Endogenous growth mechanism as a source of medium term fluctuations in the labour market - application to the US economy

Michał Gradzewicz

April 8, 2008

National Bank of Poland and Warsaw School of Economics
Behaviour of unemployment in US

M. Gradzewicz - Sources of medium term fluctuations
Definition of the medium term cycle

- **Medium term cycle** - fluctuations with periodicity between 1 and 50 years (following Comin & Gertler, 2005):
 - **High frequency component** (business cycle), with periodicity between 1 and 8 years
 - **Medium frequency component**, with periodicity between 8 and 50 years
Unemployment in US - medium term cycle

M. Gradzewicz - Sources of medium term fluctuations
GDP in US - medium term cycle

M. Gradzewicz - Sources of medium term fluctuations
Motivation

• There is a need to create models of medium term fluctuations, stressed by Blanchard (1997) and Solow (2000)

• Important work of Comin and Gertler (2005)
 – endogenous growth via changes in the numbers of available products - Romer (1990)
 – usual sources of business cycle fluctuations induce also medium term fluctuations
 – focus on goods and capital markets, leaving the floor open to research on labour market

• Hall (2005) documented medium term fluctuations of labour market variables

• Possible reasons:
 – hysteresis (e.g. insider-outsider theory of Blanchard, Summers, 1987),
 – demographics - baby-boom generations, Flaim (1990),
 – endogenous growth
• **Questions**

1. Are fluctuations in medium term frequencies substantial?
2. Can fluctuations in both goods and labor market be explained by the same sources?
3. Can endogenous growth mechanism explain a large part of variation in medium term fluctuations?

• **Methodology**

 – RBC
 – search-matching on the labor market (DMP)
 – endogenous growth (Romer, 1990)
 – technology shock
 – (wage rigidity)
Data

US Economy

<table>
<thead>
<tr>
<th></th>
<th>Standard deviations</th>
<th>Correlation with output</th>
<th>Correlation with output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.039</td>
<td>0.016</td>
<td>0.035</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.028</td>
<td>0.008</td>
<td>0.027</td>
</tr>
<tr>
<td>Investments</td>
<td>0.103</td>
<td>0.069</td>
<td>0.076</td>
</tr>
<tr>
<td>Interest rate</td>
<td>0.005</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>Wages</td>
<td>0.034</td>
<td>0.010</td>
<td>0.032</td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.225</td>
<td>0.145</td>
<td>0.168</td>
</tr>
<tr>
<td>Vacancies</td>
<td>0.208</td>
<td>0.131</td>
<td>0.172</td>
</tr>
<tr>
<td>Employment</td>
<td>0.013</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>Labour share</td>
<td>0.014</td>
<td>0.008</td>
<td>0.012</td>
</tr>
<tr>
<td>Job finding probability</td>
<td>0.063</td>
<td>0.039</td>
<td>0.050</td>
</tr>
</tbody>
</table>

- **Unemployment-vacancies correlation:**
 - [2, 32] is -0.9
 - [32, 200] is -0.8
Households

- Optimization problem

\[
\max_{C_t, S_t, I_t, K_{t+1}} \quad E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\zeta}}{1-\zeta} \right)
\]

subject to:

\[
C_t + I_t + L_t + T_t + \Pi_t = w_t N_t + b_t U_t + r_t K_t + R_t L_{t-1}
\]

\[
K_{t+1} = (1 - \delta) K_t + I_t
\]
Labour market

- Matching technology:

\[M_t = m(U_t, V_t) = \sigma_m U_t^\sigma V_t^{1-\sigma} \tag{4} \]

- The probability \(q_t \) that a firm fills a vacancy in period \(t \): \(q_t = \frac{M_t}{V_t} \)

- The probability \(s_t \) that any worker looking for a job is matched: \(s_t = \frac{M_t}{U_t} \)

- Employment:

\[N_t = (1 - \rho)N_{t-1} + M_{t-1} \tag{5} \]

- Unemployment:

\[U_t = 1 - N_t - \rho N_t = 1 - (1 - \rho)N_t \tag{6} \]
Final good producers

Assumption: competitive market

- Optimization problem:

\[
\max_{y_t(i)} P_t Y_t - \int_0^{A_t} p_t(i) y_t(i) \, di \quad (7)
\]

subject to

\[
Y_t = \left(\int_0^{A_t} y(i)^{\frac{1}{\mu}} \, di \right)^\mu
\]

\[
\quad (8)
\]
Intermediate good producers

Assumption: monopolistic competition

- Optimization problem:

$$\max_{n_t(i), v_t(i), k_t(i), p_t(i)} \sum_{t=0}^{\infty} \Lambda_{0,t} \left[\frac{p_t(i)}{P_t} y_t(i) - w_t(i) n_t(i) - c(v_t(i), w_t(i)) - r_t(i) k_t(i) \right]$$

subject to:

$$y_t(i) = z_t k_t(i)^\alpha n_t(i)^{1-\alpha}$$

$$n_t(i) = (1 - \rho) n_{t-1}(i) + q_{t-1} v_{t-1}(i)$$

$$y_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\frac{\mu}{\mu-1}} Y_t$$
Wage setting

- The value of a job for a firm:
 \[J_t(i) = mc_t(i)f_{n,t}(i) - w_t(i) + E_t\Lambda_{t,t+1}[(1 - \rho)J_{t+1}(i) + \rho\Gamma_{t+1}(i)] \] (9)

- The value of a vacancy for a firm:
 \[\Gamma_t(i) = c(v_t(i), w_t(i)) + E_t\Lambda_{t,t+1}[(1 - q_t)\Gamma_{t+1}(i) + q_tJ_t(i)] = 0 \]

- The value of a job for a worker:
 \[W_t(i) = w_t(i) + E_t\Lambda_{t,t+1}[(1 - \rho)W_{t+1}(i) + \rho U_{t+1}] \] (10)

- The value of being unemployed:
 \[U_t = b_t + E_t\Lambda_{t,t+1}[s_tW_{t+1}(i) + (1 - s_t)U_{t+1}] \] (11)

- Negotiations (Nash bargaining): \[\max_{w_t(i)} [J_t(i)^{1-\eta} (W_t(i) - U_t)^{\eta}] \]
R&D Sector

Assumption: competitive market

- The value of a unit of a new intermediate good:

\[v^I_t(p) = \pi_t + E_t \Lambda_{t,t+1} v^I_{t+1}(p) \]

- Production technology:

\[A_{t+1}(p) - (1 - \phi) A_t(p) = \phi_l L_t(p) \]

where \(\phi_l = \chi A_t L_t K_t^{-\psi-1} \) assures 1) positive spillover effect, 2) congestion effect, 3) stationarity.

- Each innovative firm \(p \) maximizes its profits:

\[\pi^I_t(p) = E_t \Lambda_{t,t+1} v^I_{t+1}(p) [A_{t+1}(p) - A_t(p)] - L_t(p) \]

subject to the technology of production (12).
Government and resource constraint

• No possibility to accumulate debt:

\[b_t U_t = T_t \] \hspace{1cm} (14)

\[b_{t+1} = \gamma_b b_t \]

• The resource constraint in the final goods market:

\[Y_t = C_t + I_t + \int_0^1 L_t(p)dp + \kappa w_t \int_0^{A_t} v_t(i)di \] \hspace{1cm} (15)
Steady state

Steady state consistent with balanced growth path need to have the following properties:

- stationary variables: R, r, q, s, θ, Z;
- variables growing at a rate γ_Y: Y, C, V^l, L, K;
- variables growing at a rate γ_N: U, N, V, M;
- variables growing at a rate γ_w: w, b;
- variables growing at a rate γ_A: A;
- and some steady state restrictions (Balanced Growth Path).
Calibration

Most important parameters of the model:

- Elasticity of production with respect to capital: $\alpha = 0.33$ (Prescott, 1986)
- Elasticity of intertemporal substitution in utility function $\zeta = 2$ (Greenwood, Hercovitz, Huffman, 1988)
- Job destruction rate $\rho = 0.1$ (Shimer, 2007)
- Steady state employment $\bar{U} = 0.056$ (US data)
- Probability that a vacancy will be filled $\bar{q} = 0.7$ (Cooley, Quadrini, 1999)
- Probability that a worker will find a job $\bar{s} = 0.63$ (Shimer, 2007 + steady state calculations)
- Replacement ratio 0.5 (Hall, 2005 + Shimer, 2005)
- Degree of real wage rigidity $\alpha_w = 0.086$ (Christoffel, Linzert, 2005, wages-output correlation)
Discussion

• Basic version of the model:
 – pattern of medium vs short term fluctuations - roughly matched
 – goods market - well depicted
 – labor market - too little volatility, too high wages-output correlation

• Extension I (additional shock to the matching technology - Beveridge curve)
 – solve the volatility problem (even more - labor market is too volatile)
 – wages-output correlation still too high
 – destroys the Beveridge Curve

• Extension II - Wage rigidity (Hall’s, 2005 notion of a wage norm):

\[w_t = \alpha_w w_t^n + (1 - \alpha_w) w_{t-1} \]
Impulse responses

M. Gradzewicz - Sources of medium term fluctuations
Time series generated by the model
A. US Economy

<table>
<thead>
<tr>
<th></th>
<th>Standard deviations</th>
<th>Correlation with output</th>
<th>Autocorrelation cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.039</td>
<td>0.016</td>
<td>0.035</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.028</td>
<td>0.008</td>
<td>0.027</td>
</tr>
<tr>
<td>Investments</td>
<td>0.103</td>
<td>0.069</td>
<td>0.076</td>
</tr>
<tr>
<td>Interest rate</td>
<td>0.005</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>Wages</td>
<td>0.034</td>
<td>0.010</td>
<td>0.032</td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.225</td>
<td>0.145</td>
<td>0.168</td>
</tr>
<tr>
<td>Vacancies</td>
<td>0.208</td>
<td>0.131</td>
<td>0.172</td>
</tr>
<tr>
<td>Employment</td>
<td>0.013</td>
<td>0.008</td>
<td>0.010</td>
</tr>
<tr>
<td>Labour share</td>
<td>0.014</td>
<td>0.008</td>
<td>0.012</td>
</tr>
<tr>
<td>Job finding probability</td>
<td>0.063</td>
<td>0.039</td>
<td>0.050</td>
</tr>
</tbody>
</table>

B. Model Economy

<table>
<thead>
<tr>
<th></th>
<th>Standard deviations</th>
<th>Correlation with output</th>
<th>Autocorrelation cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>0.039</td>
<td>0.016</td>
<td>0.035</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.021</td>
<td>0.003</td>
<td>0.021</td>
</tr>
<tr>
<td>Investments</td>
<td>0.113</td>
<td>0.056</td>
<td>0.097</td>
</tr>
<tr>
<td>Interest rate</td>
<td>0.001</td>
<td>0.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Wages</td>
<td>0.030</td>
<td>0.005</td>
<td>0.030</td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.223</td>
<td>0.150</td>
<td>0.176</td>
</tr>
<tr>
<td>Vacancies</td>
<td>0.127</td>
<td>0.107</td>
<td>0.076</td>
</tr>
<tr>
<td>Employment</td>
<td>0.014</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td>Labour share</td>
<td>0.011</td>
<td>0.008</td>
<td>0.007</td>
</tr>
<tr>
<td>Job finding probability</td>
<td>0.097</td>
<td>0.071</td>
<td>0.066</td>
</tr>
</tbody>
</table>
Comparison with the benchmark model - no endogenous growth

A. Model with rigid wages and endogenous growth

<table>
<thead>
<tr>
<th></th>
<th>Standard deviations</th>
<th>Correlation with output cycle [2,200]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cycle</td>
<td>high</td>
</tr>
<tr>
<td>[2,200]</td>
<td>[2,32]</td>
<td>[32,200]</td>
</tr>
<tr>
<td>Output</td>
<td>0.039</td>
<td>0.016</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.021</td>
<td>0.003</td>
</tr>
<tr>
<td>Investments</td>
<td>0.113</td>
<td>0.056</td>
</tr>
<tr>
<td>Wages</td>
<td>0.030</td>
<td>0.005</td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.223</td>
<td>0.150</td>
</tr>
<tr>
<td>Vacancies</td>
<td>0.127</td>
<td>0.107</td>
</tr>
<tr>
<td>Labor share</td>
<td>0.011</td>
<td>0.008</td>
</tr>
</tbody>
</table>

B. Benchmark model - with rigid wages and without endogenous growth

<table>
<thead>
<tr>
<th></th>
<th>Standard deviations</th>
<th>Correlation with output cycle [2,200]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cycle</td>
<td>high</td>
</tr>
<tr>
<td>[2,200]</td>
<td>[2,32]</td>
<td>[32,200]</td>
</tr>
<tr>
<td>Output</td>
<td>0.036</td>
<td>0.017</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.018</td>
<td>0.003</td>
</tr>
<tr>
<td>Investments</td>
<td>0.116</td>
<td>0.069</td>
</tr>
<tr>
<td>Wages</td>
<td>0.028</td>
<td>0.005</td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.106</td>
<td>0.078</td>
</tr>
<tr>
<td>Vacancies</td>
<td>0.069</td>
<td>0.055</td>
</tr>
<tr>
<td>Labor share</td>
<td>0.005</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Conclusions

• There are substantial fluctuations with periodicity above 8 years, should not be regarded as trend.

• It is possible to generate medium term cycle with standard model, extended for endogenous growth considerations

• Technology shocks, when properly propagated, can be a possible reason of the medium term fluctuations in both goods and labor markets

• A sort of endogenous growth mechanism is an important ingredient of explanation of the medium term fluctuations

• The effects of monetary policy could last longer than we think, due to additional channels of monetary policy transmission