Frontiers of Fundamental Physics 2014 AMU, Marseille, 15–18 July 2014

Pasquale Di Bari (University of Southampton)

The double side of Leptogenesis

Cosmology (early Universe)

- <u>Cosmological Puzzles :</u>
- 1. Dark matter

Neutrino Physics, models of mass

- 2. Matter antimatter asymmetry
- 3. Inflation
- 4. Accelerating Universe
- <u>New stage in early Universe history</u>:
 - > ____ Inflation
 - 100 GeV EWSSB
 - 0.1-1 MeV _____ BBN
 - 0.1-1 eV Recombination

Leptogenesis complements low energy neutrino experiments testing the seesaw high energy parameters and providing a guidance toward the model underlying the seesaw mechanism

Two important questions:

- 1. Can leptogenesis help to understand neutrino parameters?
- 2. Vice-versa: can we probe leptogenesis with low energy neutrino data?
- A common approach in the LHC era: "TeV Leptogenesis"

Is there an alternative approach based on high energy scale leptogenesis? Also considering that:

- > No new physics at LHC (not so far);
- New scale ~ 10¹⁶ GeV if BICEP2 will be confirmed would typically imply very high reheat temperatures;

- Discovery of a non-vanishing reactor angle opening the door to further information on mixing parameters;
- Cosmological observations start to have the sensitivity to either rule our or discover quasi-degenerate neutrino masses

Neutrino masses: $m_1 < m_2 <$

$$m_{\rm atm} \equiv \sqrt{\Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2} \simeq 0.05 \,\mathrm{eV}$$

 $m_{\rm sol} \equiv \sqrt{\Delta m_{\rm sol}^2} \simeq 0.009 \,\mathrm{eV}$

quas

10⁰

-10° eV

I - 10⁻¹ eV

10⁻² eV

10⁻³ eV

Neutrino mixing parameters

$$U_{ci} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}$$
Pontecorvo-Maki-Nakagawa-Sakata matrix
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\sigma} \end{pmatrix}$$
Atmospheric, LB
Reactor, Accel., LB
Reactor, Accel., LB
Solar, Reactor
$$c_{ij} = \cos\theta_{ij}, and s_{ij} = \sin\theta_{ij}$$

$$\theta_{23} \approx 38^{\circ} - 53^{\circ} \\ \theta_{12} \approx 32^{\circ} - 38^{\circ} \\ \theta_{13} \approx 7.5^{\circ} - 10^{\circ} \\ \delta_{i} \circ_{i} \circ_{i} = [-\pi, \pi]$$
Lisi, Palazzo '14

Minimal scenario of Leptogenesis (Fukugita, Yanagida '86)

•Type I seesaw

$$\mathcal{L}_{\rm mass}^{\nu} = -\frac{1}{2} \left[\left(\bar{\nu}_L^c, \bar{\nu}_R \right) \left(\begin{array}{cc} 0 & m_D^T \\ m_D & M \end{array} \right) \left(\begin{array}{c} \nu_L \\ \nu_R^c \end{array} \right) \right] + h.c.$$

In the see-saw limit (M>>m_D) the mass spectrum splits into 2 sets:

3 light neutrinos with masses

$$diag(m_1, m_2, m_3) = -U^{\dagger} m_D \frac{1}{M} m_D^T U^{\star}$$

• 3 very heavy RH neutrinos $N_{1,} N_2$, N_3 with masses $M_3 > M_2 > M_1 > m_D$

On average one $N_{\rm i}$ decay produces a B-L asymmetry given by its

total CP
$$\varepsilon_i \equiv -\frac{\Gamma_i - \bar{\Gamma}_i}{\Gamma_i + \bar{\Gamma}_i}$$

Thermal production of RH neutrinos

 \Rightarrow T_{RH} \gtrsim M_i / (2÷10) \gtrsim T_{sph} = 100 GeV

Seesaw parameter space

Imposing $\eta_B = \eta_B^{CMB}$ one would like to get information on U and m_i <u>Problem: too many parameters</u>

(Casas, Ibarra'01)
$$m_{
u} = -m_D \, rac{1}{M} \, m_D^T \Leftrightarrow \, \left[\Omega^T \Omega = I
ight]$$

Orthogonal parameterisation

 $\begin{array}{ccc} m_{D} \\ m_{D} \end{array} = \begin{bmatrix} U \begin{pmatrix} \sqrt{m_{1}} & 0 & 0 \\ 0 & \sqrt{m_{2}} & 0 \\ 0 & 0 & \sqrt{m_{3}} \end{bmatrix} \Omega \begin{pmatrix} \sqrt{M_{1}} & 0 & 0 \\ 0 & \sqrt{M_{2}} & 0 \\ 0 & 0 & \sqrt{M_{3}} \end{bmatrix} \\ \begin{pmatrix} U^{\dagger} & U \\ U^{\dagger} & m_{\nu} & U^{\star} & = & -D_{m} \end{bmatrix}$

(in a basis where charged lepton and Majorana mass matrices are diagonal)

The 6 parameters in the orthogonal matrix Ω encode the 3 life times and the 3 total CP asymmetries of the RH neutrinos

A parameter reduction would help and can occur in various ways:

- $\succ \eta_B = \eta_B^{CMB}$ is satisfied around "peaks"
- some parameters cancel in the asymmetry calculation
- imposing independence of the initial conditions
- \succ imposing some condition on m_D
- > additional phenomenological constraints (e.g. Dark Matter)

Vanilla leptogenesis

(Buchmüller,PDB,Plümacher '04; Giudice et al. '04; Blanchet, PDB '07)
<u>1) Lepton flavor composition is neglected</u>

$$\begin{split} N_i & \xrightarrow{\Gamma} l_i H^{\dagger} \qquad N_i \xrightarrow{\Gamma} \overline{l}_i H \\ N_{B-L}^{\text{fin}} &= \sum_{i} \varepsilon_i \kappa_i^{\text{fin}} \\ \Rightarrow \eta_B &= a_{\text{sph}} \frac{N_{B-L}^{\text{fin}}}{N_{\gamma}^{\text{rec}}} = \eta_B^{CMB} = (6.1 \pm 0.1) \times 10^{-10} \end{split}$$

<u>2) Hierarchical spectrum (M₂ ≥ 2M₁)</u>
 <u>3) N₃ do not interfere with N₂:</u>

 $(m_D^{\dagger} m_D)_{23} = 0$

$$\Rightarrow \ N_{B-L}^{\rm fin} = \sum_i \, \varepsilon_i \, \kappa_i^{\rm fin} \simeq \varepsilon_1 \, \kappa_1^{\rm fin}$$

4) Barring fine-tuned cancellations (Davidson, Ibarra '02) $\varepsilon_1 \le \varepsilon_1^{\max} \simeq 10^{-6} \left(\frac{M_1}{10^{10} \text{ GeV}}\right) \frac{m_{\text{atm}}}{m_1 + m_3}$

5) Efficiency factor from $(z \equiv \frac{M_1}{T})$

$$\kappa_1^{\text{fin}}(K_1, z_{\text{in}}) = -\int_{z_{\text{in}}}^{\infty} dz' \, \frac{dN_1}{dz'} \, e^{-\int_{z'}^{\infty} dz'' \, W(z'')}$$

$$\eta_B^{\max}(m_1, M_1) \ge \eta_B^{CMB}$$

No dependence on the leptonic mixing matrix U

decay parameter: $K_1 \equiv \frac{\Gamma_{N_1}(T=0)}{H(T=M_1)}$

A pre-ex	isting asymmetry?
$ ho^{1/4}$ ~ 2x10 ¹⁶ GeV???	Inflation
$T_{RH} \lesssim 3 \times 10^{14} \ GeV$	- QCD freeze-in
	Affleck-Dine (at preheating) Gravitational baryogenesis GUT baryogenesis
T ≳ 10 ⁹ GeV	Leptogenesis (minimal)
100 GeV	— EWBG
0.1-1 MeV	- BBN
0.1-1 eV	- Recombination

Independence of the initial conditions

The early Universe "knows" the neutrino masses ...

(Buchmüller, PDB, Plümacher '04)

decay parameter

$$\eta_B \simeq 0.01 \,\varepsilon_1(m_1, M_1, \Omega) \,\kappa_1^{\text{fin}}(K_1)$$
$$K_1 \equiv \frac{\Gamma_{N_1}}{H(T = M_1)} \,\sqrt{\frac{m_{\text{sol}, \text{atm}}}{m_\star \sim 10^{-3} \,\text{eV}}} \sim 10 \div 50$$

Independence of the initial abundance of N_1

wash-out of a pre-existing asymmetry

$$N_{B-L}^{\text{p,final}} = N_{B-L}^{\text{p,initial}} e^{-\frac{3\pi}{8}K_1} \ll N_{B-L}^{\text{f,N}_1}$$

 $K_1 \stackrel{>}{\sim} K_{\rm st}(N_{B-L}^{\rm p,i}) \simeq 16 + 0.85 \ln(|N_{B-L}^{\rm p,i}|)$

The N_2 -dominated scenario

(PDB '05)

If light flavour effects are neglected the asymmetry from the next-to-lightest (N_2) RH neutrinos is typically washed-out:

$$N_{B-L}^{\mathrm{f},\mathrm{N}_2} = \varepsilon_2 \kappa(K_2) \, e^{-\frac{3\pi}{8} K_1} \ll N_{B-L}^{\mathrm{f},\mathrm{N}_1} = \varepsilon_1 \, \kappa(K_1)$$

... except for a special choice of $\Omega = R_{23}$ when $K_1 = m_1/m_* \ll 1$ and $\varepsilon_1 = 0$:

The lower bound on M₁ disappears and is replaced by a lower bound on M₂... that however still implies a lower bound on T_{reh}

 $\Rightarrow \boxed{N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \simeq \varepsilon_{2} \kappa_{2}^{\text{fin}}}_{2} \qquad \varepsilon_{2} \stackrel{<}{\sim} 10^{-6} \left(\frac{M_{2}}{10^{10} \,\text{GeV}}\right)$

Having K₁ ≤ 1 is a special case. How special? P(K₁ ≤ 1) = 0.2% (random scan)

> In the limit $K_1 \rightarrow 0$ ($K_1 \le 10^{-30}$!) N_1 is stable on cosmological times and might be the DM particle if one finds a way to produce it (e.g. during or at the end of inflation or from the mixing with N_2) (Anisimov, PDB)

SO(10)-inspired leptogenesis

(Branco et al. '02; Nezri, Orloff '02; Akhmedov, Frigerio, Smirnov '03)

Expressing the neutrino Dirac mass matrix m_{D} (in the basis where the Majorana mass and charged lepton mass matrices are diagonal) as:

 $m_D = V_L^{\dagger} D_{m_D} U_R \mid D_{m_D} = \text{diag}\{m_{D1}, m_{D2}, m_{D3}\}$

SO(10) inspired conditions*:

 $m_{D1} = \alpha_1 m_u, \ m_{D2} = \alpha_2 m_c, \ m_{D3} = \alpha_3 m_t, \ (\alpha_i = \mathcal{O}(1))$

$$V_L \simeq V_{CKM} \simeq I$$

From the seesaw formula one can express; $U_{R} = U_{R} (U, m_{i}; \alpha_{i}, V_{L}), M_{i} = M_{i} (U, m_{i}; \alpha_{i}, V_{L}) \Rightarrow \eta_{R} = \eta_{R} (U, m_{i}; \alpha_{i}, V_{L})$

one typically obtains (barring fine-tuned 'crossing level' solutions):

$$M_1 \simeq \alpha_1^2 \, 10^5 \text{GeV} \,, \ M_2 \simeq \alpha_2^2 \, 10^{10} \, \text{GeV} \,, \ M_3 \simeq \alpha_3^2 \, 10^{15} \, \text{GeV}$$

since $M_1 \ll 10^9$ GeV and $K_1 \gg 1 \implies \eta_B^{(N1)}$, $\eta_B^{(N2)} \ll \eta_B^{CMB}$

* Note that SO(10)-inspired consditions can be realized also beyond SO(10) and even beyond GUT models (e.g. "Tetraleptogenesis", King '13)

Crossing level solutions

(Akhmedov, Frigerio, Smirnov '03)

- At the crossing the CP asymmetries undergo a resonant enhancement (Covi, Roulet, Vissani '96; Pilaftsis '98; Pilaftsis, Underwood '04; ...)
- The correct BAU can be attained for a fine tuned choice of parameters: many models have made use of these solutions (e.g. Buccella, Falcone, Nardi, '12; Altarelli, Meloni '14)
- These, however, have to be strongly fine tuned to reproduce the observed asymmetry. As we will see there is another solution not relying on resonant leptogenesis.

Lepton flavour effects

(Abada, Davidson, Losada, Josse-Michaux, Riotto'06; Nardi, Nir, Roulet, Racker '06; Blanchet, PDB, Raffelt '06; Riotto, De Simone '06)

Flavor composition of lepton quantum states:

$$|l_1\rangle = \sum_{\alpha} \langle l_{\alpha} | l_1 \rangle | l_{\alpha} \rangle \qquad (\alpha = e, \mu, \tau) \qquad P_{1\alpha} \equiv |\langle \ell_1 | \alpha \rangle|^2 |\bar{l}_1'\rangle = \sum_{\alpha} \langle l_{\alpha} | \bar{l}_1' \rangle | \bar{l}_{\alpha} \rangle \qquad \bar{P}_{1\alpha} \equiv |\langle \bar{\ell}_1' | \bar{\alpha} \rangle|^2$$

For M₁ ≤ 10¹² GeV τ-Yukawa interactions ($\bar{l}_{L\tau} \phi f_{\tau\tau} e_{R\tau}$) are fast enough to break the coherent evolution of $|l_1\rangle$ and $|\bar{l}_1'\rangle$ that become a incoherent mixture of a τ and of a µ+e component M_i 2- flavour regime $\sim 10^9 \text{ GeV}$

3 fully flavoured regime

For M₁ ≤10⁹ GeV also µ- Yukawa interactions are fast enough
 ⇒ <u>3-flavor regime</u>

Two fully flavoured regime

• Classic Kinetic Equations (in their simplest form)

(a

$$\begin{aligned} \frac{dN_{N_{1}}}{dz} &= -D_{1} \left(N_{N_{1}} - N_{N_{1}}^{eq} \right) \\ \frac{dN_{\Delta_{\alpha}}}{dz} &= -\varepsilon_{1\alpha} \frac{dN_{N_{1}}}{dz} - P_{1\alpha}^{0} W_{1} N_{\Delta_{\alpha}} \\ \Rightarrow N_{B-L} &= \sum_{\alpha} N_{\Delta_{\alpha}} \qquad (\Delta_{\alpha} \equiv B/3 - L_{\alpha}) \end{aligned}$$
$$\begin{pmatrix} \mathbf{a} = \mathbf{T}, \mathbf{e} + \mathbf{\mu} \end{pmatrix} \stackrel{P_{1\alpha}}{=} |\langle l_{\alpha} | l_{1} \rangle|^{2} = P_{1\alpha}^{0} + \Delta P_{1\alpha}/2 \qquad (\sum_{\alpha} P_{1\alpha}^{0} = 1) \\ \bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha} | \bar{l}_{1} \rangle|^{2} = P_{1\alpha}^{0} - \Delta P_{1\alpha}/2 \qquad (\sum_{\alpha} \Delta P_{1\alpha} = 0) \end{aligned}$$
$$\Rightarrow \underbrace{\varepsilon_{1\alpha}}_{i\alpha} \equiv -\frac{P_{1\alpha}\Gamma_{1} - \bar{P}_{1\alpha}\Gamma_{1}}{\Gamma_{1} + \bar{\Gamma}_{1}} = P_{1\alpha}^{0} \varepsilon_{1} + \Delta P_{1\alpha}(\Omega, U)/2 \end{aligned}$$
$$\Rightarrow N_{B-L}^{fin} = \sum_{\alpha} \varepsilon_{1\alpha} \kappa_{1\alpha}^{fin} \simeq 2 \varepsilon_{1} \kappa_{1}^{fin} + \frac{\Delta P_{1\alpha}}{2} \left[\kappa^{f}(K_{1\alpha}) - \kappa^{fin}(K_{1\beta})\right] \end{aligned}$$
Flavoured decay parameters: $K_{i\alpha} \equiv P_{i\alpha}^{0} K_{i} = \left|\sum_{k} \sqrt{\frac{m_{k}}{m_{\star}}} U_{\alpha k} \Omega_{k i}\right|^{2}$

Neutrino mass bounds and role of PMNS phases

The N_2 -dominated scenario (flavoured)

(Vives '05; Blanchet, PDB '06; Blanchet, PDB '08, PDB, Fiorentin '14) Flavour effects strongly enhance the importance of the N₂-dominated scenario

 $\succ K_1 = K_{1e} + K_{1\mu} + K_{1\tau} ; P(K_1 \le 1) \sim 0.2\% ; P(K_{1e} \le 1) \sim 2 P(K_{1\mu,\tau} \le 1) \sim 15\% \Rightarrow \Sigma_a P(K_{1a} \le 1) = 30\%$

> With flavor effects the domain of applicability goes much beyond the special choice $\Omega = R_{23}$

> Existence of the heaviest RH neutrino N_3 is necessary for the ϵ_{2a} 's not to be negligible

The conditions for the wash-out of a pre-existing asymmetry ('strong thermal leptogenesis') can be realised only within a N_2 -dominated scenario where the final asymmetry is dominantly produced in the tauon flavour

Flavour projection and wash-out of a pre-existing asymmetry

(Barbieri et al. '99; Engelhard, Nir, Nardi '08; Blanchet, PDB, Jones, Marzola '10)

Successful strong thermal leptogenesis

Courtesy of Michele Re Fiorentin

A lower bound on neutrino masses

(PDB, Sophie King, Michele Re Fiorentin 2014)

Starting from the flavoured decay parameters:

$$K_{i\beta} \equiv p_{i\beta}^0 K_i = \left| \sum_k \sqrt{\frac{m_k}{m_\star}} U_{\beta k} \Omega_{ki} \right|^2$$

and imposing K_{1t} \gtrsim 1 and K_{1e}, K_{1µ} \gtrsim K_{st} = 10 (α =e,µ)

$$m_1 > m_1^{\text{lb}} \equiv m_\star \max_{\alpha} \left[\left(\frac{\sqrt{K_{\text{st}}} - \sqrt{K_{1\alpha}^{0, \max}}}{\max[|\Omega_{11}|] \left| U_{\alpha 1} - \frac{U_{\tau 1}}{U_{\tau 3}} U_{\alpha 3} \right|} \right)^2 \right]$$

$$K_{1\alpha}^{0,\max} \equiv \left(\max[|\Omega_{21}|] \sqrt{\frac{m_{\rm sol}}{m_{\star}}} \left| U_{\alpha 2} - \frac{U_{\tau 2}}{U_{\tau 3}} U_{\alpha 3} \right| + \left| \frac{U_{\alpha 3}}{U_{\tau 3}} \right| \sqrt{K_{1\tau}^{\max}} \right)^2$$

The lower bound exists if max[|Ω₂₁|] is not too large)

A new neutrino mass window for leptogenesis

 $0.01 \text{ eV} \lesssim m_1 \lesssim 0.1 \text{ eV}$

N₂-dominated scenario rescues SO(10)-inspired leptogenesis

- Very marginal allowed regions for INVERTED ORDERING
- Alternative way to rescue SO(10) inspired models is by considering a left-right symmetric seesaw (Abada, Hosteins, Josse-Michaux, Lavignac'08)
- Most of the solutions are <u>tauon dominated</u> as needed for strong thermal leptogenesis: can SO(10)-inspired thermal leptogenesis be also STRONG?

Strong thermal SO(10)-inspired solution

(PDB, Marzola '11; '13)

YES the strong thermal leptonesis condition can be also satisfied for a subset of the solutions (red, green, blue regions) only for NORMAL ORDERING

 $\alpha_2 = 5$ $N_{B-L}^{P,i} = 0.001, 0.01, 0.1, 0$

 $I \leq V_L \leq V_{CKM}$

- > The lightest neutrino mass respects the general lower bound but is also upper bounded $\Rightarrow 15 \le m_1 \le 25$ meV;
- The reactor mixing angle has to be non-vanishing (first results presented before Daya Bay discovery);
- > The atmospheric mixing angle falls strictly in the first octant;
- > The Majorana phases are even more constrained arounds special values

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'12)

Imposing successful strong thermal leptogenesis condition:

 $N_{B-L}^{\rm f} = N_{B-L}^{\rm p} + N_{B-L}^{\rm lep}, \ |N_{B-L}^{\rm p}| \ll N_{B-L}^{\rm lep} \simeq 100 \, \eta_B^{CMB}$

Link between the sign of J_{CP} and the sign of the asymmetry $\eta_B = \eta_B^{CMB}$ $\eta_B = -\eta_B^{CMB}$

A Dirac phase $\delta \sim -45^{\circ}$ is favoured: sign matters!

For values of $\theta_{23} \gtrsim 36^{\circ}$ the Dirac phase is predicted to be $\delta \sim -45^{\circ}$

It is interesting that low values of the atmospheric mixing angle are also necessary to reproduce $b-\tau$ unification in SO(10) models (Bajc. Senjanovic. Vissani '06)

Experimental test on the way: NOvA

Expected NOvA contours for one example scenario at 3 yr + 3 yr

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'12)

Sharp predictions on the absolute neutrino mass scale including $0\nu\beta\beta$ effective neutrino mass m_{ee}

Final Remarks

- > BICEP2: existence of a very high energy scale ~ 10¹⁶ GeV???
- > Thermal leptogenesis: problem of the initial conditions more compelling;
- Solution: N₂-dominated scenario (minimal seesaw, hierarchical N_i)
- Deviations of neutrino masses from the hierarchical limits are expected SO(10)-inspired models are rescued by the N₂-dominated scenario and can also realise strong thermal leptogenesis

Strong thermal SO(10)-inspired		
leptogenesis		
solution		

ORDERING	NORMAL
Θ_{13}	≳ 3°
θ ₂₃	≲ 42°
δ	~ -45°
$m_{ee} \simeq 0.8 m_1$	≃ 15 meV

Still many stages to come but in good shape so far

Strong thermal SO(10)-inspired leptogenesis:

on the right track?

(PDB, Marzola '13)

If we do not plug any experimental information (mixing angles left completely free) : 1 **excluded** + 1 **allowed** region

Gravitational Baryogenesis (Davoudiasl, Kribs, Kitano, Murayama, Steinhardt '04)

The key ingredient is a CP violating interaction between the derivative of the Ricci scalar curvature \mathcal{R} and the baryon number current J^m :

This operator emerges naturally in quantum gravity and in supergravity

It works efficiently and asymmetries even much larger than the observed one are generated for $\rm T_{RH} >> 100~GeV$

Affleck-Dine Baryogenesis (Affleck, Dine '85)

In the Supersymmetric SM there are many "flat directions" in the space of a field composed of squarks and/or sleptons

$$V(\phi) = \sum_{i} \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{1}{2} \sum_{A} \left(\sum_{ij} \phi_i^*(t_A)_{ij} \phi_j \right)^2$$

A flat direction can be parametrized in terms of a complex field (AD field) that carries a baryon number that is violated dynamically during inflation

$$\frac{n_B}{s} \sim 10^{-10} \left(\frac{m_{3/2}}{m_{\Phi}}\right) \left(\frac{m_{\Phi}}{\text{TeV}}\right)^{-\frac{1}{2}} \left(\frac{M}{M_P}\right)^{\frac{3}{2}} \left(\frac{T_R}{10 \text{ GeV}}\right)$$

The final asymmetry is $\propto T_{RH}$ and the observed one can be reproduced $\,$ for low values $T_{RH} \sim 10 \; GeV \,$!

Some insight from the decay parameters

2 RH neutrino scenario revisited

(King 2000;Frampton,Yanagida,Glashow '01,Ibarra, Ross 2003;Antusch, PDB,Jones,King '11) In the 2 RH neutrino scenario the N₂ production has been so far considered to be safely negligible because ε_{2α} were supposed to be strongly suppressed and very strong N₁ wash-out. But taking into account:

- the N_2 asymmetry N_1 -orthogonal component
- an additional unsuppressed term to $\epsilon_{2\alpha}$

New allowed N₂ dominated regions appear

dominated neutrino mass models realized in some grandunified models

Electron appearance events for 0.5*LBNO and LBNE

Total CP asymmetries

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)

Density matrix and CTP formalism to describe the transition regimes

(De Simone, Riotto '06; Beneke, Gabrecht, Fidler, Herranen, Schwaller '10)

$$\frac{\mathrm{d}Y_{\alpha\beta}}{\mathrm{d}z} = \frac{1}{szH(z)} \left[(\gamma_D + \gamma_{\Delta L=1}) \left(\frac{Y_{N_1}}{Y_{N_1}^{\mathrm{eq}}} - 1 \right) \epsilon_{\alpha\beta} - \frac{1}{2Y_{\ell}^{\mathrm{eq}}} \left\{ \gamma_D + \gamma_{\Delta L=1}, Y \right\}_{\alpha\beta} \right] - \left[\sigma_2 \mathrm{Re}(\Lambda) + \sigma_1 |\mathrm{Im}(\Lambda)| \right] Y_{\alpha\beta}$$

Heavy flavoured scenario in models with A4 discrete flavour symmetry

(Manohar, Jenkins'08;Bertuzzo,PDB,Feruglio,Nardi '09;Hagedorn,Molinaro,Petcov '09)

* The different lines correspond to values of y between 0.3 and 3

A lower bound on neutrino masses

The lower bound would not have existed for large θ_{13} values

It is modulated by the Dirac phase and it could become more stringent when δ will be measured

Density matrix formalism with heavy neutrino flavours

(Blanchet, PDB, Jones, Marzola '11) For a thorough description of all neutrino mass patterns including transition regions and all effects (flavour projection, phantom leptogenesis,...) one needs a description in terms of a density matrix formalism The result is a "monster" equation:

$$\frac{dN_{\alpha\beta}^{B-L}}{dz} = \varepsilon_{\alpha\beta}^{(1)} D_1 \left(N_{N_1} - N_{N_1}^{eq} \right) - \frac{1}{2} W_1 \left\{ \mathcal{P}^{0(1)}, N^{B-L} \right\}_{\alpha\beta}$$

$$+ \varepsilon_{\alpha\beta}^{(2)} D_2 \left(N_{N_2} - N_{N_2}^{eq} \right) - \frac{1}{2} W_2 \left\{ \mathcal{P}^{0(2)}, N^{B-L} \right\}_{\alpha\beta}$$

$$+ \varepsilon_{\alpha\beta}^{(3)} D_3 \left(N_{N_3} - N_{N_3}^{eq} \right) - \frac{1}{2} W_3 \left\{ \mathcal{P}^{0(3)}, N^{B-L} \right\}_{\alpha\beta}$$

$$+ i \operatorname{Re}(\Lambda_{\tau}) \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{\ell+\bar{\ell}} \right]_{\alpha\beta} - \operatorname{Im}(\Lambda_{\tau}) \left[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{B-L} \right]_{\alpha\beta}$$

$$+ i \operatorname{Re}(\Lambda_{\mu}) \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{\ell+\bar{\ell}} \right]_{\alpha\beta} - \operatorname{Im}(\Lambda_{\mu}) \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \left[\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^{B-L} \right]_{\alpha\beta} .$$
(80)

Strong thermal leptogenesis and the absolute neutrino mass scale

(PDB, Sophie King, Michele Re Fiorentin 2014)

Final asymmetry from leptogenesis

$$\begin{split} N_{B-L}^{\text{lep,f}} &\simeq \left[\frac{K_{2e}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \kappa(K_{2\tau_{2}^{\perp}}) + \left(\varepsilon_{2e} - \frac{K_{2e}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \right) \, \kappa(K_{2\tau_{2}^{\perp}}/2) \right] e^{-\frac{3\pi}{8}K_{1e}} + \\ &+ \left[\frac{K_{2\mu}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \, \kappa(K_{2\tau_{2}^{\perp}}) + \left(\varepsilon_{2\mu} - \frac{K_{2\mu}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \right) \, \kappa(K_{2\tau_{2}^{\perp}}/2) \right] e^{-\frac{3\pi}{8}K_{1\mu}} + \\ &+ \, \varepsilon_{2\tau} \, \kappa(K_{2\tau}) \, e^{-\frac{3\pi}{8}K_{1\tau}} \, , \end{split}$$

Relic value of the pre-existing asymmetry:

Successful strong thermal leptogenesis then requires: $K_{1e}, K_{1\mu} \gtrsim K_{\text{st}}(N_{\Delta_{e,\mu}}^{\text{p,i}}), K_{2\tau} \gtrsim K_{\text{st}}(N_{\Delta_{\tau}}^{\text{p,i}}), K_{1\tau} \lesssim 1.$

A lower bound on neutrino masses (IO)

(NO \rightarrow IO \Rightarrow analytically: $m_{sol} \rightarrow m_{atm}$, 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1)

 $m_1 \ge 3 \text{ meV} \Rightarrow \Sigma_i m_i \ge 100 \text{ meV}$ (not necessarily deviation from HL)