid RDF a graph}. These rules capture dat-

alog [1] and subsets of rule notations such as SPIN and SWRL can be represented
in this format [3]. The closure of a dataset I under a set of inference rules R,
denoted by clos(I,R), is the unique dataset obtained by repeatedly applying all
the rules in R until no new statement is inferred, that is, clos(I,R) =

⋃i=∞
i=0 Ii,

with I0 = I, and Ii+1 =
⋃

r∈R{r(Ii)}.
The Shapes Constraint Language (SHACL) defines constraints that can be

validated against RDF graphs. An example of a constraint is the requirement
for an RDF term to be an IRI. The nodes of an RDF graph against which such
constraints are validated are called focus nodes. At the core of the SHACL lan-
guage is the concept of shapes. A shape groups together a set of constraints, and
defines which focus nodes it should apply to. A shape could either directly target
specific nodes, such as all the elements of a class, or it could be referenced by
other shapes. For example, it is possible to define the shape of a “well-formed
email address”, and then specify that every entity of type “person” must have at
least one email address that satisfies this shape. In this paper we prefix SHACL
terms with the namespace sh:.

Given a schema S, we denote with I(S) the set of instances of S, which are
the graphs that S models. We say that two schemas S and S′ are semantically
equivalent if they model the same set of instances; i.e. if I(S) = I(S′). Naturally,
the interpretation of SHACL constraints as a schema is based on SHACL vali-
dation. We say that a graph is an instance of a SHACL schema, defined by its
set of constraints, if the graph does not violate the SHACL constraints.

3 Problem Definition

In this section we are going to present our definition of a triplestore schema,
a simple representation that captures a powerful fragment of SHACL. A set of
SHACL shapes S belongs to this fragment if and only if there exists a triple-
store schema S′ such that I(S) = I(S′) (the set of instances of a triplestore
schema will be defined later in this section). An important characteristic of this
fragment (discussed later) is that its existential validity rules must have atomic
antecedents and consequents. This is sufficient to model common constraints for
RDF validation, such as the Data Quality Test Patterns TYPEDEP, TYPRODEP, PVT,
RDFS-DOMAIN and RDFS-RANGE in the categorisation by Kontokostas et al. [11].

The two main components of triplestore schemas are: (1) a set of abstract
triple patterns, that intend to model all different triples/instantiations of those
patterns; and (2) a set of existential validity constraints that represent “if-then”
statements of SHACL shapes. Abstracting away from the particulars of the
SHACL syntax, on one hand, simplifies our approach and, on the other hand,
makes it applicable to the fragments of other languages (e.g. ShEx [15]) which
can be converted into our triplestore schema. Once we have a triplestore schema
in place, we define our problem of how do instances of such a schema interact
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with a set of datalog inference rules. In particular, we would like to reason at
the schema level and decide if there is a potential instance graph of our schema
on which our datalog rules would infer facts that violate the validity constraints.

3.1 From SHACL to Triplestore Schemas

Our work is inspired by Internet of Things (IoT) settings and as our running
example we consider a dataset of a mining company. The SHACL schema, S1, for
this mine dataset is presented in Fig. 1. This repository collects data from sensors
carried by workers and deployed in the mine. Data is modelled according to the
Semantic Sensor Network Ontology (SSN) [12], with namespace prefix s:. In SSN,
sensor measurements are called observations. The result of an observation (e.g.
“20”) relates to a particular observed property (e.g. temperature) of a particular
feature of interest (e.g. a room). In our example the mine contains two types
of sensors. The first is a carbon monoxide (CO) detector, which records value
“0” if the CO concentration is within the allowed limits, and “1” otherwise.
The second is an RFID reader used to locate personnel in the mine by sensing
the nearby RFID tags carried by the mine workers. SHACL shape :s0 specifies
that the collected sensor data will only refer to those two sensor types. The
dataset of the mine is expected to contain a list of known personnel RFID tags,
and information on who is currently carrying them. Shape :s1 specifies that for
every personnel tag, we know who it is carried by. Shapes :s2 and :s3 restrict
features of interest to being IRIs and measurement results to be IRIs or literals.
Shape :s4 declares that the sensor data contains instances of only two classes,
namely sensor observations, and personnel tags.

:s0 a sh:NodeShape ;
sh:targetObjectsOf sn:observedProperty ;
sh:in ( :COLevel :TagID ) .

:s1 a sh:NodeShape ;
sh:targetClass :PersonnelTag ;
sh:property [ sh:minCount 1 ;

sh:path :carriedBy ] .
:s2 a sh:NodeShape ;

sh:targetObjectsOf sn:hasFeatureOfInterest ;
sh:nodeKind sh:IRI .

:s3 a sh:NodeShape ;
sh:targetObjectsOf sn:hasResult ;
sh:nodeKind sh:IRIOrLiteral .

:s4 a sh:NodeShape ;
sh:targetObjectsOf rdf:type ;
sh:in ( sn:Observation :PersonnelTag ) .

Fig. 1. Schema S1.
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?v1 sn:observedProperty :COLevel.
?v2 sn:observedProperty :TagID.
?v3 rdf:type sn:Observation.
?v4 rdf:type :PersonnelTag.

?v5 :carriedBy ?v6.
?v7 sn:hasFeatureOfInterest ?v8.
?v9 sn:hasResult ?v10.

Fig. 2. Graph pattern SG
1 .

When using SHACL as a schema language, we would like the constraints to
describe the type of data contained in a dataset as accurately as possible. SHACL
constraints usually target only a limited number of predicates in an RDF graph,
and triples with predicates other than the targeted ones could be present in
the graph without causing violations. However, for our purposes we adopt a
closed-world view of the available vocabulary of predicates, and we would like
to restrict valid graphs to only contain a fixed set of predicates. This vocabulary
restriction can be specified by an appropriate SHACL constraint that uses the
sh:closed component. We assume, therefore, that all SHACL schemas that we
work with contain a component that specifies that valid instances of this schema
do not contain predicates other than the ones that appear in the SHACL shapes.
This is inline with relational databases where the discovery of completely new
types of facts (i.e. triples with unforseen predicates) would be reflected by a
corresponding change in the original schema.

In our running example, instances of schema S1 would contain triples match-
ing the triples patterns of graph pattern SG

1 displayed in Fig. 2, where each vari-
able can be appropriately instantiated by an IRI or a literal. In fact, exactly such
a set of triple patterns will be the first element of our representation of triple-
store schemas, called a schema graph, defined below. Note that valid instances
of our schema might contain multiple instantiations of some, but not necessarily
all of the predicates defined in the schema graph, and they cannot contain other
kinds of triples (e.g. undefined predicates). We use different variables in SG

1 to
denote the fact that variables in a schema graph act as wildcards, and are not
meant to join triple patterns together.

In addition to the schema graph, a second part of our schema representation
will be the subset of variables from the schema graph, called the no-literal set,
where literals can not occur in valid instances. For example, we cannot instantiate
variables ?v7 and ?v8 of triple pattern [?v7, sn:hasFeatureOfInterest, ?v8]
from Fig. 2 with a literal; in the case of ?v7, because we would not generate a
valid RDF triple, and in the case of ?v8, because it would violate shape :s2.

The last part of our schema representation will translate SHACL constraints
to “if-then” statements like the following, which corresponds to shape :s1 of
schema S1:

e1 = [?v1, rdf:type, :PersonnelTag] →∃ [?v1, :carriedBy, ?v2]

These constraints are essentially existential rules [2], also expressible as tuple-
generating dependencies (TGDs) [8]. For all practical purposes, the part of
SHACL that we consider, when translatable to existential rules, falls into a lan-
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guage known as linear weakly-acyclic TGDs [8] with a single atom in the conse-
quent. Linear means that these rules have only one atom (one triple pattern) in
the antecedent, and weakly-acyclic is a property that guarantees that forward-
chaining algorithms, such as the Chase [4], terminate. Formally, we define an
existential rule as a formula of the form: a →∃ c, where a and c, respectively the
antecedent and the consequent of the rule, are triple patterns. The consequent
specifies which triples must exist in a graph whenever the antecedent holds in
that graph. We say that an existential rule a →∃ c is violated on a graph I if
there exists a mapping m ∈ �{a}�I such that �m(c)�I = ∅ (i.e. m(c) is not in
I), and satisfied otherwise. Note that if m(c) is a ground triple, and m(c) ∈ I,
then �m(c)�I is not empty, as it contains the empty mapping [14]. Given a set
of existential rules E, we use violations(E, I) to refer to the set of pairs 〈m, e〉,
where e ∈ E and mapping m causes e to be violated on instance I.

We are now ready to define our triplestore schemas. A triplestore schema
(or from now on, just schema) S, is a tuple 〈SG, SΔ, S∃〉, where SG, called a
schema graph, is a set of triple patterns where every variable occurs at most
once, SΔ is a subset of the variables in SG which we call the no-literal set,
and S∃ is a set of existential rules. Intuitively, SG defines the type of triples
that can appear in a graph, where variables act as wildcards, which can be
instantiated with any constant element. To account for the restrictions imposed
by the RDF data model, the no-literal set SΔ defines which variables cannot be
instantiated with literals, thus SΔ must at least include all variables that occur
in the subject or predicate position in SG. For example, if 〈?v1, sn:hasResult,
?v2〉 ∈ SG

′ and ?v2 �∈ SΔ
′ , then the instances of schema S′ can contain any triple

that has sn:hasResult as a predicate. If 〈?v3, rdf:type, :Observation〉 ∈ SG
′

and ?v3 ∈ SΔ
′ , the instances of S′ can contain any entity of type :Observation.

While SG and SΔ together define the set of all the possible triples that can
be found in a graph, not all combinations of such triples are valid instances of
the schema. The set of existential rules S∃ defines further requirements that
instances of the schema must satisfy. Formally, a graph I is an instance of a
triplestore schema 〈SG, SΔ, S∃〉 if and only if violations(S∃, I) = ∅ and for
every triple tI in I there exists a triple pattern tS in SG, such that tI is an
instantiation of tS w.r.t SΔ; that is, there exists a mapping m such that (1)
m(tS) = tI and (2) m does not bind any variable in SΔ to a literal.

For our SHACL to triplestore schema translation we direct the reader to our
external appendix1 and our implementation in our code repository.2

3.2 Inference Rules and Schema Consequences

We are interested in the effect that inference rules (not to be confused with
existential rules) have on RDF graphs, and their interaction with existential
rules. Inference rules are used to compute the closure of instances of our origi-
nal schema as defined in Sect. 2. As an example consider the of inference rules

1 https://github.com/paolo7/ISWC2019-appendix/raw/master/Appendix.pdf.
2 https://github.com/paolo7/ISWC2019-code.

https://github.com/paolo7/ISWC2019-appendix/raw/master/Appendix.pdf
https://github.com/paolo7/ISWC2019-code
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o1 sn observedProperty TagID;
sn hasFeatureOfInterest room1;
sn hasResult :WID1.

o2 sn observedProperty TagID;
sn hasFeatureOfInterest room2;
sn hasResult WID2.

o3 sn observedProperty COLevel;
sn hasFeatureOfInterest room2;
sn hasResult "1".

WID1 a PersonnelTag;
:carriedBy Alex.

Fig. 3. Instance I1.

R1 = {r1, r2, r3} below. Rule r1 states that the RFIDs recorded by the sensors
should be interpreted as personnel tags, and it records the location of where they
are detected. Rule r2 states that locations with a high carbon monoxide (CO)
concentration should be off-limits. Rule r3 states that if someone is located in
an off-limits area, then they are trespassing in that area.

r1 = { [?v1, sn:observedProperty, :TagID],
[?v1, sn:hasResult, ?v2],
[?v1, sn:hasFeatureOfInterest, ?v3] }
→ { [?v2, rdf:type, :PersonnelTag], [?v2, :isLocatedIn, ?v3] }

r2 = { [?v1, sn:observedProperty, :COLevel],
[?v1, sn:hasResult, "1"],
[?v1, sn:hasFeatureOfInterest, ?v2] }
→ { [?v2, rdf:type, :OffLimitArea] }

r3 = { [?v1, :isLocatedIn, ?v2],
[?v2, rdf:type, :OffLimitArea] }
→ { [?v1, :isTrespassingIn, ?v2] }

In our example, an emergency response application might need to know who
is carrying each personnel RFID tag, in order to compute an emergency response
plan. In this case, it is important to know which existential rules the application
of a set of inference rules can violate. Once potential violations are detected, a
domain expert could, for example, decide whether to relax (i.e. remove) the vio-
lated existential rules, or to remove the inference rules that cause the violations.

Thus, an example of the central question we address in this paper is: is e1
guaranteed to remain valid in instances of schema S1 under closure with inference
rules R1? The answer to this question is no, as demonstrated by graph I1, which
is a valid instance of S1. This instance contains two records of miner tags being
detected, namely :WID1 and :WID2. While we know that :WID1 is being carried
by worker :Alex, we do not have any such information about tag :WID2.

Rule r1 will deduce that :WID2 is a personnel tag, by inferring triples [:WID2,
rdf:type, :PersonnelTag] and [:WID2, :isLocatedIn, :room2] from instance I1.
However, since there is no information on who is carrying tag :WID2, existential
rule e1 is violated. A domain expert analysing this conflict can then decide to
either relax e1, to state that there is not always information on who is carrying
a personnel tag, or to remove rule r1, to state that not all RFIDs recorded by
the sensors are personnel tags. Rule r2 is triggered by observation :o3, inferring
triple [:room2, rdf:type, :OffLimitArea]. The IRI :OffLimitArea is not one of
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the types allowed in the original schema. Therefore, we might want to either
revise rule r2, or extend schema S1 to allow for instances of this type. Facts
inferred by rules r1 and r2 together trigger rule r3, which will infer [:WID2,
:isTrespassingIn, :room2]; i.e., that the person carrying the RFID tag :WID2 is
trespassing in dangerous area :room2. These new facts contain the new predicate
:isTrespassingIn, and thus violate our closed-world interpretation of schema
S1 (as captured by our schema graph patterns). Hence, if one wants to retain all
inference rules R1 in our mine repository, an alteration of the original schema
(and its schema graph) is required.

In this paper we deal with predicting these kinds of constraint violation, and
computing an updated schema that accounts for them, without looking at spe-
cific instances such as I1. Given a schema S : <SG, SΔ, S∃> and a set of inference
rules R, we want to compute a new schema, called schema consequence, which
captures all the inferences of the set of rules R on any potential instance of S.
By computing an updated triplestore schema, once a violation is detected, our
approach gives preference to maintaining inference rules over maintaining the
original schema, essentially choosing to alter the schema graph and/or the exis-
tential rules. This is not an inherent limitation of our approach, which could be
easily transformed to a method that maintains the original schema and chooses
to reject conflicting inference rules.

To present our problem incrementally, we first compute a simple schema
consequence which does not take existential rules into account (i.e. it only deals
with SG and SΔ of our triplestore schema) and then we extend our solution to
take S∃ into account in our existentially-preserving schema consequence.

The simple interpretation of a schema consequence captures the type of
triples that the closure of an instance of the schema could potentially contain.
Given a schema S and a set of inference rules R, a schema S′ is a simple schema
consequence of S with respect to R, denoted con(S,R), if I(S′) =

⋃
I∈I(S){I ′|I ′ ⊆

clos(I,R)}. It is important to note that every subset of an instance’s closure is
still an instance of the simple schema consequence. Thus a simple schema con-
sequence can contain the consequence of an inference rule application without
containing a set of triples matching the antecedent, or vice versa. This situa-
tion is commonly encountered when some triples are deleted after an inference
is made. Effectively, this definition does not assume that all the triples in an
instance’s closure are retained. One use of this schema consequence is to dis-
cover whether certain important facts (e.g. personnel trespassing in a dangerous
area) can be inferred from the given schema (e.g. available sensor data streams)
and set of inference rules (e.g. sensor data aggregation rules). Another use is
to compute which inference rules are applicable on a schema, which means that
they will be triggered on at least one instance of that schema.

Given a schema S and a set of inference rules R, a schema S′ is an existential-
preserving schema consequence of S with respect to R, denoted conex(S,R),
if and only if I(S′) =

⋃
I∈I(S){I ′|I ′ ⊆ clos(I,R) ∧ violations(S∃, I ′) =

violations(S∃, clos(I,R))}. In other words, instances of an existential-preserving
schema consequence are generated by computing the closure of an instance of
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the original schema under the inference rules, and then discarding a set of triples
as long as doing so does not generate new violations of existential rules S∃. This
allows us to detect which existential rules can be violated by the application of
inference rules (and not just by arbitrary triple deletions). Our approaches to
compute simple and existential-preserving schema consequences are presented,
respectively, in Sects. 4 and 5.

4 Computing the Simple Schema Consequence

We compute con(S,R) iteratively, on a rule-by-rule basis. In correspondence to
a single application r(I), of an inference rule r on an instance I, we define a
basic consequence of a schema S by an inference rule r, denoted by r(S), as a
finite schema S′ for which I(S′) =

⋃
I∈I(S){I ′|I ′ ⊆ r(I)}. It is now easy to see

that the consequence schema for a set of inference rules con(S,R) is obtained by
repeatedly executing r(S) for all r ∈ R until no new pattern is inferred. Formally,
con(S,R) =

⋃i=n
i=0 Si, with S0 = S, and Si+1 =

⋃
r∈R{r(Si)}, and Sn = Sn−1

(modulo variable names). In this section we focus on computing a single basic
schema consequence r(S), and describe two approaches for this, namely Schema
Consequence by Critical Instance (critical(S, r)), and Schema Consequence
by Query Rewriting (score(S, r)).

Given a schema S and an inference rule r : A → C, our approach to com-
pute the basic schema consequence for r on S is based on evaluating A, or an
appropriate rewriting thereof, on a “canonical” instance of S, representative of
all instances modelled by the schema. The mappings generated by this evalua-
tion are then (1) filtered (in order to respect certain literal restrictions in RDF)
and (2) applied appropriately to the consequent C to compute the basic schema
consequence.

We present two approaches, that use two different canonical instances. The
first instance is based on the concept of a critical instance, which has been
investigated in the area of relational databases before [13] (and similar notions
in the area of Description Logics [9]). Adapted to our RDF setting, the critical
instance would be created by substituting the variables in our schema, in all
possible ways, with constants chosen from the constants in SG and A as well as
a new constant not in SG or A. In [13] this instance is used in order to decide
Chase termination; Chase is referred to rule inference with existential variables,
more expressive than the ones considered here and for which the inference might
be infinite (see [4] for an overview of the Chase algorithm). Although deciding
termination of rule inference is slightly different to computing the schema con-
sequence, we show how we can take advantage of the critical instance in order to
solve our problem. Nevertheless, this approach, that we call critical, creates
prohibitively large instances when compared to the input schema. Thus, later on
in this section we present a rewriting-based approach, called score, that runs a
rewriting of the inference rule on a much smaller canonical instance of the same
size as SG.
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The Critical Approach. For both versions of our algorithms we will use a
new IRI :λ such that :λ �∈ const(SG) ∪ const(A). Formally, the critical instance
C(S,A → C) is the set of triples:

{t| triple t with t[i] =

⎧
⎪⎪⎨

⎪⎪⎩

c if tS [i] is a variable and:
(1) c is a IRI or
(2) i = 3 and tS [i] �∈ SΔ

tS [i] if tS [i] is not a variable

⎫
⎪⎪⎬

⎪⎪⎭

,

tS ∈ SG, i ∈ τ, c ∈ const(SG) ∪ const(A) ∪ {:λ}}

The critical instance replaces variables with IRIs and literals from the set
const(SG) ∪ const(A) ∪ {:λ}, while making sure that the result is a valid RDF
graph (i.e. literals appear only in the object position) and that it is an instance of
the original schema (i.e. not substituting a variable in SΔ with a literal). In order
to compute the triples of our basic schema consequence for inference rule r we
evaluate A on the critical instance, and post-process the mappings �A�C(S,r) as
we will explain later. Before presenting this post-processing of the mappings we
stress the fact that this approach is inefficient and as our experiments show, non
scalable. For each triple t in the input schema S, up to |const(SG) ∪ const(A) ∪
{:λ}|vars(t) new triples might be added to the critical instance.

The Score Approach. To tackle the problem of efficiency we present an alter-
native solution based on query rewriting, called score. This solution uses a
small instance called the sandbox instance which is obtained by taking all triple
patterns of our schema graph SG and substituting all variables with the same
new IRI :λ. This results in an instance with the same number of triples as SG.
The main property that allows us to perform this simplification is the fact that
variables in SG are effectively independent from each other. Formally, a sandbox
graph S(S) is the set of triples:

{t| triple t with t[i] =
{

:λ if tS [i] is a variable,
tS [i] else

}

, tS ∈ SG, i ∈ τ}

Contrary to the construction of the critical instance, in our sandbox graph, vari-
ables are never substituted with literals (we will deal with RDF literal peculiarities
in a post-processing step). Also notice that S(S) ∈ I(S) and S(S) ⊆ C(S, r). As
an example, consider the sandbox graph S(S1) of schema S1 from Sect. 3.1:

:λ sn:observedProperty :COLevel .

:λ sn:observedProperty :TagID .

:λ rdf:type sn:Observation .

:λ rdf:type :PersonnelTag .

:λ :carriedBy :λ .

:λ sn:hasFeatureOfInterest :λ .

:λ sn:hasResult :λ .

The critical instances C(S1, r1), C(S1, r2) and C(S1, r3) from our example
would contain all the triples in S(S1), plus any other triple obtained by sub-
stituting some variables with constants other than :λ. For example, C(S1, r2)
would contain the triple [:λ, sn:hasResult, :OffLimitArea]}.
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In order to account for all mappings produced when evaluating A on C(S, r)
we will need to evaluate a different query on our sandbox instance, essentially by
appropriately rewriting A into a new query. To compute mappings, we consider
a rewriting Q(A) of A, which expands each triple pattern tA in A into the union
of the 8 triple patterns that can be generated by substituting any number of
elements in tA with :λ. Formally, Q(A) is the following conjunction of disjunc-
tions of triple patterns, where

∧
and

∨
denote a sequence of conjunctions and

disjunctions, respectively:

Q(A) =
∧

t∈A

(
∨

x1∈{:λ,t[1]}
x2∈{:λ,t[2]}
x3∈{:λ,t[3]}

〈x1, x2, x3〉
)

When translating this formula to SPARQL we want to select mappings that
contain a binding for all the variables in the query, so we explicitly request all
of them in the select clause. For example, consider graph pattern A1 = {〈?v3,
:a, ?v4〉, 〈?v3, :b, :c〉}, which is interpreted as query:

SELECT ?v3 ?v4 WHERE { ?v3 :a ?v4 . ?v3 :b :c }

Query rewriting Q(A1) then corresponds to:

SELECT ?v3 ?v4 WHERE {

{ {?v3 :a ?v4} UNION {:λ :a ?v4} UNION {?v3 :λ ?v4}

UNION {?v3 :a :λ} UNION {:λ :λ ?v4} UNION {:λ :a :λ}
UNION {?v3 :λ :λ} UNION {:λ :λ :λ} }

{ {?v3 :b :c} UNION {:λ :b :c} UNION {?v3 :λ :c}
UNION {?v3 :b :λ} UNION {:λ :λ :c} UNION {:λ :b :λ}
UNION {?v3 :λ :λ} UNION {:λ :λ :λ} } }

Below we treat Q(A) as a union of conjunctive queries, or UCQ [1], and denote
q ∈ Q(A) to be a conjunctive query within it.

We should point out that in this section we present a generic formulation
of both approaches that is applicable to schema graphs having variables in the
predicate position. If variables cannot occur in this position, such as in the
triplestore schemas representation of SHACL constraints, these approaches could
be optimised; for example by removing from Q(A) all the triples patterns that
have :λ in the predicate position.

Having defined how the critical and score approaches compute a set of
mappings, we now describe the details of the last two phases required to compute
a basic schema consequence.

Filtering the Mappings. This phase deals with processing the mappings com-
puted by either critical or score, namely �A�C(S,r) or �Q(A)�S(S). It should
be noted that it is not possible to simply apply the resulting mappings on the
consequent of the inference rule, as such mappings might map a variable in the
subject or predicate position to a literal, thus generating an invalid triple pat-
tern. Moreover, it is necessary to determine which variables should be included
in the no-literal set of the basic schema consequence. The schema S′ (output of
our approaches) is initialised with the same graph and no-literal set as S, and
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with an empty set of existential rules. Formally S′ is initialised to 〈SG, SΔ, ∅〉.
We then incrementally extend S′ on a mapping-by-mapping basis until all the
mappings have been considered, at which point, S′ is the final output of our
basic schema expansion.

For each mapping m in �A�C(S,r) or �Q(A)�S(S), we do the following. We
create a temporary no-literal set Δm. This set will be used to keep track of which
variables could not be bound to any literals if we evaluated our rule antecedent
A on the instances of S, or when instantiating the consequence of the rule. We
initialise Δm with the variables of our inference rule A → C that occur in the
subject or predicate position in some triple of A or C, as we know that they
cannot be matched to, or instantiated with literals.

We then consider the elements that occur in the object position in the triples
tA of A. We take all the rewritings tq of tA in Q(A) (if using critical, it would
be enough to consider a single rewriting tq with tq = tA). Since the mapping m
has been computed over the canonical instance (S(S) or C(S, r) depending on
the approach), we know that there exists at least one tq such that m(tq) belongs
to the canonical instance. We identify the set of schema triples tS ∈ S that model
m(tq), for any of the above tq. Intuitively, these are the schema triples that enable
tA, or one of its rewritings, to match the canonical instance with mapping m.
If tA[3] is a literal l, or a variable mapped to a literal l by m, we check if there
exists any tS from the above such that tS [3] = l or tS [3] is a variable that allows
literals (not in SΔ). If such a triple pattern does not exist, then m(A) cannot
be an instance of S since it has a literal in a non-allowed position, and therefore
we filter out m. If tA[3] is a variable mapped to :λ in m, we check whether in
any of the above tS , tS [3] is a variable that allows literals (not in SΔ). If such tS

cannot be found, we add variable tA[3] to Δm. Intuitively, this models the fact
that tA[3] could not have been bound to literal elements under this mapping.
Having considered all the triples tA ∈ A we filter out mapping m if it binds any
variable in Δm to a literal. If m is not filtered out, we say that inference rule r
is applicable, and we use m to expand S′.

Schema Expansion. For each mapping m that is not filtered out, we compute
the substitution sm, which contains all the bindings in m that map a variable to
a value other than :λ, and for every binding ?v → :λ in m, a variable substitution
?v →?v∗ where ?v∗ is a new variable. We then add triple patterns sm(m(C))
to S′G and then add the variables sm(Δm) ∩ vars(S′G) to S′Δ. Although the
schema consequences produced by score(S, r) and critical(S, r) might not
be identical, they are semantically equivalent (i.e. they model the same set of
instances). This notion of equivalence is captured by Theorem 1.

Theorem 1. For all rules r : A → C and triplestore schemas S, I(score(S, r))
= I(critical(S, r)).

The score approach (and by extension critical, via Theorem 1) is sound and
complete. The following theorem captures the this notion by stating the semantic
equivalence of score(S, r) and r(S). For our proofs, we refer the reader to our
Appendix (see footnote 1).
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Theorem 2. For all rules r : A → C and triplestore schemas S, I(score(S, r))
= I(r(S)).

Termination. It is easy to see that our approaches terminate since our data-
log rules do not contain existential variables, and do not generate new IRIs or
literals (but just new variable names). After a finite number of iterations, either
approach will only generate isomorphic (and thus equivalent) triple patterns.

5 Computing the Existential-Preserving Schema
Consequence

In order to compute the existential-preserving schema consequence we are going
to build on the result of our simple schema consequence. Recall the defini-
tion of schema consequences from Sect. 3.2 and note that given a schema S =
〈SG, SΔ, S∃〉 and a set of inference rules R such that con(S,R) = 〈S′G, S′Δ, ∅〉
then conex(S,R) = 〈S′G, S′Δ, S′∃〉 for some S′∃ ⊆ S∃; that is, the output schema
graph and no-literal set of the existential-preserving schema consequence are the
same as those of the simple one.

Our first step is to compute the schema graph and no-literal set of the exis-
tential preserving schema consequence, as in Sect. 4. Next, and in the rest of
this section, we want to compute the set of existential rules S′∃ that are still
valid on all possible “closure” instances (instances of the original schema closed
under R), or complementary, those existential rules that are violated on some
“closure” instance.

Starting from an instance I of S, which by definition satisfies S∃, an existen-
tial rule might become violated by the inference rules due to new facts added by
the closure. Thus, the aim of the algorithm is to find an instance I of S, that can
“trigger” an existential rule a →∃ c by mapping its antecedent a on clos(I,R).
For every existential rule, we want to construct I in a “minimal” way, so that if
clos(I,R) satisfies the rule e then there is no proper subset I ′ of I which is still
an instance of S and does not satisfy the rule. By considering all such minimal
instances I for every existential rule, we can determine if the rule is violated or
not on any potential closure of an instance.

We can achieve finding these violating instances if they exist, intituitively, by
starting from triples that are: (1) groundings of the inference rules’ antecedents;
(2) instances of the original schema S; and (3) which produce, via the closure,
a fact on which we can map a. To find the minimal number of inference rules’
antecedents that we have to ground, we can reason “backwards” starting from
an inference rule antecedent A whose consequent can trigger e, and compute
inference rules’ antecedents that can compute A. We have implemented this
backward-chaining reasoning in a way similar to query rewriting in OBDA [5],
and the Query-Sub-Query algorithm in datalog [1]. We don’t provide the specifics
of the algorithm but emphasize that it terminates by relying on a notion of
minimality of the rewritings produced. A rewriting produced by our algorithm is
essentially a “transitive” antecedent via our inference rules, which can produce A.
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Algorithm 1. Computation of the existential rules in conex(S,R)
1: procedure retainedExistentials(S : 〈SG, SΔ, S∃〉, R)
2: V ← ∅

3: for each e : a →∃ c ∈ S∃ do
4: for each r : A → C ∈ R do
5: if �Q(a)�S(C) �= ∅ then
6: W ← all rewritings of the antecedent of r : A → C with rules R
7: for each w : Aw → C ∈ W do
8: Mw ← �Q(Aw)�S(S)

9: for each mw ∈ Mw do
10: m̃w ← all mappings in mw that do not map a variable to :λ
11: g ← mapping from the vars(m̃(Aw)) to new IRIs
12: Ig ← g(m̃(Aw))

13: Ig′ ← ∅

14: while Ig �= Ig′
do

15: Ig′ ← Ig

16: for each e′ : a′ →∃ c′ ∈ S∃ do
17: Me′ ← �Q(a′)�S(Ig)

18: for each m′ ∈ Me′
do

19: if �Q(m′(c′))�S(Ig) �= ∅ then
20: ge ← mapping from vars(m′(c)) to new IRIs
21: Ig ← Ig ∪ ge(m′(c))

22: Ig ← clos(Ig, R)
23: MI ← �Q(a)�S(Ig)

24: for each mI ∈ MI do
25: if �Q(mI(c))�S(Ig) �= ∅ then
26: V ← V ∪ {e}

return S∃ \ V

By instantiating these rule antecedents in one rewriting, that is also an instance
of 〈SG, SΔ, ∅〉, and “closing” it existentially3 with S∃ we produce a “minimal”
instance of the original schema on the closure of which we know we can find A.
This A is the antecedent of an inference rule that can infer facts matching the
antecedent of e, and thus, after applying this rule, we can check the satisfaction
or violation of e. Our rewritings’ groundings are representative of all possible
instances whose closure can lead to a fact that the antecedent of e maps to. If
e is valid in all these instances then e can not be violated in any closure of an
instance of S, and thus we retain it from S∃.

The pseudocode for our algorithm can be seen in Algorithm1. For each exis-
tential rule e we consider each inference rule r : A → C such that inferring C
could trigger e (lines 3–5). We then compute all the rewritings W of A by means
of backward-chaining the rules in R. For each such rewriting Aw, we want to
see if we can match it on the instances of S. We do so by reusing the score
approach, computing the set of mappings Mw = �Q(Aw)�S(S). If Mw is empty,

3 For this step we implement a version of the Chase algorithm [4].
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then there is no instance of S on which Aw would match. Otherwise, we consider
whether this potential match could violate the existential rule e (lines 10–26).
For each mapping mw ∈ Mw we compute the instance Ig, grounding of Aw, by
first applying to Aw all mappings in mw that do not map a variable to :λ, and
then mapping any remaining variable to new IRIs (lines 10–12). To make sure
that Ig is an instance of S we perform the Chase on Ig using the existential
rules. Lines 13 to 21 exactly implement the well-known Chase algorithm [4] to
compute existential closure using our own score approach. Finally, we compute
the closure on Ig with the inference rules R and, if it violates e, we add e to the
set V of the existential rules that can be violated (lines 22–26). The output of
our algorithm (S′∃) is S∃\V .

6 Experimental Evaluation

We developed a Java implementation of our algorithms. This allowed us to test
their correctness with a number of test cases, and to assess their scalability
using synthetic schemas of different sizes. We present here two experiments.
In the first, we compare the time to compute the simple schema consequence,
on different sized schemas, using the score and critical approaches. In the
second, we show the overhead in computational time to compute the existential-
preserving schema consequence. Since this overhead is the same, regardless of
which approach we use to compute the simple schema consequence, we only
consider score in this experiment.

We developed a synthetic schema and an inference rule generator that is con-
figurable with 8 parameters: πC , |P |, |U |, |L|, |SG|, |R|, |S∃|, nA, which we now
describe. To reflect the fact that triple predicates are typically defined in vocab-
ularies, our generator does not consider variables in the predicate position. Ran-
dom triple patterns are created as follows. Predicate IRIs are randomly selected
from a set of IRIs P . Elements in the subject and object position are instan-
tiated as constants with probability πC , or else as new variables. Constants in
the subject positions are instantiated with a random IRI, and constants in the
object position with a random IRI with 50% probability, or otherwise with a
random literal. Random IRIs and literals are selected, respectively, from sets U
and L (U ∩ P = ∅). We consider chain rules where the triples in the antecedent
join each other to form a list where the object of a triple is the same as the
subject of the next. The consequent of each rule is a triple having the subject of
the first triple in the antecedent as a subject, and the object of the last triple as
object. An example of such inference rule generated by our experiment is: {〈?v0,
:m1, ?v1〉, 〈?v1, :m3, ?v2〉} → {〈?v0, :m2, ?v2〉} In each run of the experiment we
populate a schema S = 〈SG, SΔ, S∃〉 and a set of inference rules R having nA

triples in the antecedent. To ensure that some inference rules in each set are
applicable, half of the schema is initialized with the antecedents triples of ran-
domly selected inference rules. The other half is populated with random triple
patterns. Each existential rule of schema S is created as follows. Its antecedent
is selected randomly from all the consequents of the inference rules, while its
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Fig. 4. (a) Average time to compute con(S, R) using score and critical as the schema
size |SG| grows. The other parameters are: |P | = 1.5|SG|, πC = 0.1, |U | = |L| = |SG|,
|R| = 4, nA = 2, |S∃|= 0. (b) Average time to compute con(S, R) and conex(S, R)
using the score approach as the number of existential rules |S∃| increases. The other
parameters are |S| = 100, |P | = 110, πC = 0.1, |U | = |L| = |SG|, |R| = 20, nA = 2.

consequence is selected randomly from all the antecedents of all the inference
rules. This is done to ensure the relevance of the existential rules, and increase
the likelihood of interactions with the inference rules. We initialize SΔ with
all the variables in the subject and predicate position in the triples of S. The
code for these experiments is available on GitHub (see footnote 2). We run the
experiments on a standard Java virtual machine running on Ubuntu 16.04 with
15.5 GB RAM, an Intel Core i7-6700 Processor. Average completion times of
over 10 min have not been recorded.

The results of the first experiment are displayed in Fig. 4(a). This figure shows
the time to compute the schema consequence for different schema sizes |S| using
score and critical. The parameters have been chosen to be small enough to
accommodate for the high computational complexity of the critical approach.
This figure shows that score is orders of magnitude faster, especially on large
schema sizes. The critical approach, instead, does not scale (times out) beyond
schemas with over 33 triples. Figure 4(b) shows the increase of computation time
as schemas with more existential rules are considered. The results of the second
experiment show how our approach to compute the existential-preserving schema
consequence can scale to a large number of existential rules on a large input
schema in a matter of seconds.

7 Conclusion

SHACL constraints can can be used to define the schema of graph datasets.
However, the application of inference rules could cause the violation of such
constraints, and thus require a change in the schema. In this paper we address
the problem of computing the schema consequence of a schema S and a set
of rules R; that is, the evolved schema of the graphs, instances of S, closed
under inference rules R. To address this problem we introduced our notion of
a triplestore schema, which captures a fragment of SHACL, and can also be
used as a standalone logical tool to model properties of RDF graphs in general.
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We addressed the problem incrementally, first by computing a simple schema
consequence that does not consider existential constraints. We presented two
approaches to compute the simple schema consequence. The first is based on the
pre-existing concept of a critical instance, while the second is a novel approach
based on query rewriting and which our experiments showed to be significantly
more efficient. We have then provided an approach to deal with existential con-
straints based on backward-chaining reasoning, which computes what we call
an existential-preserving schema consequence. This can be considered the final
output of our approach, which a domain expert can use to update the schema
of an RDF dataset, if they choose to retain all the inference rules considered.
The machinery we developed in the form of the simple schema consequence, can
also have other applications, such as determining which rules are applicable on
a dataset and, if they are, what kind of triples they can infer.
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