PERCUTANEOUS CORONARY INTERVENTION, WHICH WAS PIONEERED BY Grüntzig in 1977, has become the most frequently performed therapeutic procedure in medicine. The use of balloon angioplasty, which was limited by abrupt vessel closure owing to dissections and restenosis, prompted the development of stents to maintain lumen integrity. Coronary stents improved procedural safety and efficacy and eliminated the need for surgical standby. However, stent-mediated arterial injury elicited neointimal hyperplasia, leading to restenosis and the need for repeat revascularization in up to one third of patients.

Drug-eluting stents with controlled local release of antiproliferative agents have consistently reduced the risk of repeat revascularization, as compared with bare-metal stents. However, a number of reports presented at the European Society of Cardiology Congress in 2006 questioned the long-term safety of drug-eluting stents, leading to a reduction in their use, along with intense review by regulatory agencies and recommendations to extend dual antiplatelet therapy for at least 12 months. In 2007, the Journal published evidence that stents releasing sirolimus or paclitaxel, as compared with bare-metal stents, were associated with similar risks of death and myocardial infarction but with an increased, albeit small, risk of stent thrombosis beyond 1 year after stent implantation. Since then, new platforms for drug-eluting stents that are aimed at improving safety and efficacy have been developed. Drug-eluting stents are now implanted in more than 500,000 patients every year in the United States. This review provides an overview of currently available devices, summarizes evidence from randomized trials, and outlines clinical indications for use.

PLATFOMRS FOR DRUG-ELUTING STENTS

Drug-eluting stents have three components: a metallic stent platform, a polymer coating, and an antiproliferative agent (Fig. 1).

STENT PLATFORMS
Available platforms are made of stainless steel, cobalt–chrome, or platinum–chrome. Cobalt–chrome alloys provide improved radial strength and increased radiopacity, as compared with stainless steel, allowing for engineering of thinner struts with greater deliverability. Platforms made with thinner struts may result in less arterial injury and reduce the risk of restenosis, with lower thrombogenicity. Platinum–chrome alloys are used in an effort to further improve radial strength and conformability.

POLYMER COATINGS
Polymer coatings that are applied to the stent surface serve as drug carriers and permit controlled drug release. Progress in polymer technology has been aimed at decreasing local inflammatory reactions and thrombosis by improving the biocom-
patibility of polymers. Drug-eluting stents that have been approved by the Food and Drug Administration (FDA) have durable polymer coatings (Table 1). However, new platforms for drug-eluting stents feature polymers that biodegrade after drug elution, resulting in a stent surface similar to that of a bare-metal stent. These new platforms have not yet been approved by the FDA but are commonly used in clinical practice outside the United States.

ANTIPROLIFERATIVE AGENTS

Antiproliferative agents that are used for the platforms of drug-eluting stents are highly lipophilic molecules that are distributed into the arterial wall and exert either immunosuppressive effects (inhibitors of mammalian target of rapamycin) or antiproliferative effects (paclitaxel) on smooth-muscle cells (Fig. 1).

FDA-APPROVED DRUG-ELUTING STENTS

Early-generation stents released sirolimus or paclitaxel and had stainless-steel platforms, whereas new-generation stents release everolimus or zotarolimus and feature cobalt–chrome or platinum–chrome platforms with thinner strut thickness and more biocompatible, durable polymer coatings. These new-generation stents have almost completely replaced paclitaxel-eluting stents in clinical practice, and sirolimus-eluting stents are no longer manufactured.

VASCULAR BIOLOGY

ARTERIAL HEALING AFTER STENT IMPLANTATION

While providing inhibition of neointimal hyperplasia, drug-eluting stents should permit physiological arterial healing with smooth and homogeneous endothelial coverage of all stent struts. This may be overbalanced by an excessive antiproliferative effect and persistence of stent components (e.g., polymer coatings), leading to chronic inflammation and impaired arterial healing, which may explain the attendant risk of thrombotic events (Fig. 2).

Early-generation sirolimus- and paclitaxel-eluting stents were associated with delayed arterial healing — manifested as incomplete endothelialization of stent struts, vessel remodeling, and persistent fibrin and platelet deposition — and with premature neatherosclerosis. Improved endothelial coverage has been reported after implantation of everolimus- and zotarolimus-eluting stents in studies in animals and in clinical studies with intracoronary imaging.

STENT THROMBOSIS

Stent thrombosis, which is a rare but serious complication of treatment with both bare-metal stents and drug-eluting stents, has been related to procedural factors and inadequate platelet inhibition during the early postimplantation period, as well as to chronic inflammation and delayed arterial healing during late follow-up. Early studies used different definitions of stent thrombosis, making comparisons across reports challenging. The Academic Research Consortium subsequently provided standardized criteria for the definition of stent thrombosis according to the time of occurrence (i.e., early, ≤1 month; late, >1 month to ≤1 year; or very late, >1 year) and the degree of diagnostic certainty (i.e., definite, probable, or possible).

EFFICACY AND SAFETY OF DRUG-ELUTING STENTS

Pivotal trials investigating drug-eluting stents are summarized in Table S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org.

STENTS RELEASING SIROLIMUS OR PACLITAXEL

In a network meta-analysis (an analysis of studies of multiple interventions that makes use of direct and indirect comparison) involving 38 trials and more than 18,000 patients, there was a marked reduction in the rate of repeat revascularization with both sirolimus-eluting stents and paclitaxel-eluting stents, as compared with bare-metal stents. On the basis of this analysis, 7 patients (95% confidence interval [CI], 6 to 8) would need to be treated with sirolimus-eluting stents and 8 patients (95% CI, 7 to 10) with paclitaxel-eluting stents in order to prevent one repeat revascularization, as compared with bare-metal stents. However, stents that release sirolimus or paclitaxel have been associated with an increased risk of very late stent thrombosis, as compared with bare-metal stents. In contrast, the risks of death and myocardial infarction with sirolimus-eluting and paclitaxel-eluting stents were similar to the risks with bare-metal stents, which may be explained by the low incidence of very late stent thrombosis (annual rate, 0.2 to 0.6%) and the compensatory effects of a reduced risk of re-
stenosis, which is manifested as myocardial infarction in 10 to 20% of patients.28,29

EVEROLIMUS-ELUTING STENTS

In randomized trials, everolimus-eluting stents improved clinical outcomes as compared with paclitaxel-eluting stents, reducing the risks of repeat revascularization, myocardial infarction, and stent thrombosis.30,31 Randomized comparisons showed similar outcomes for stents releasing everolimus and those releasing sirolimus with respect to rates of death, myocardial infarction, and repeat revascularization.32-34 A large trial showed lower rates of stent thrombosis with

Figure: Drug-Eluting Coronary Artery Stents

A Bare-metal stent

- Arterial injury
- Activation of vascular smooth-muscle cells
- Proliferation and migration of vascular smooth-muscle cells and extracellular-matrix formation

B Drug-eluting stent

- Antiproliferative drug
- Drug release
- Polymer coating degradation

C

- **Paclitaxel**
 - C_{47}H_{51}NO_{47}
 - MW 854
 - Binding to β-tubulin subunit of microtubules
 - Polymerization of tubulin
 - Inhibition of microtubule disassembly
 - G2 phase

- **Sirolimus**
 - C_{51}H_{79}NO_{13}
 - MW 914
 - Binding to FKBP12
 - Inhibition of mTOR
 - Up-regulation of p27Kip1

- **Everolimus**
 - C_{53}H_{83}NO_{14}
 - MW 958
 - Inhibition of microtubule disassembly
 - G2 phase

- **Zotarolimus**
 - C_{52}H_{79}N_{5}O_{12}
 - MW 966
 - Inhibition of mTOR
 - Up-regulation of p27Kip1

Legend

- G0 phase
- S phase
- G1 phase
- M phase (cell division)

Chemical Structures

- Paclitaxel
- Sirolimus
- Everolimus
- Zotarolimus
everolimus-eluting stents than with sirolimus-eluting stents at 2 years (0.2% vs. 0.9%, P = 0.02). A recent network meta-analysis showed that everolimus-eluting stents, as compared with sirolimus-eluting stents, may reduce the risk of stent thrombosis over the long term (relative risk, 0.37; 95% CI, 0.20 to 0.66) and myocardial infarction (relative risk, 0.77; 95% CI, 0.64 to 0.95).

These devices consist of three components: a metallic platform, a polymer coating that serves as drug carrier and permits controlled drug release, and an antiproliferative agent. The antiproliferative agent is released over time, whereas the stent platform and the durable polymer coating remain in the coronary artery. New platforms for drug-eluting stents — not yet approved by the Food and Drug Administration (FDA) but commonly used in clinical practice outside the United States — feature polymers that biodegrade after drug elution, resulting in a stent surface similar to that of a bare-metal stent. Antiproliferative agents used in FDA-approved drug-eluting stents and their mechanism of action are shown in Panel C. Most of the available drug-eluting stents use limus-family analogues: sirolimus, everolimus, and zotarolimus. These agents bind to the intracellular receptor FKBP12, inhibiting the mammalian target of rapamycin (mTOR), which results in up-regulation of cyclin-dependent kinase inhibitor p27Kip1. This blocks the proliferation of smooth-muscle cells. MW denotes molecular weight.

ZOTAROLIMUS-ELUTING STENTS

The Endeavor zotarolimus-eluting stent has been shown to reduce the risk of myocardial infarction everolimus-eluting stents than with sirolimus-eluting stents at 2 years (0.2% vs. 0.9%, P = 0.02).33 A recent network meta-analysis showed that everolimus-eluting stents, as compared with sirolimus-eluting stents, may reduce the risk of stent thrombosis over the long term (relative risk, 0.37; 95% CI, 0.20 to 0.66) and myocardial infarction (relative risk, 0.77; 95% CI, 0.64 to 0.95).35 However, the absence of differences with respect to ischemic outcomes in any of the individual trials allows no definitive conclusion regarding the comparative propensity for stent thrombosis with these two devices.
Advantages and disadvantages of drug-eluting stents, bare-metal stents, and coronary-artery bypass surgery in various disorders are summarized in Table 3.

STABLE CORONARY ARTERY DISEASE

Drug-eluting stents appear to be effective and relatively safe in patients with stable coronary artery disease. The recent Fractional Flow Reserve versus Angiography for Multivessel Evaluation 2 (FAME-2) trial compared revascularization with the use of drug-eluting stents followed by optimal medical therapy with medical therapy alone in patients with stable coronary artery disease and evidence of ischemia, as assessed by fractional flow reserve. The trial was stopped early by the data and safety monitoring board because of a markedly reduced need for urgent revascularization in patients treated with drug-eluting stents, as compared with those who received optimal medical therapy alone (1.6% vs. 11.1%, P<0.001). The risk of death or myocardial infarction did not differ significantly between groups. It is noteworthy that 50% of urgent revascularizations were triggered by myocardial infarction or unstable angina. According to the 2011 guidelines of the American College of Cardiology–American Heart Association for percutaneous coronary interventions, use of drug-eluting stents has a class IA recommendation for patients undergoing elective percutaneous revascularization who are able to adhere to a prolonged regimen of dual antiplatelet therapy.

ACUTE MYOCARDIAL INFARCTION

Mechanical reperfusion with stent implantation represents the standard of care for patients with very late stent thrombosis (0.3% vs. 1.1%, P<0.001). These findings are consistent with previous randomized evidence.

The Resolute zotarolimus-eluting stent was compared with the everolimus-eluting stent in two large-scale trials, which showed similar risks of cardiac death, myocardial infarction, repeat revascularization, and stent thrombosis throughout a 2-year period. Table 2 summarizes evidence from randomized trials of new-generation everolimus-eluting and zotarolimus-eluting stents.

Figure 2. Patterns of Healing after Implantation of a Coronary-Artery Stent. The implantation of a coronary-artery stent can trigger three possible arterial healing patterns, as shown in the schematic representations, with corresponding in vivo examples of images from intracoronary optical coherence tomography. Panel A shows excessive neointimal hyperplasia resulting in restenosis, observed in a patient 7 months after the implantation of a bare-metal stent. Panel B shows delayed arterial healing with vessel remodeling and protruding stent struts, observed in a patient 22 months after the implantation of a sirolimus-eluting stent. Panel C shows physiological arterial healing, observed in a patient 18 months after the implantation of a biolimus-eluting stent with a biodegradable polymer coating.

Indications for Use of Drug-Eluting Stents

- **Excessive neointimal hyperplasia**
- **Delayed arterial healing**
- **Physiological arterial healing**
Table 2. Summary of Evidence from Randomized Trials of the Efficacy and Safety of New-Generation Drug-Eluting Stents, as Compared with Other Types of Stents, According to Clinical Outcome.*

<table>
<thead>
<tr>
<th>New-Generation Drug-Eluting Stent and Clinical Outcome</th>
<th>As Compared with Bare-Metal Stents</th>
<th>As Compared with Early-Generation Drug-Eluting Stents</th>
<th>As Compared with Other Stents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paclitaxel-Eluting Stents</td>
<td>Sirolimus-Eluting Stents</td>
<td></td>
</tr>
<tr>
<td>Cardiac death and myocardial infarction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everolimus-eluting stent</td>
<td>Has a similar risk (^{32,41})</td>
<td>Reduces the risk of myocardial infarction by 30–40% (^{30,31})</td>
<td>Has a similar risk (^{32-34})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Has a risk similar to that of Resolute zotarolimus-eluting stent (^{39,40})</td>
<td></td>
</tr>
<tr>
<td>Zotarolimus-eluting stent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endeavor</td>
<td>Has a similar risk (^{35})</td>
<td>Might reduce the risk of myocardial infarction by 30–40% (^{35-37})</td>
<td>NA</td>
</tr>
<tr>
<td>Resolute</td>
<td>No direct comparison available</td>
<td>No direct comparison available</td>
<td>Has a risk similar to that of everolimus-eluting stent (^{39,40})</td>
</tr>
<tr>
<td>Repeat revascularization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everolimus-eluting stent</td>
<td>Reduces the risk by 60–80% (^{32,41})</td>
<td>Reduces the risk by 40–50% (^{30,31})</td>
<td>Has a similar risk (^{32-34})</td>
</tr>
<tr>
<td></td>
<td>Has a risk similar to that of Resolute zotarolimus-eluting stent (^{39,40})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zotarolimus-eluting stent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endeavor</td>
<td>Reduces the risk by 40–60% (^{35})</td>
<td>Has a similar risk (^{35-37})</td>
<td>Increases the risk by 30–50% (^{35,37,38})</td>
</tr>
<tr>
<td>Resolute</td>
<td>No direct comparison available</td>
<td>No direct comparison available</td>
<td>NA</td>
</tr>
<tr>
<td>Stent thrombosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everolimus-eluting stent</td>
<td>Might reduce the risk by 50–60% (^{35,41,42})</td>
<td>Reduces the risk by 60–70% (^{32,33})</td>
<td>Might reduce the risk by 50–60% (^{33,35,42})</td>
</tr>
<tr>
<td></td>
<td>Has a risk similar to that of Resolute zotarolimus-eluting stent (^{39,40})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zotarolimus-eluting stent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endeavor</td>
<td>Has a similar risk (^{35,42})</td>
<td>Might reduce the risk by 30–40% (^{35-37})</td>
<td>Might reduce the risk by 20–30% (^{35,38})</td>
</tr>
<tr>
<td>Resolute</td>
<td>No direct comparison available</td>
<td>No direct comparison available</td>
<td>Has a risk similar to that of everolimus-eluting stent (^{39,40})</td>
</tr>
</tbody>
</table>

* For each clinical indication, comparisons are shown between the listed new-generation stent and other types of stents, as specified in the column headings. In cases in which it is stated that a certain type of stent reduces a risk, available data from randomized clinical trials have consistently shown a significant risk reduction. In cases in which it is stated that a certain type of stent might reduce a risk, meta-analyses of available randomized trials have shown a risk reduction, although such a reduction was not observed in individual randomized trials. NA denotes no additional comparisons available.
Drug-eluting stents have been compared with bare-metal stents in several trials, which have shown similar risks of death and reinfarction and a reduction in the risk of repeat revascularization. Fifteen patients (95% CI, 11 to 27) would need to be treated with drug-eluting stents in order to prevent one repeat revascularization, as compared with bare-metal stents (Table S2 in the Supplementary Appendix).

However, the use of sirolimus-eluting and paclitaxel-eluting stents was associated with an increased risk of very late stent thrombosis. It has been speculated that the large amount of intracoronary thrombus in patients with acute infarction may predispose them to stent malapposition — because of stent undersizing or thrombus resolution — and subsequently increased thrombogenicity. In addition, implantation of drug-eluting stents in ruptured plaques in patients with acute infarction has been associated with delayed arterial healing.

Recently, in the Evaluation of Xience-V Stent in Acute Myocardial Infarction (EXAMINATION) trial, everolimus-eluting stents were found not to be superior to bare-metal stents with respect to the composite end point of death, myocardial infarction, or any further revascularization among patients with acute infarction. However, everolimus-eluting stents reduced the risk of target-lesion revascularization as well as stent thrombosis, as compared with bare-metal stents. Long-term follow-up and larger trials that are powered for assessment of ischemic events will shed more light on the use of drug-eluting stents in patients with acute infarction. In such patients, the use of drug-eluting stents has a class IA recommendation if patients are able to comply with a prolonged regimen of dual antiplatelet therapy.

DIABETES

Patients with diabetes have a higher burden of atherosclerosis, smaller coronary arteries, and a higher risk of repeat revascularization after implantation of a bare-metal stent than do patients without diabetes. Drug-eluting stents have been widely tested in patients with diabetes and have consistently reduced the rate of restenosis, as compared with bare-metal stents (Table S2 in the Supplementary Appendix). A network meta-analysis involving 3852 patients with diabetes and 10,947 patients without diabetes showed that drug-eluting stents were as safe as bare-metal stents in patients with diabetes when dual antiplatelet therapy was prescribed for 6 months or more. In
addition, the reduction in the risk of repeat revascularization with the use of drug-eluting stents in patients with diabetes was similar to the risk reduction in patients without diabetes. According to current guidelines, diabetes is a condition in which the use of drug-eluting stents is preferable to the use of bare-metal stents. The selection of a specific type of drug-eluting stent in patients with diabetes is controversial.

MULTIVESSEL DISEASE

Patients with complex multivessel coronary artery disease represent a high-risk subgroup. Angioplasty and implantation of bare-metal stents have been compared with bypass surgery in numerous randomized studies, as summarized in a systematic review that included 22 trials and in a pooled analysis involving 7812 patients from 10 trials. Both analyses led to the conclusion that percutaneous and surgical revascularization strategies have similar outcomes with respect to rates of death and myocardial infarction. However, recurrent angina and repeat revascularization were more common among patients treated percutaneously, whereas stroke was more frequent among patients treated surgically.

Three randomized trials have compared drug-eluting stents with bypass surgery in patients with multivessel disease: the Coronary Artery Revascularization in Diabetes (CARDia) study, the Future Revascularization Evaluation in Patients with Diabetes Mellitus: Optimal Management of Multivessel Disease (FREEDOM) trial, and the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) study (Table S2 in the Supplementary Appendix). In the CARDia trial, the use of percutaneous coronary intervention (with drug-eluting stents used in 69% of procedures) was not shown to be noninferior to bypass surgery in patients with multivessel disease and diabetes, with respect to the composite end point of death, myocardial infarction, or stroke for a period of up to 5 years. The larger FREEDOM trial showed that revascularization with drug-eluting stents (predominantly stents releasing sirolimus or paclitaxel) was inferior to bypass surgery in patients with multivessel disease and diabetes, with respect to the composite end point of death, myocardial infarction, or stroke. Bypass surgery was associated with significantly reduced risks of death and myocardial infarction but a higher risk of stroke during the 5-year study.

In the SYNTAX trial, the use of paclitaxel-eluting stents was not shown to be noninferior to bypass surgery with respect to the composite end point of death, myocardial infarction, stroke, or repeat revascularization at 1 year in patients with multivessel and left main coronary artery disease. The rate of the primary end point at 1 year was higher among patients treated with paclitaxel-eluting stents than among those treated with bypass surgery (37.3% vs. 26.9%, P<0.001). Patients were stratified into three groups on the basis of the complexity of disease as seen on angiography according to a prespecified algorithm that assigned a SYNTAX score, ranging from 0 to 84, with higher scores indicating a greater complexity of disease. At 5 years, the rate of the primary end point in the stent group was similar to that in the surgery group among patients with a low complexity of disease (SYNTAX score, ≤22; 32.1% and 28.6%, respectively; P=0.43), whereas the benefit of bypass surgery emerged among patients with either intermediate disease complexity (SYNTAX score, 23 to 32; 36.0% vs. 25.8%; P=0.008) or high disease complexity (SYNTAX score, ≥33; 44.0% vs. 26.8%; P<0.001). These findings are hypothesis generating, and whether outcomes may be improved with the use of new-generation drug-eluting stents is a matter of debate. However, bypass surgery remains the treatment of choice for patients with the most extensive, complex multivessel disease. A discussion by a multidisciplinary heart team composed of an interventionalist and a surgeon is recommended for such patients (class IC).

LEFT MAIN CORONARY ARTERY DISEASE

In the Premier of Randomized Comparison of Bypass Surgery versus Angioplasty Using Sirolimus-Eluting Stent in Patients with Left Main Coronary Artery Disease (PRECOMBAT) trial, sirolimus-eluting stents were shown to be noninferior to bypass surgery in patients with left main coronary artery disease with respect to the composite end point of death, myocardial infarction, stroke, or target-vessel revascularization at 1 year (Table
S2 in the Supplementary Appendix). However, the trial was small and had a wide noninferiority margin, which precluded definitive conclusions. In the SYNTAX trial, randomization was stratified according to the presence or absence of left main coronary artery disease. Among 705 patients with left main coronary artery disease, the risk of the primary end point, as well as the risk of cardiac death or myocardial infarction, at 3 years in the group that received paclitaxel-eluting stents was similar to the risk in the group that underwent bypass surgery. Stroke occurred more frequently among patients treated with bypass surgery, whereas repeat revascularization occurred more frequently among patients treated with paclitaxel-eluting stents. Everolimus-eluting stents are being compared with bypass surgery in the Evaluation of Xience Everolimus-Eluting Stent System versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization (EXCEL) trial (ClinicalTrials.gov number, NCT01205776) in patients with left main coronary artery disease. According to guidelines, percutaneous revascularization is a reasonable alternative to bypass surgery in selected patients with left main coronary artery disease (class IIaB).

ANTIPLATELET THERAPY

Dual antiplatelet therapy with aspirin and a P2Y₁₂ inhibitor reduces the risk of ischemic events after stent placement; however, the duration of therapy remains a matter of debate. Clopidogrel in addition to aspirin for at least 12 months has been shown to reduce the composite end point of death, myocardial infarction, or stroke, as compared with aspirin alone, among patients with acute coronary syndromes. The more potent drugs prasugrel and ticagrelor have been shown to be superior to clopidogrel in patients presenting with acute coronary syndromes. However, long-term dual antiplatelet therapy significantly increases the risk of bleeding. Moreover, only a few patients included in these trials were treated with drug-eluting stents, and data providing guidance on the duration of therapy in patients undergoing elective coronary stenting are sparse. Current guidelines support a 12-month regimen of dual antiplatelet therapy in patients treated with drug-eluting stents (class IB) on the basis of observational data pointing to the risk of stent thrombosis after premature discontinuation of clopidogrel. A combined analysis of data from two trials, the Correlation of Clopidogrel Therapy Discontinuation in Real-World Patients Treated with Drug-Eluting Stent Implantation — Late Coronary Arterial Thrombotic Events (REAL-LATE) study and the Evaluation of the Long-Term Safety after Zotarolimus-Eluting Stent, Sirolimus-Eluting Stent, or Paclitaxel-Eluting Stent Implantation for Coronary Lesions — Late Coronary Arterial Thrombotic Events (ZEST-LATE) trial, suggests that a prolongation of dual antiplatelet therapy beyond 12 months after implantation of drug-eluting stents does not reduce the risk of death or myocardial infarction, as compared with the use of aspirin alone. In the Prolonging Dual Antiplatelet Treatment after Grading Stent-Induced Intimal Hyperplasia (PRODIGY) trial, among patients who were treated with 6 months of dual antiplatelet therapy, the risk of the composite end point of death, myocardial infarction, or stroke was similar to that among patients receiving 24 months of therapy, but those receiving 6 months of therapy had a markedly reduced risk of bleeding. Moreover, a few observational studies have suggested that early discontinuation of dual antiplatelet therapy might be safe after the implantation of stents releasing either zotarolimus or everolimus. Overall, the available evidence is inconclusive, and large-scale comparisons of different durations of dual antiplatelet therapy are ongoing.

The antiplatelet-therapy regimen after implantation of drug-eluting stents in patients taking oral anticoagulants is also debated because of the increased risk of bleeding in such patients. In the What Is the Optimal Antiplatelet and Anticoagulant Therapy in Patients with Oral Anticoagulation and Coronary Stenting (WOEST) trial, patients who received only clopidogrel in addition to oral anticoagulants had a reduced risk of bleeding at 1 year, as compared with those receiving triple therapy with aspirin, clopidogrel, and oral anticoagulants, and the study suggested that the less intensive therapy might provide adequate protection against thrombotic complications. However, larger studies are needed for definite conclusions.

COST-EFFECTIVENESS

A reduction in the rate of restenosis with the use of drug-eluting stents comes at the expense of increased device cost, as compared with bare-metal stents. Several studies have recommended...
restricting the use of drug-eluting stents to patients at increased risk for restenosis in order to balance the risk–benefit assessment with cost-effectiveness.68,69 Reducing the use of drug-eluting stents among patients at low risk for restenosis may result in cost savings with a small effect on the rate of repeat revascularization.59,70 However, reimbursement systems vary widely, rendering cost-effectiveness analyses rarely applicable to different health care systems. In the United States, a reduction in the use of drug-eluting stents in 2007, as compared with a more liberal use of such stents in the period from 2004 through 2006 (in 68% and 92% of procedures, respectively), was associated with a small increase in the risk of repeat revascularization (4.1 to 5.1%) and a modest reduction in costs ($400 per patient) over a period of 1 year.70 Nevertheless, a recent analysis of stent use in routine clinical practice in the United States showed that the higher cost of drug-eluting stents, as compared with bare-metal stents, was offset by lower costs of repeat revascularization procedures over a period of 3 years.71 Whether drug-eluting stents should be used with or without restriction remains a subject of debate, particularly in light of uncertainty regarding the optimal duration of dual antiplatelet therapy, which has a substantial effect on health care costs.72 Moreover, a reduction in costs with the use of everolimus-eluting stents, as compared with paclitaxel-eluting stents, has recently been documented.72

OPEN ISSUES AND FUTURE DIRECTIONS

SAFETY OF NEW DRUG-ELUTING STENTS VERSUS BARE-METAL STENTS

Network meta-analyses of randomized studies indicate a lower risk of stent thrombosis with everolimus-eluting stents than with bare-metal stents.35,42 This potential benefit needs to be addressed in appropriately designed studies. However, the feasibility and cost-effectiveness of such trials is questionable owing to the exceedingly low incidence of stent thrombosis.

BIODEGRADABLE POLYMER STENTS

The use of drug-eluting stents that have been coated with biodegradable polymers, which are commonly used in clinical practice outside the United States, has been shown to improve long-term safety and efficacy, as compared with the use of sirolimus-eluting stents.69,73 In two recent trials, drug-eluting stents with biodegradable-polymer coatings improved safety, as compared with bare-metal stents, in patients with acute infarction,74 and provided outcomes similar to those with everolimus-eluting stents in patients with coronary artery disease at 1 year.75 Additional studies and longer-term follow-up are needed to address possible differences between these two technologies.

FULLY BIORESORBABLE SCAFFOLDS

Fully bioresorbable drug-eluting vascular scaffolds will soon be available for clinical use.76 Although the concept is attractive, it remains to be determined whether these devices can outperform available drug-eluting stents with respect to safety and efficacy.

CONCLUSIONS

Drug-eluting stents mitigate the risk of restenosis and thus represent an important advance in the percutaneous treatment of coronary artery disease. New drug-eluting stents with thin struts releasing limus-family analogues from durable polymers have further improved clinical outcomes, as compared with early-generation stents releasing sirolimus or paclitaxel. The risk of stent thrombosis has become exceedingly low and no longer represents a limitation of the use of drug-eluting stents. Notably, the improved safety profile of new drug-eluting stents comes without compromising their effectiveness. Available evidence supports the use of drug-eluting stents in most clinical settings without safety concerns, unless patients have contraindications to the use of dual antiplatelet therapy.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

