The Long-Lived Nuclear Singlet State of ^{15}N-Nitrous Oxide in Solution

Giuseppe Pileio, Marina Carravetta and Malcolm H. Levitt*

School of Chemistry, University of Southampton, SO17 1BJ, Southampton, Uk.

RECEIVED DATE (automatically inserted by publisher); mhl@soton.ac.uk

Nuclear singlet states may have lifetimes T_s that exceed the conventional magnetization relaxation time T_1 by an order of magnitude111. Applications of these states to the NMR measurements of slow molecular diffusion, chemical exchange, and the transport of hyperpolarized nuclear spin order, have been demonstrated111.

So far, long-lived nuclear singlet states have only been observed for proton pairs. We now demonstrate an extraordinarily long lifetime (T_s) of \sim26 minutes for the nuclear spin singlet of $^{15}\text{N}_2$-nitrous oxide (dinitrogen monoxide, N_2O) in solution. This result has high potential importance since nitrous oxide is soluble in many important fluids such as water, oil, and blood. It is used routinely as a food additive, a gas propellant, and an anesthetic.

Doubly-labeled $^{15}\text{N}_2\text{O}$ gas, purchased from CK-gas (UK), was dissolved in a degassed solution of DMSO-d_6 at a pressure of \sim3.5 bar. The concentration of $^{15}\text{N}_2\text{O}$ in solution was \sim0.3 M as determined by comparison of the ^{15}N signal strength with that from an external standard of ^{15}N-benzamide.

The ^{15}N sites in $^{15}\text{N}_2\text{O}$ are inequivalent and form a AX spin system with a difference in chemical shifts of $\Delta\delta=82.3$ ppm and a $^{15}\text{N}^{15}\text{N}$ scalar coupling $J=8.1$ Hz. The ^{15}N NMR spectrum, obtained in a magnetic field $B_{\text{high}}=7.0463$ T, is shown in Figure 1a.

The slow relaxation of singlet states is revealed by suppressing their interconversion with the triplet states, either by using a resonant radiofrequency field146 or by reducing the static magnetic field to a very low value1,2. The radiofrequency method is not feasible for $^{15}\text{N}_2\text{O}$ because of the large ^{15}N chemical shift difference. The field-cycling procedure shown in Figure 2 was therefore used. This is a modified version of the method used in ref. [1].

The spin system is allowed to reach thermal equilibrium, and two strong 90° pulses with a relative phase of 90° are applied at the mean chemical shift frequency of the two ^{15}N sites. The delay between the pulses, $\tau_\text{F}=0.198$ ms, was chosen so that the transverse magnetization vectors of the two ^{15}N sites precess through 180° relative to each other. The two pulses act as a selective 180° pulse on one of the ^{15}N sites and lead to a spin density operator ρ of the form:

$$\rho_3 = \hat{S}_0 \left(|S_0 \rangle \langle T_0 | - |T_0 \rangle \langle S_0 | \right)$$

where the two sites are denoted j and k and the selective inversion is assumed to act on site j. In this and the following equations, the subscript refers to a time point in Figure 2.

The sample is transported out of the magnetic field by activating a stepper motor to wind up a string attached to the sample holder. The transport process takes $\tau_\text{F}=40$ s and transports the sample into a region of low magnetic field, $B_{\text{low}} \sim 2$ mT, estimated by a Hall effect device. As shown in ref.[2], slow adiabatic transport converts the population of each high field state into that of the corresponding low-field state, leading to a density operator of the form:

$$\rho_3 = \hat{S}_0 \left(|S_0 \rangle \langle T_0 | - |T_0 \rangle \langle S_0 | \right)$$

where the low-field eigenstates are $|S_0\rangle=2^{-1/2}(|\alpha\beta\rangle-|\beta\alpha\rangle)$, $|T_0\rangle=|\alpha\alpha\rangle$, $|T_\text{F}\rangle=2^{-1/2}(|\alpha\beta\rangle+|\beta\alpha\rangle)$ and $|T_\beta\rangle=|\beta\beta\rangle$. The sample is left in the low-field region for a variable time τ_F. During the first few minutes, the three triplet populations equilibrate with each other on a timescale set by the relaxation constant T_1. The density operator after several minutes in low magnetic field is therefore given approximately by

$$\rho = \hat{S}_0 \left(|S_0 \rangle \langle T_0 | - \frac{1}{2} |T_+ \rangle \langle T_- | + \frac{1}{2} |T_- \rangle \langle T_+ | - \frac{1}{2} |T_0 \rangle \langle T_0 | \right)$$

Figure 1. ^{15}N spectra of $^{15}\text{N}_2\text{N}_2\text{O}$ dissolved in DMSO-d_6. (a) Conventional NMR spectrum taken using a single ^{15}N pulse in a magnetic field of 7.04T. (b) Spectrum taken using the experimental sequence in Fig.2, with $\tau_\text{F}=300$ s. (c) as in (b) but using $\tau_\text{F}=40$ min. All spectra result from the sum of 8 transients.

Figure 2. Field-cycling pulse sequence for observing the long-lived singlet state of $^{15}\text{N}_2\text{O}$. The circled numbers refer to time points mentioned in the text.
The sample is transported back into the high-field region by running the stepper motor in the opposite direction. Adiabatic transport from the density operator in Eq. [3] leads to
\[\dot{\rho}_3 = -\frac{1}{4} I_{jk} \rho_{jk} + \frac{2}{3} I_{jk} \rho_{jk} - \frac{1}{2} \hat{I} \]

When the sample is in position in high field, two strong 90° pulses with a relative phase of 45° are applied, separated by a delay \(\tau_2 = 0.099 \) ms. This acts as a selective 90° pulse on site \(j \), leading to the spin density operator
\[\dot{\rho}_3 = -\frac{1}{4} I_{jk} \rho_{jk} + \frac{2}{3} I_{jk} \rho_{jk} - \frac{1}{2} \hat{I} \]

The first operator on the right hand side shows that the resulting NMR signal contains only one of the two doublet components for site \(j \), with no signals at all for site \(k \). The experimental spectrum shown in Figure 1b has this approximate form. The advantage of this procedure is that the intensity of the single peak is 33% larger than generated in the conventional spectrum, neglecting relaxation losses.

The decay of the singlet state may be examined by increasing the low-field waiting time \(\tau_{LF} \), while keeping all other events constant. The results are shown by the filled circles in Figure 3. The decay is exponential in the regime \(\tau_{LF} > 250 \) s, with a decay time constant \(T_\phi = 1583 \pm 57 \) s. The earlier time points are perturbed by the equilibration of the triplet populations, as explained above. Figure 1c shows the presence of a significant NMR signal even after waiting 40 minutes in low magnetic field.

Figure 3 also shows the decay of conventional spin magnetization in the same low magnetic field. This was estimated simply by allowing the magnetization to equilibrate in high field, and then transporting the sample out of the magnet and back in again, after waiting for a variable time \(\tau_{LF} \) in low field. A 90° pulse is applied in high field to measure the remaining magnetization. The relaxation time constant for \(^{15}N \) magnetization is determined to be \(T_1 = 197 \pm 5 \) s in the low magnetic field. The small residual signal at long waiting times is due to partial recovery of magnetization during the transport into the magnet.

The relaxation of \(^{15}N \) nuclei in \(^{15}N_2\)O is expected to be caused by a superposition of spin-rotation, chemical shift anisotropy, intramolecular dipole-dipole coupling, and external random field mechanisms. In low magnetic field, the chemical shift anisotropy mechanism is absent, and the intramolecular dipole-dipole coupling does not cause singlet relaxation. If a pure spin-rotation mechanism is assumed, for the sake of simplicity, then the ratio of \(T_\phi \) and \(T_1 \) is expected to be given by
\[\frac{T_\phi}{T_1} = \frac{C_j + C_k}{2(C_j - C_k)^2} \]

where \(C_j \) and \(C_k \) are the spin-rotation tensors for the two \(^{15}N \) sites. This equation is derived elsewhere and takes into account the strong cross-correlation of the spin-rotation interactions in this linear molecule. The values of the tensors are known leading to an expected ratio \(T_\phi/T_1 = 11.4 \). The observed ratio \(T_\phi/T_1 = 8.0 \) is qualitatively consistent with this. The remaining discrepancies are attributed to contributions from other relaxation mechanisms.

We are now exploring the dependence of the singlet relaxation time on the solvent and the level of paramagnetic impurities. Experiments on bodily fluids such as blood are in progress for assessing the feasibility of hyperpolarized \(^{15}N \)-nitrous oxide imaging in medical applications. The long singlet relaxation time of \(^{15}N \)-nitrous oxide should facilitate the transport of the agent to remote parts of the subject while minimizing the loss of nuclear spin order. The relaxation times are expected to depend on blood oxygenation levels, providing a strong contrast mechanism. Applications are also anticipated for following the diffusion and flow of materials such as oil and food substances.

Acknowledgment. This work is supported by EPSRC and URF/Royal Society. The authors wish to thank C. Godden, R. Dalley, J. James, A. Glass, O. G. Johannessen and H. S. Vinay Deepak for experimental help. We also thank Eric Hughes (Nestlé, Switzerland) for stimulating our interest in the NMR of nitrous oxide.

References
A 15N nuclear singlet lifetime of over 26 minutes has been observed in a solution of 15N$_2$O, by using a field-cycling NMR pulse sequence. This observation suggests applications of hyperpolarized 15N$_2$O in medical imaging and for flow and diffusion studies.