Origin of Mass 2014 CP³-Origins, Odense, 19-22 May 2014

From low energy neutrino data to mass models (and back) with leptogenesis

> Pasquale Di Bari (University of Southampton)

Cosmological puzzles

<u>Cosmological Puzzles :</u>

- 1. Dark matter
- 2. Matter antimatter asymmetry
- 3. Inflation
- 4. Accelerating Universe

<u>New stage in the early Universe history</u>:

 V~ 2x10¹⁶ GeV??? Inflation S 3x10¹⁴ GeV QCD freeze-out Baryogenesis 100 GeV EWSSB 0.1-1 MeV BBN 0.1-1 eV Recombination

Neutrino mixing parameters

$$\begin{split} U_{\alpha i} &= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{i\sigma} \end{pmatrix} \\ &\\ & \text{Atmospheric, LB} \end{aligned}$$

$$c_{ij} = \cos\theta_{ij}, and s_{ij} = \sin\theta_{ij}$$

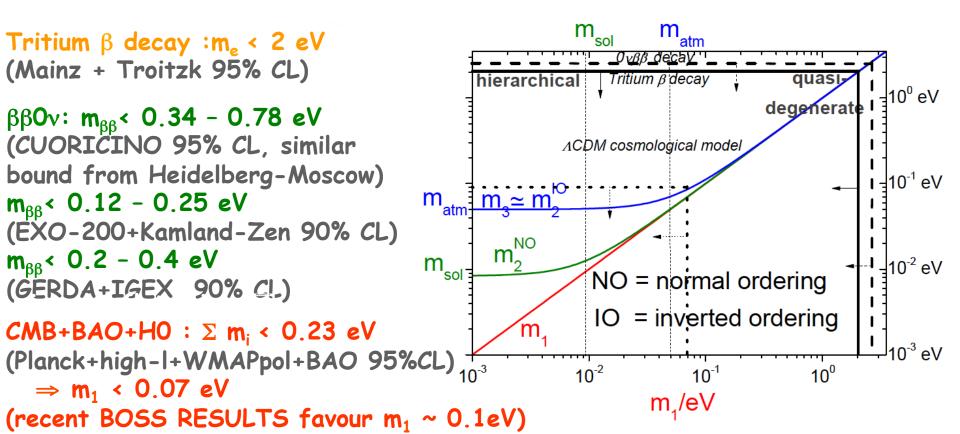
<u>30 ranges:</u>

$$\theta_{23} \approx 37^{\circ} - 53^{\circ}$$

$$\theta_{12} \approx 30.5^{\circ} - 38^{\circ}$$

$$\theta_{13} \approx 7.5^{\circ} - 10^{\circ}$$

$$\delta, \rho, \sigma = [-\pi,\pi]$$


Neutrino masses: $m_1 < m_2 < m_3$

neutrino mixing data

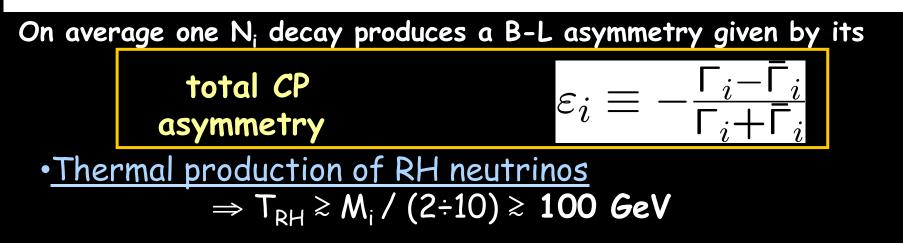
2 possible schemes: normal or inverted

$$m_3^2 - m_2^2 = \Delta m_{atm}^2$$
 or Δm_{sol}^2
 $m_2^2 - m_1^2 = \Delta m_{sol}^2$ or Δm_{atm}^2

$$m_{\rm atm} \equiv \sqrt{\Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2} \simeq 0.05 \, {\rm eV}$$
$$m_{\rm sol} \equiv \sqrt{\Delta m_{\rm sol}^2} \simeq 0.009 \, {\rm eV}$$

Minimal scenario of Leptogenesis (Fukugita, Yanagida '86)

•<u>Type I seesaw</u>


$$\mathcal{L}_{\rm mass}^{\nu} = -\frac{1}{2} \left[\left(\bar{\nu}_L^c, \bar{\nu}_R \right) \left(\begin{array}{cc} 0 & \boldsymbol{m}_D^T \\ \boldsymbol{m}_D & \boldsymbol{M} \end{array} \right) \left(\begin{array}{c} \nu_L \\ \boldsymbol{\nu}_R^c \end{array} \right) \right] + h.c.$$

In the see-saw limit (M>>m_D) the mass spectrum splits into 2 sets:

• 3 light neutrinos $u_1, \,
u_2, \,
u_3$ with masses

 $diag(m_1, m_2, m_3) = -U^{\dagger} m_D \frac{1}{M} m_D^T U^{\star}$

• 3 new heavy RH neutrinos N_1, N_2, N_3 with masses $M_3 > M_2 > M_1 \gg m_D$

The double side of Leptogenesis

Cosmology (early Universe) •

• <u>Cosmological Puzzles :</u>

Dark matter

Neutrino Physics, models of mass

- 2. Matter antimatter asymmetry
- 3. Inflation

1.

- 4. Accelerating Universe
- <u>New stage in early Universe history</u>:

~2 $\times 10^{16}$ GeV? Inflation $\lesssim 3 \times 10^{14}$ GeV QCD freeze-out Leptogenesis

- 100 GeV 🕂 EWSSB
 - 0.1-1 MeV ____ BBN

0.1-1 eV — Recombination

Leptogenesis complements low energy neutrino experiments testing the seesaw mechanism high energy parameters and providing a guidance toward the model behind the seesaw

In this case one would like to answer.....

Two important questions:

1. Can we get an insight on neutrino parameters from leptogenesis?

2. Vice-versa: can we probe leptogenesis with low energy neutrino data?

A common approach in the LHC era \Rightarrow "TeV Leptogenesis"

Is there an alternative approach based on high energy scale leptogenesis? Also considering that:

- No new physics at LHC (so far);
- BICEP2 (seems to) support the existence of a new scale ~ 2x10¹⁶ GeV (to be confirmed by Planck);
- The discovery of a non-vanishing reactor angle opens the door to further measurements of mixing parameters (atmospheric angle octant, neutrino mass ordering, Dirac phase)
- cosmological observations start to have the sensitivity to either rule our or discover quasi-degenerate neutrino masses

Seesaw parameter space

Imposing $\eta_B = \eta_B^{CMB}$ one would like to get information on U and m_i <u>Problem: too many parameters</u>

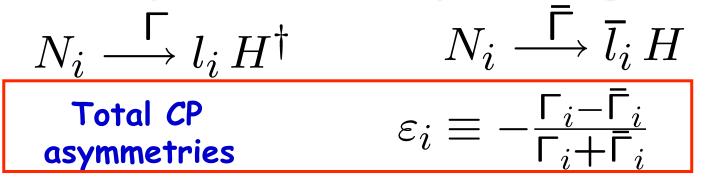
(Casas, Ibarra'01)
$$m_{\nu} = -m_D \frac{1}{M} m_D^T \Leftrightarrow \Omega^T \Omega = I$$

 m_D

Orthogonal parameterisation

$$= \begin{bmatrix} U \begin{pmatrix} \sqrt{m_1} & 0 & 0 \\ 0 & \sqrt{m_2} & 0 \\ 0 & 0 & \sqrt{m_3} \end{bmatrix} \Omega \begin{pmatrix} \sqrt{M_1} & 0 & 0 \\ 0 & \sqrt{M_2} & 0 \\ 0 & 0 & \sqrt{M_3} \end{bmatrix} \begin{bmatrix} U^{\dagger} U & = & I \\ U^{\dagger} m_{\nu} U^{\star} & = & -D_m \end{bmatrix}$$

(in a basis where charged lepton and Majorana mass matrices are diagonal)

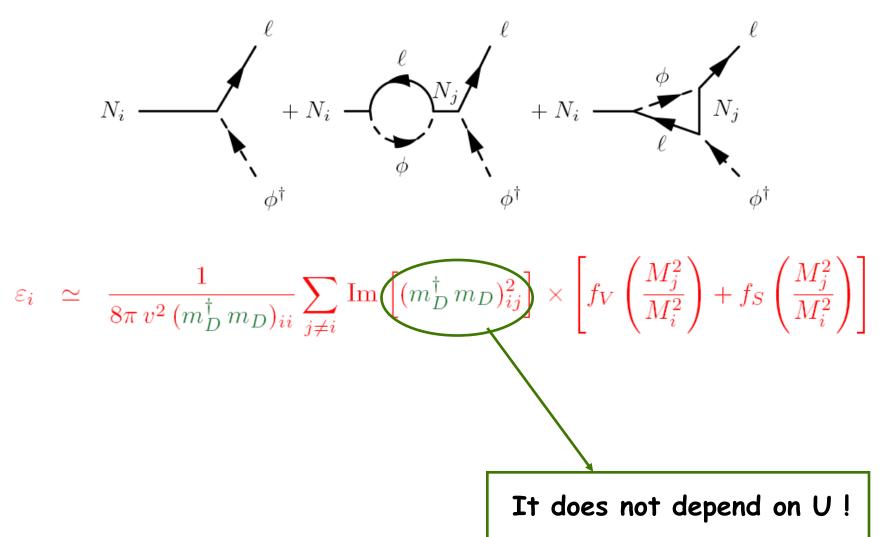

The 6 parameters in the orthogonal matrix Ω encode the 3 life times and the 3 total CP asymmetries of the RH neutrinos

<u>A parameter reduction would help and can occur if:</u>

- > $\eta_B = \eta_B^{CMB}$ is satisfied around "peaks"
- some parameters cancel in the asymmetry calculation
- imposing strong thermal leptonesis condition
- \succ by imposing some (model dependent) conditions on m_D

Vanilla leptogenesis

1) Flavor composition of final leptons is neglected

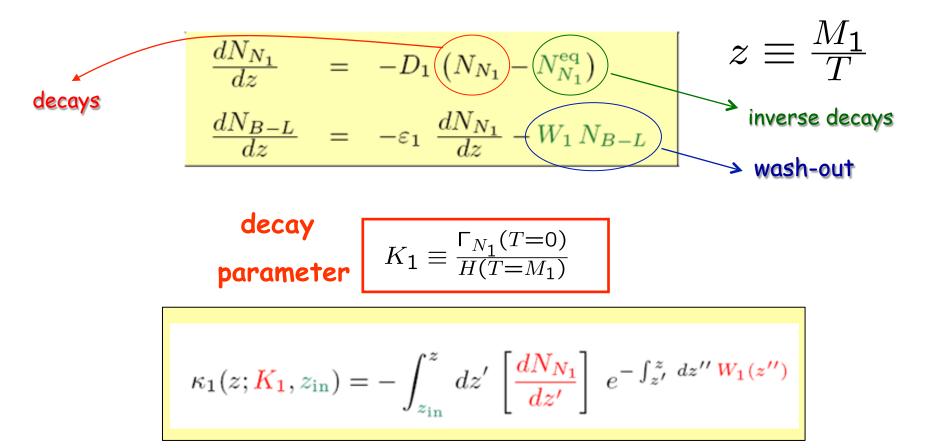

$$N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \kappa_{i}^{\text{fin}} \Rightarrow \eta_{B} = a_{\text{sph}} \frac{N_{B-L}^{\text{fin}}}{N_{\gamma}^{\text{rec}}} \stackrel{\text{baryon-to}}{\underset{\text{number ratio}}{\overset{\text{photon}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{\text{photon}}{\overset{\text{number ratio}}{\overset{\text{number ratio}}{\overset{number rati$$

3) N₃ does not interfere with N₂-decays: $(m_D^{\dagger} m_D)_{23} = 0$ From the last two assumptions

$$\Rightarrow N_{B-L}^{\text{fin}} = \sum_i \varepsilon_i \,\kappa_i^{\text{fin}} \simeq \varepsilon_1 \,\kappa_1^{\text{fin}}$$

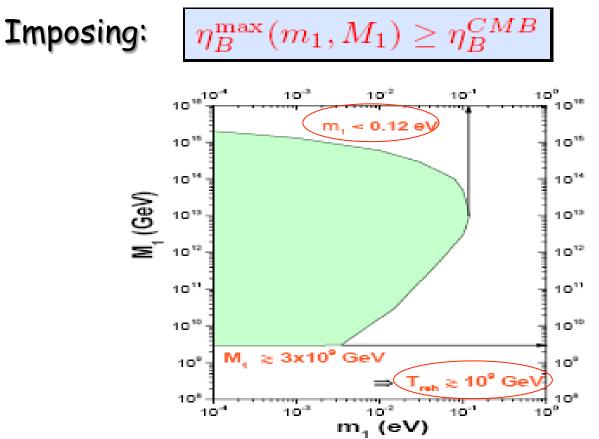
Total CP asymmetries

(Flanz, Paschos, Sarkar'95; Covi, Roulet, Vissani'96; Buchmüller, Plümacher'98)



4) Barring fine-tuned mass cancellations in the seesaw

$$\varepsilon_1 \le \varepsilon_1^{\max} \simeq 10^{-6} \left(\frac{M_1}{10^{10} \,\mathrm{GeV}}\right) \frac{m_{\mathrm{atm}}}{m_1 + m_3}$$


(Davidson, Ibarra '02)

5) Efficiency factor from simple Boltzmann equations

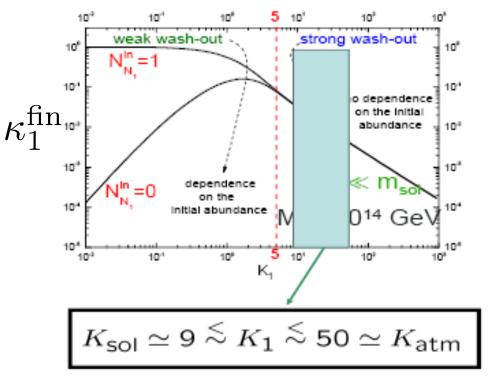
Neutrino mass bounds in vanilla leptog.

(Davidson, Ibarra '02; Buchmüller, PDB, Plümacher '02, '03, '04; Giudice et al. '04) $\eta_B \simeq 0.01 \,\varepsilon_1(m_1, M_1, \Omega) \,\kappa_1^{\text{fin}}(K_1) \leq \eta_B^{\text{max}} = 0.01 \,\varepsilon_1^{\text{max}}(m_1, M_1) \,\kappa_1^{\text{fin}}(K_1^{\text{max}})$

No dipendence on the leptonic mixing matrix U

A pre-exi	isting asymmetry?
$ ho^{1/4}$ ~ 2x10 ¹⁶ GeV???	Inflation
$T_{RH} \lesssim 3 \times 10^{14} ~GeV$	- QCD freeze-out
	Affleck-Dine (at preheating) Gravitational baryogenesis GUT baryogenesis
≳ 10 ⁹ GeV —	Leptogenesis (minimal)
100 GeV	— EWBG
0.1- 1 MeV	- BBN
0.1-1 eV	— Recombination

Strong thermal leptogenesis


The early Universe "knows" the neutrino masses ...

(Buchmüller, PDB, Plümacher '04)

decay parameter

$$\eta_B \simeq 0.01 \,\varepsilon_1(m_1, M_1, \Omega) \,\kappa_1^{\text{fin}}(K_1)$$
$$K_1 \equiv \frac{\Gamma_{N_1}}{H(T = M_1)} \,\sqrt{\frac{m_{\text{sol}, \text{atm}}}{m_\star \sim 10^{-3} \,\text{eV}}} \sim 10 \div 50$$

Independence of the initial abundance of N_1

wash-out of a pre-existing asymmetry

$$N_{B-L}^{\text{p,final}} = N_{B-L}^{\text{p,initial}} e^{-\frac{3\pi}{8}K_1} \ll N_{B-L}^{\text{f,N}_1}$$

$$K_1 \gtrsim K_{\mathrm{st}}(N_{B-L}^{\mathrm{p,i}})$$

$$K_{\rm st}(x) \equiv \frac{8}{3\pi} \left[\ln \left(\frac{0.1}{\eta_B^{\rm CMB}} \right) + \ln |x| \right] \simeq 16 + 0.85 \ln |x|$$

Beyond vanilla Leptogenesis

Degenerate limit and resonant <u>leptogenesis</u>

Vanilla Leptogenesis Non minimal Leptogenesis (in type II seesaw, non thermal,....)

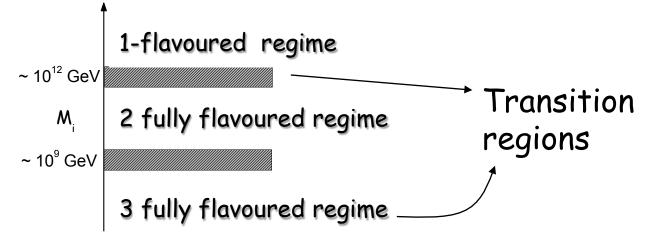
> Improved Kinetic description

(momentum dependence, quantum kinetic effects,finite temperature effects,....., density matrix formalism)

Flavour Effects (heavy neutrino flavour effects, lepton flavour effects and their interplay)

Lepton flavour effects

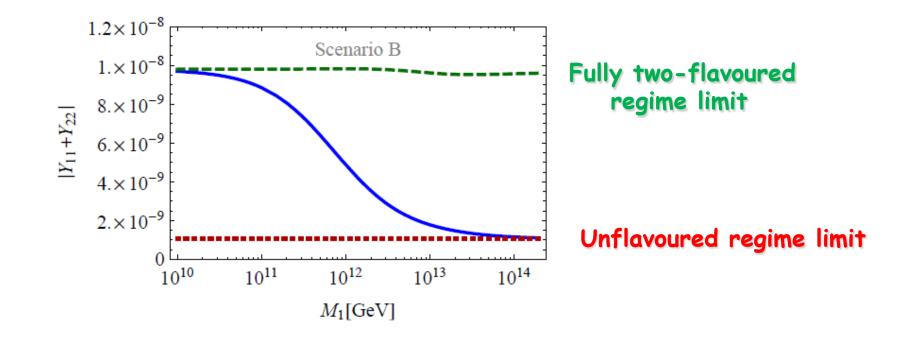
(Abada, Davidson, Losada, Josse-Michaux, Riotto'06; Nardi, Nir, Roulet, Racker '06; Blanchet, PDB, Raffelt '06; Riotto, De Simone '06)


Flavor composition of lepton quantum states:

$$\begin{aligned} |l_1\rangle &= \sum_{\alpha} \langle l_{\alpha} | l_1 \rangle | l_{\alpha} \rangle & (\alpha = e, \mu, \tau) \\ |\bar{l}_1'\rangle &= \sum_{\alpha} \langle l_{\alpha} | \bar{l}_1' \rangle | \bar{l}_{\alpha} \rangle & \bar{P}_{1\alpha} \equiv |\langle \bar{\ell}_1' | \bar{\alpha} \rangle|^2 \end{aligned}$$

For $T \ge 10^{12} \text{ GeV} \Rightarrow \tau$ -Yukawa interactions $(\bar{l}_{L\tau} \phi f_{\tau\tau} e_{R\tau})$ are fast enough to break the coherent evolution of $|l_1\rangle$ and $|\bar{l}_1'\rangle$

 \Rightarrow they become an incoherent mixture of a τ and of a $\mu \text{+} e$ component

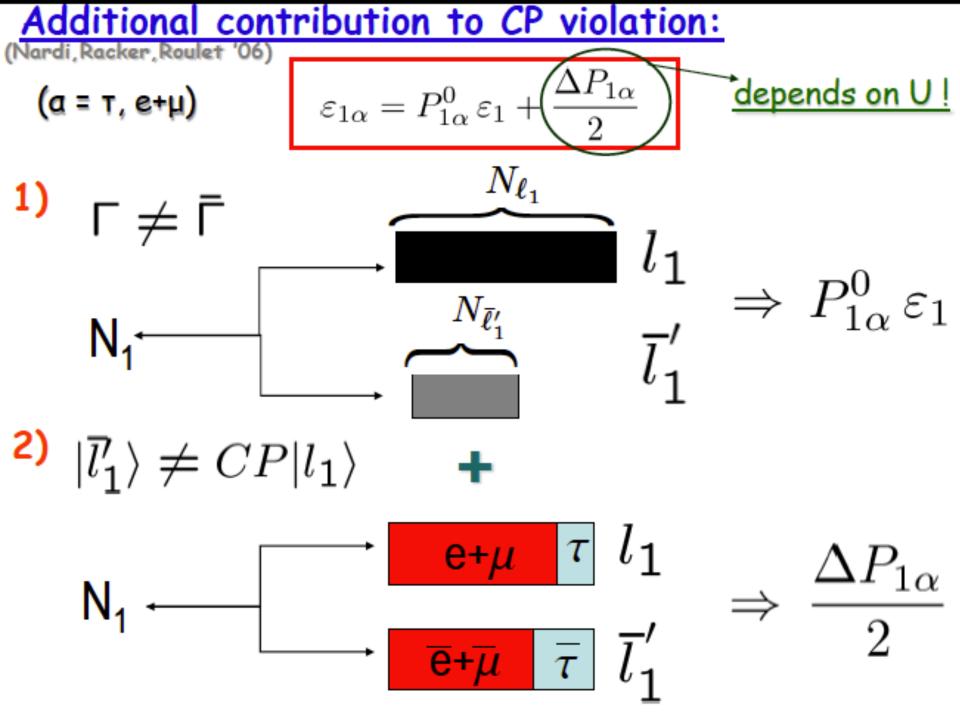

At T \gtrsim 10⁹ GeV then also μ - Yukawas in equilibrium \Rightarrow 3-flavor regime

Density matrix and CTP formalism to describe the transition regimes

(De Simone, Riotto '06; Beneke, Gabrecht, Fidler, Herranen, Schwaller '10)

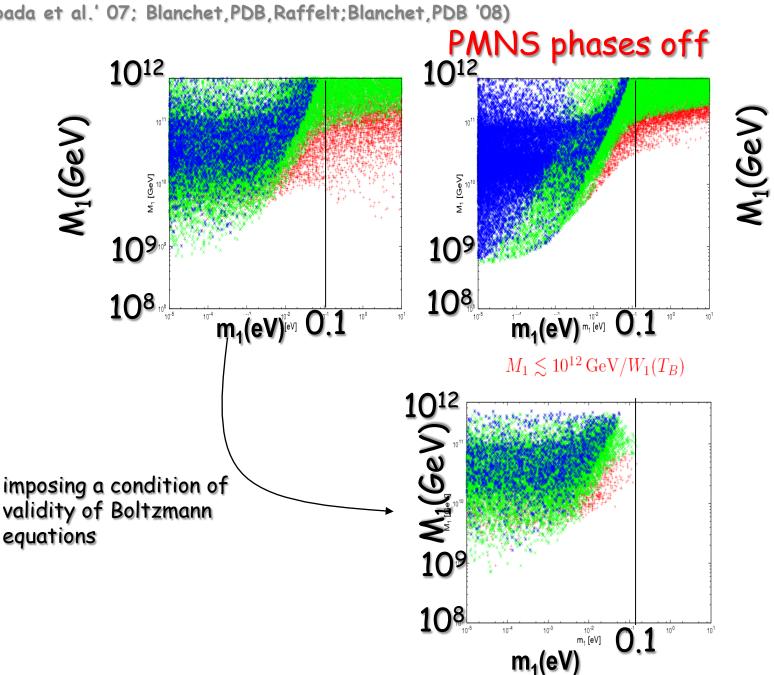
$$\frac{\mathrm{d}Y_{\alpha\beta}}{\mathrm{d}z} = \frac{1}{szH(z)} \left[(\gamma_D + \gamma_{\Delta L=1}) \left(\frac{Y_{N_1}}{Y_{N_1}^{\mathrm{eq}}} - 1 \right) \epsilon_{\alpha\beta} - \frac{1}{2Y_{\ell}^{\mathrm{eq}}} \left\{ \gamma_D + \gamma_{\Delta L=1}, Y \right\}_{\alpha\beta} \right] - \left[\sigma_2 \mathrm{Re}(\Lambda) + \sigma_1 |\mathrm{Im}(\Lambda)| \right] Y_{\alpha\beta}$$

Two fully flavoured regime


$$\begin{array}{l} \left(\mathbf{a}=\mathbf{T}, \mathbf{e}+\mathbf{\mu}\right) & P_{1\alpha} \equiv |\langle l_{\alpha}|l_{1}\rangle|^{2} = P_{1\alpha}^{0} + \Delta P_{1\alpha}/2 & \left(\sum_{\alpha} P_{1\alpha}^{0} = 1\right) \\ \bar{P}_{1\alpha} \equiv |\langle \bar{l}_{\alpha}|\bar{l}_{1}'\rangle|^{2} = P_{1\alpha}^{0} - \Delta P_{1\alpha}/2 & \left(\sum_{\alpha} \Delta P_{1\alpha} = 0\right) \end{array}$$

$$\Rightarrow \ \varepsilon_{1\alpha} \equiv -\frac{P_{1\alpha}\Gamma_1 - \bar{P}_{1\alpha}\bar{\Gamma}_1}{\Gamma_1 + \bar{\Gamma}_1} = P_{1\alpha}^0 \, \varepsilon_1 + \Delta P_{1\alpha}(\Omega, U)/2$$

• Classic Kinetic Equations (in their simplest form)


 \Rightarrow

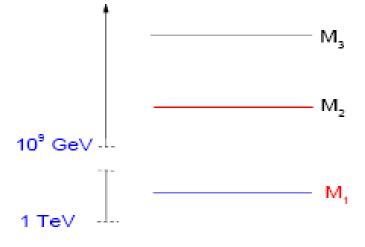
$$\begin{aligned} \frac{dN_{N_{1}}}{dz} &= -D_{1} \left(N_{N_{1}} - N_{N_{1}}^{\text{eq}} \right) \\ \frac{dN_{\Delta_{\alpha}}}{dz} &= -\varepsilon_{1\alpha} \frac{dN_{N_{1}}}{dz} - P_{1\alpha}^{0} W_{1} N_{\Delta_{\alpha}} \\ \Rightarrow N_{B-L} &= \sum_{\alpha} N_{\Delta_{\alpha}} \qquad (\Delta_{\alpha} \neq B/3 - L_{\alpha}) \end{aligned}$$
$$\Rightarrow N_{B-L}^{\text{fin}} &= \sum_{\alpha} \varepsilon_{1\alpha} \kappa_{1\alpha}^{\text{fin}} \simeq 2 \varepsilon_{1} \kappa_{1}^{\text{fin}} + \frac{\Delta P_{1\alpha}}{2} \left[\kappa^{\text{f}} (K_{1\alpha}) - \kappa^{\text{fin}} (K_{1\beta}) \right] \end{aligned}$$
Flavoured decay parameters: $K_{i\alpha} \equiv p_{i\alpha}^{0} K_{i} = \left| \sum_{k} \sqrt{\frac{m_{k}}{m_{\star}}} U_{\alpha k} \Omega_{ki} \right|^{2}$

Upper bound on m₁

(Abada et al.' 07; Blanchet, PDB, Raffelt; Blanchet, PDB '08)

Heavy neutrino flavours: the N₂-dominated scenario

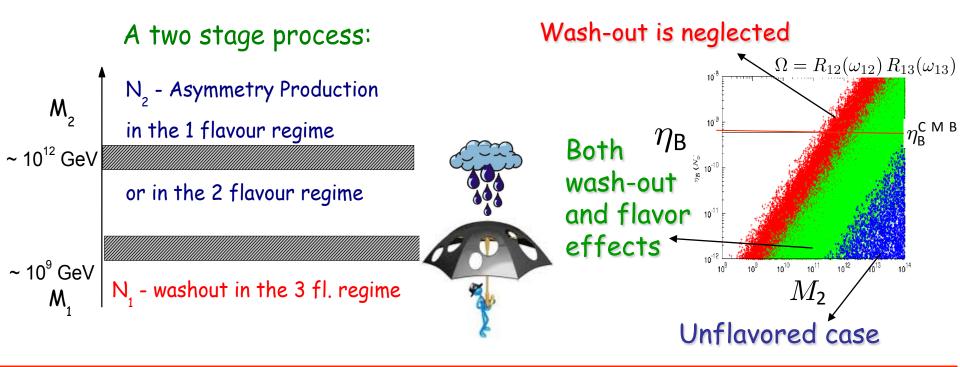
(PDB '05)


If light flavour effects are neglected the asymmetry from the next-to-lightest (N_2) RH neutrinos is typically negligible:

$$N_{B-L}^{\mathrm{f},\mathrm{N}_2} = \varepsilon_2 \kappa(K_2) \, e^{-\frac{3\pi}{8} K_1} \ll N_{B-L}^{\mathrm{f},\mathrm{N}_1} = \varepsilon_1 \, \kappa(K_1)$$

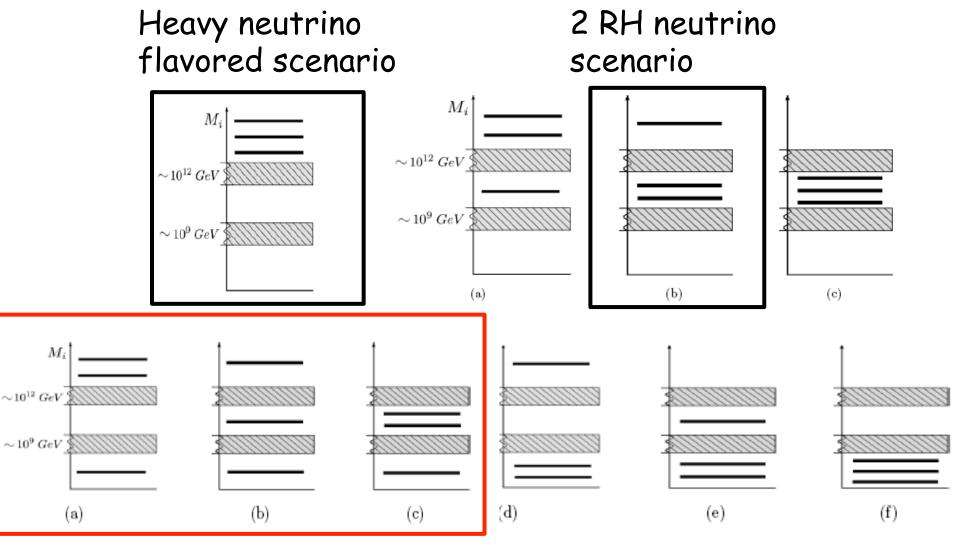
...except for a special choice of $\Omega = R_{23}$ when $K_1 = m_1/m_* \ll 1$ and $\varepsilon_1 = 0$:

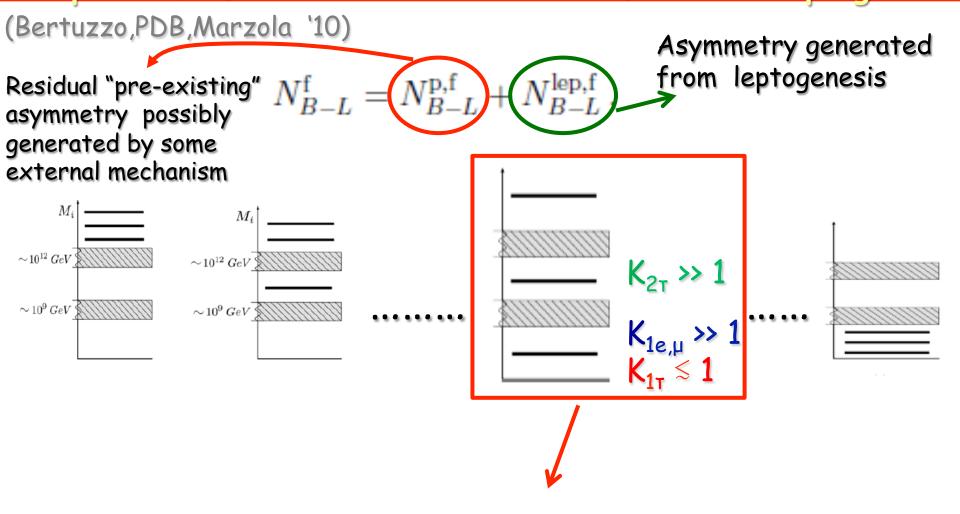
$$\Rightarrow \boxed{N_{B-L}^{\text{fin}} = \sum_{i} \varepsilon_{i} \,\kappa_{i}^{\text{fin}} \simeq \varepsilon_{2} \,\kappa_{2}^{\text{fin}}} \qquad \varepsilon_{2} \stackrel{<}{\sim} 10^{-6} \left(\frac{M_{2}}{10^{10} \,\text{GeV}}\right)$$


The lower bound on M_1 disappears and is replaced by a lower bound on M_2 ... that however still implies a lower bound on T_{reh} !

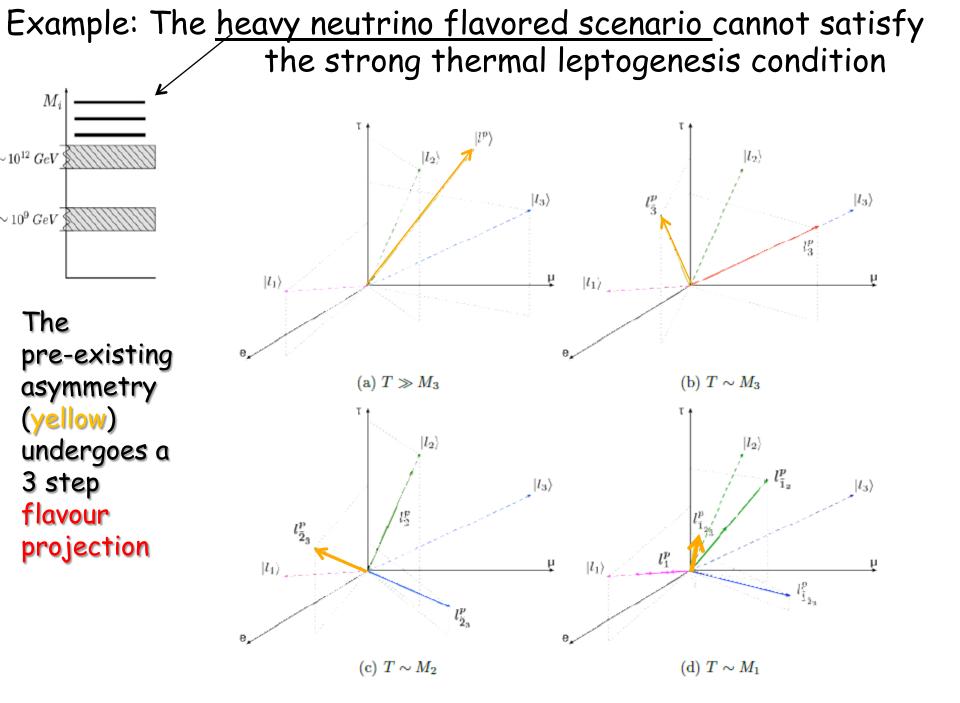
N₂-flavored leptogenesis

(Vives '05; Blanchet, PDB '06; Blanchet, PDB '08)

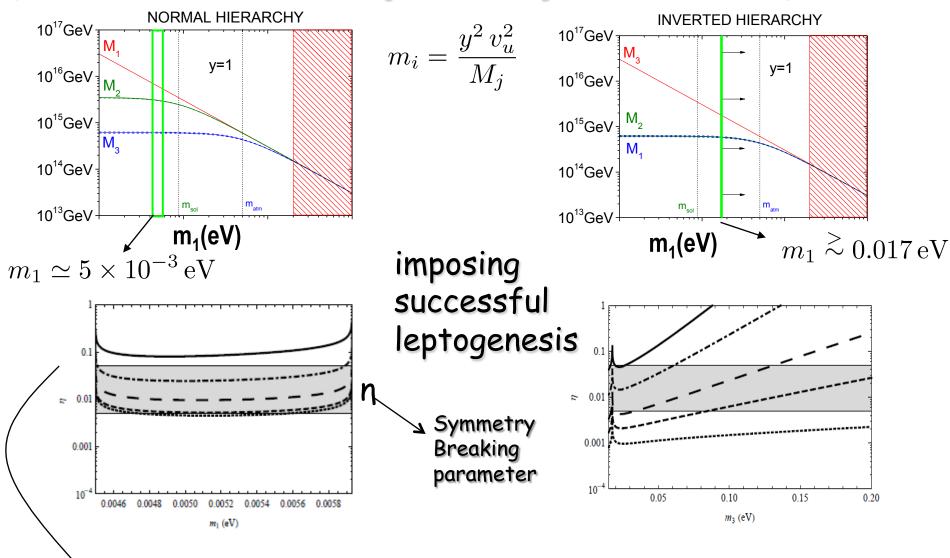

Combining together lepton and heavy neutrino flavour effects one has


$$N_{B-L}^{\rm f}(N_2) = P_{2e}^0 \,\varepsilon_2 \,\kappa(K_2) \, e^{-\frac{3\pi}{8} \,K_{1e}} + P_{2\mu}^0 \,\varepsilon_2 \,\kappa(K_2) \, e^{-\frac{3\pi}{8} \,K_{1\mu}} + P_{2\tau}^0 \,\varepsilon_2 \,\kappa(K_2) \, e^{-\frac{3\pi}{8} \,K_{1\tau}}$$

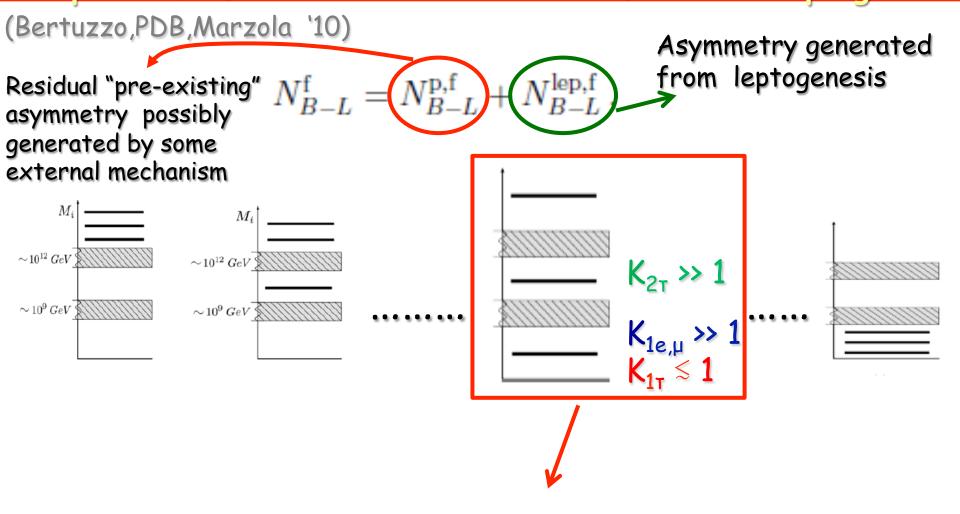
Notice that $K_1 = K_{1e} + K_{1\mu} + K_{1\tau}$


With flavor effects the domain of applicability goes much beyond the choice $\Omega = R_{23}$ The existence of the heaviest RH neutrino N₃ is necessary for the ε_{2a} not to be negligible!

N₂-dominated scenario

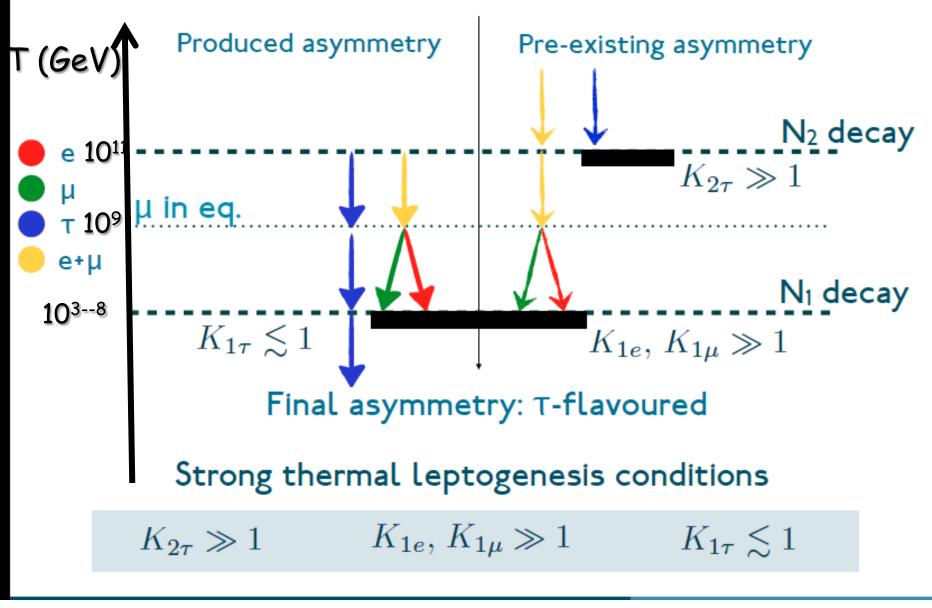


The conditions for the wash-out of a pre-existing asymmetry ('strong thermal leptogenesis') can be realised only within a N_2 -dominated scenario where the final asymmetry is dominantly produced in the tauon flavour



Heavy flavoured scenario in models with A4 discrete flavour symmetry

(Manohar, Jenkins'08;Bertuzzo,PDB,Feruglio,Nardi '09;Hagedorn,Molinaro,Petcov '09)



* The different lines correspond to values of y between 0.3 and 3

The conditions for the wash-out of a pre-existing asymmetry ('strong thermal leptogenesis') can be realised only within a N_2 -dominated scenario where the final asymmetry is dominantly produced in the tauon flavour

How is STL realised? - A cartoon

Courtesy of Michele Re Fiorentin

Density matrix formalism with heavy neutrino flavours

2

(Blanchet, PDB, Jones, Marzola '11) For a thorough description of all neutrino mass patterns including transition regions and all effects (flavour projection, phantom leptogenesis,...) one needs a description in Terms of a density matrix formalism The result is a "monster" equation:

 $dN^{B-}_{\alpha\beta}$

Strong thermal leptogenesis and the absolute neutrino mass scale

(PDB, Sophie King, Michele Re Fiorentin 2014)

Final asymmetry from leptogenesis

$$\begin{split} N_{B-L}^{\text{lep,f}} &\simeq \left[\frac{K_{2e}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \kappa(K_{2\tau_{2}^{\perp}}) + \left(\varepsilon_{2e} - \frac{K_{2e}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \right) \, \kappa(K_{2\tau_{2}^{\perp}}/2) \right] e^{-\frac{3\pi}{8}K_{1e}} + \\ &+ \left[\frac{K_{2\mu}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \, \kappa(K_{2\tau_{2}^{\perp}}) + \left(\varepsilon_{2\mu} - \frac{K_{2\mu}}{K_{2\tau_{2}^{\perp}}} \, \varepsilon_{2\tau_{2}^{\perp}} \right) \, \kappa(K_{2\tau_{2}^{\perp}}/2) \right] e^{-\frac{3\pi}{8}K_{1\mu}} + \\ &+ \, \varepsilon_{2\tau} \, \kappa(K_{2\tau}) \, e^{-\frac{3\pi}{8}K_{1\tau}} \, , \end{split}$$

Relic value of the pre-existing asymmetry:

$$N_{\Delta\tau}^{p,f} = (p_{p\tau}^{0} + \Delta p_{p\tau}) e^{-\frac{3\pi}{8}(K_{1\tau} + K_{2\tau})} N_{B-L}^{p,i}, \qquad (18)$$

$$N_{\Delta\mu}^{p,f} = \left\{ (1 - p_{p\tau}^{0}) \left[p_{\mu\tau_{2}^{\perp}}^{0} p_{p\tau_{2}^{\perp}}^{0} e^{-\frac{3\pi}{8}(K_{2e} + K_{2\mu})} + (1 - p_{\mu\tau_{2}^{\perp}}^{0}) (1 - p_{p\tau_{2}^{\perp}}^{0}) \right] + \Delta p_{p\mu} \right\} e^{-\frac{3\pi}{8}K_{1\mu}} N_{B-L}^{p,i}, \\
N_{\Delta_{e}}^{p,f} = \left\{ (1 - p_{p\tau}^{0}) \left[p_{e\tau_{2}^{\perp}}^{0} p_{p\tau_{2}^{\perp}}^{0} e^{-\frac{3\pi}{8}(K_{2e} + K_{2\mu})} + (1 - p_{e\tau_{2}^{\perp}}^{0}) (1 - p_{p\tau_{2}^{\perp}}^{0}) \right] + \Delta p_{pe} \right\} e^{-\frac{3\pi}{8}K_{1e}} N_{B-L}^{p,i}.$$

Successful strong thermal leptogenesis then requires: $K_{1e}, K_{1\mu} \gtrsim K_{\text{st}}(N_{\Delta_{e,\mu}}^{\text{p,i}}), K_{2\tau} \gtrsim K_{\text{st}}(N_{\Delta_{\tau}}^{\text{p,i}}), K_{1\tau} \lesssim 1.$

(PDB, Sophie King, Michele Re Fiorentin 2014)

Assume first NORMAL ORDERING

Flavoured decay
$$K_{i\beta} \equiv p_{i\beta}^0 K_i = \left| \sum_k \sqrt{\frac{m_k}{m_\star}} U_{\beta k} \Omega_{ki} \right|^2$$
 parameters:

$$K_{1\tau} = \left| \sqrt{\frac{m_1}{m_\star}} U_{\tau 1} \Omega_{11} + \sqrt{\frac{m_2}{m_\star}} U_{\tau 2} \Omega_{21} + \sqrt{\frac{m_3}{m_\star}} U_{\tau 3} \Omega_{31} \right|^2 \leq \mathbf{1}$$

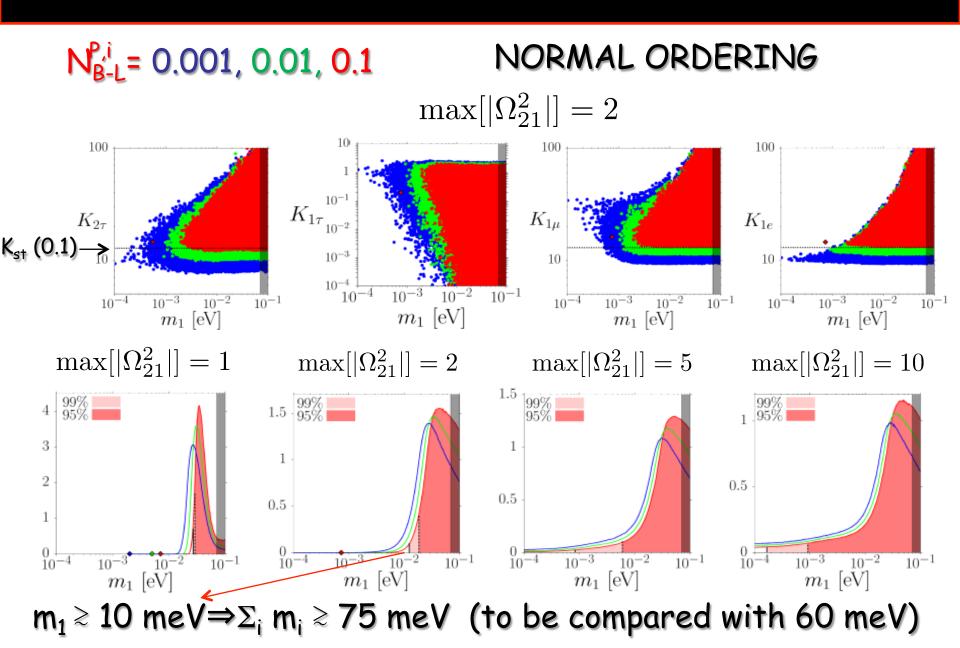
$$\sqrt{\frac{m_{\text{atm}}}{m_\star}} U_{\tau 0} Q_{\tau 1} = \sqrt{\frac{m_1}{m_\star}} U_{\tau 2} \Omega_{21} + \sqrt{\frac{m_3}{m_\star}} U_{\tau 3} \Omega_{31} \right|^2 \leq \mathbf{1}$$

$$\mathbf{m_1} \lesssim \mathbf{m_{sol}} \Rightarrow \sqrt{\frac{m_{\rm atm}}{m_\star}} U_{\tau 3} \Omega_{31} = -\sqrt{\frac{m_1}{m_\star}} U_{\tau 1} \Omega_{11} - \sqrt{\frac{m_{\rm sol}}{m_\star}} U_{\tau 2} \Omega_{21} + \sqrt{K_{1\tau}} e^{i\varphi}$$

Defining: $K_{1\alpha}^0 \equiv K_{1\alpha}(m_1 = 0)$ and φ_0 such that

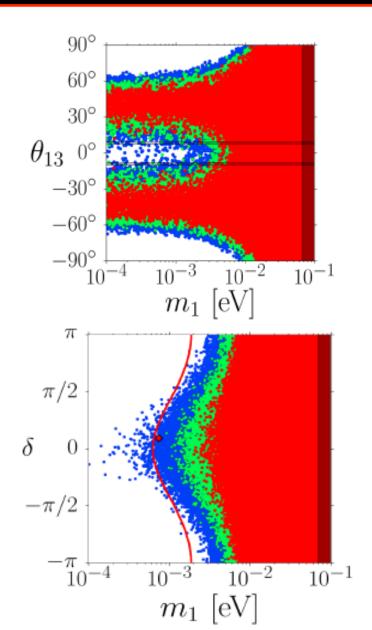
$$\sqrt{K_{1\alpha}^0} e^{i\,\varphi_0} \equiv \Omega_{21} \sqrt{\frac{m_{\rm sol}}{m_\star}} \left(U_{\alpha 2} - \frac{U_{\tau 2}}{U_{\tau 3}} U_{\alpha 3} \right) + \frac{U_{\alpha 3}}{U_{\tau 3}} \sqrt{K_{1\tau}} e^{i\,\varphi}$$

For $\alpha = e, \mu$ we obtain

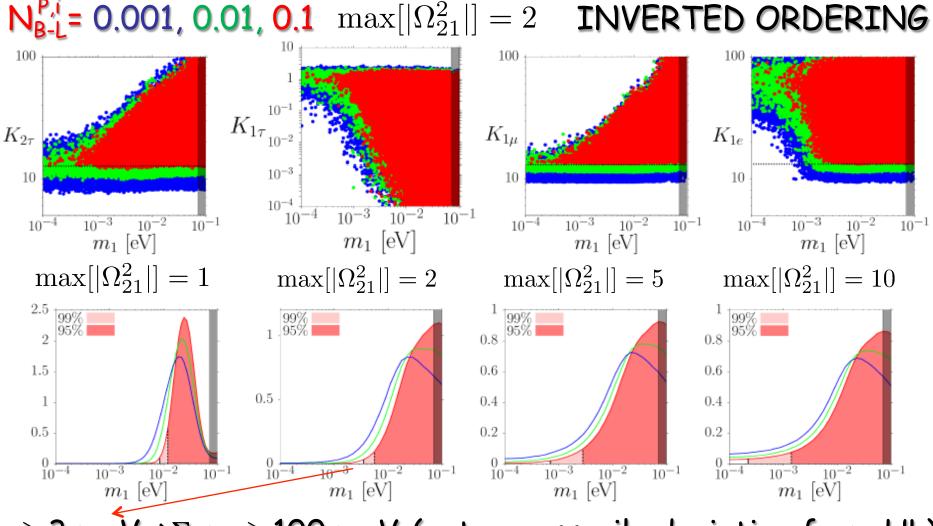

$$K_{1\alpha} = \left| \Omega_{11} \sqrt{\frac{m_1}{m_\star}} \left(U_{\alpha 1} - \frac{U_{\tau 1}}{U_{\tau 3}} U_{\alpha 3} \right) + \sqrt{K_{1\alpha}^0} e^{i \varphi_0} \right|^2 > K_{\rm st} (N_{\Delta \alpha}^{\rm p,i})^2$$

(PDB, Sophie King, Michele Re Fiorentin 2014)

One then easily finds (NO)


$$m_{1} > m_{1}^{\text{lb}} \equiv m_{\star} \max_{\alpha} \left[\left(\frac{\sqrt{K_{\text{st}}} - \sqrt{K_{1\alpha}^{0,\max}}}{\max[|\Omega_{11}|] \left| U_{\alpha 1} - \frac{U_{\tau 1}}{U_{\tau 3}} U_{\alpha 3} \right|} \right)^{2} \right]$$
$$K_{1\alpha}^{0,\max} \equiv \left(\max[|\Omega_{21}|] \sqrt{\frac{m_{\text{sol}}}{m_{\star}}} \left| U_{\alpha 2} - \frac{U_{\tau 2}}{U_{\tau 3}} U_{\alpha 3} \right| + \left| \frac{U_{\alpha 3}}{U_{\tau 3}} \right| \sqrt{K_{1\tau}^{\max}} \right)^{2}$$

The lower bound exists only if either for the muonic flavour or for the electronic (or for both) the value of $K_{1\alpha}^{0,\max}$ is smaller than K_{st} : this indeed happens for the electronic flavour for NO and for the muonic flavour for IO but only if $\max[|\Omega_{21}|]$ is not too large

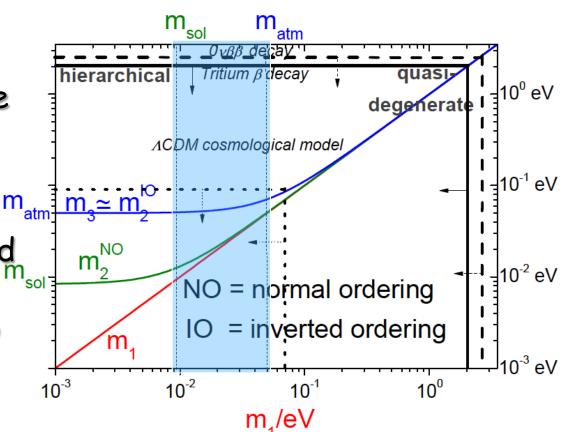


The lower bound would not have existed for large θ_{13} values

It is modulated by the Dirac phase and it could become more stringent when δ will be measured

(NO \rightarrow IO \Rightarrow analytically: $m_{sol} \rightarrow m_{atm}$, 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 1)

 $m_1 \ge 3 \text{ meV} \Rightarrow \Sigma_i m_i \ge 100 \text{ meV}$ (not necessarily deviation from HL)


Neutrino masses: m₁ < m₂ < m₃

neutrino mixing data

2 possible schemes: normal or inverted

$$m_3^2 - m_2^2 = \Delta m_{\rm atm}^2 \text{ or } \Delta m_{\rm sol}^2 \quad m_{\rm atm} \equiv \sqrt{\Delta m_{\rm atm}^2 + \Delta m_{\rm sol}^2} \simeq 0.05 \,\text{eV}$$
$$m_2^2 - m_1^2 = \Delta m_{\rm sol}^2 \text{ or } \Delta m_{\rm atm}^2 \quad m_{\rm sol} \equiv \sqrt{\Delta m_{\rm sol}^2} \simeq 0.009 \,\text{eV}$$

If STL with NO and Planck bound are correct, then neutrino masses have to fall into the "partial hierarchical" window: necessary to solve the ambiguity between NO and m_{sol} IO with neutrino oscillation experiments to extract m1 and test STL

SO(10)-inspired leptogenesis

(Branco et al. '02; Nezri, Orloff '02; Akhmedov, Frigerio, Smirnov '03)

Expressing the neutrino Dirac mass matrix m_D (in the basis where the Majorana mass and charged lepton mass matrices are diagonal) as:

$$m_D = V_L^{\dagger} D_{m_D} U_R \qquad D_{m_D} = \text{diag}\{m_{D1}, m_{D2}, m_{D3}\}$$

SO(10) inspired conditions (also realized beyond SO(10) or GUT models!):

 $m_{D1} = \alpha_1 m_u, \ m_{D2} = \alpha_2 m_c, \ m_{D3} = \alpha_3 m_t, \ (\alpha_i = \mathcal{O}(1))$

 $V_L \simeq V_{CKM} \simeq I$

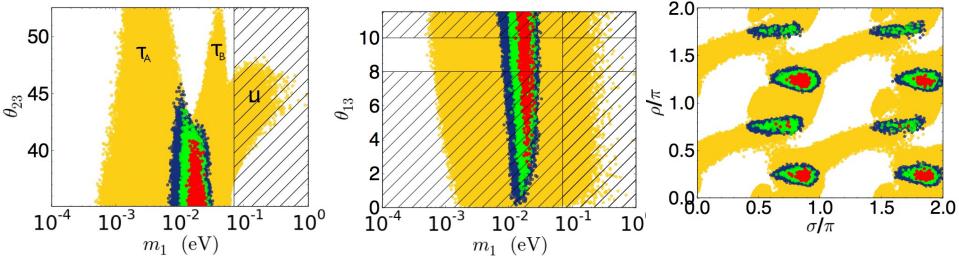
From the seesaw formula one can express: $U_R = U_R (U, m_{i,}; \alpha_i, V_L), M_i = M_i (U, m_{i,}; \alpha_i, V_L) \Rightarrow \eta_B = \eta_B (U, m_{i,}; \alpha_i, V_L)$

one typically obtains (barring fine-tuned 'crossing level' solutions):

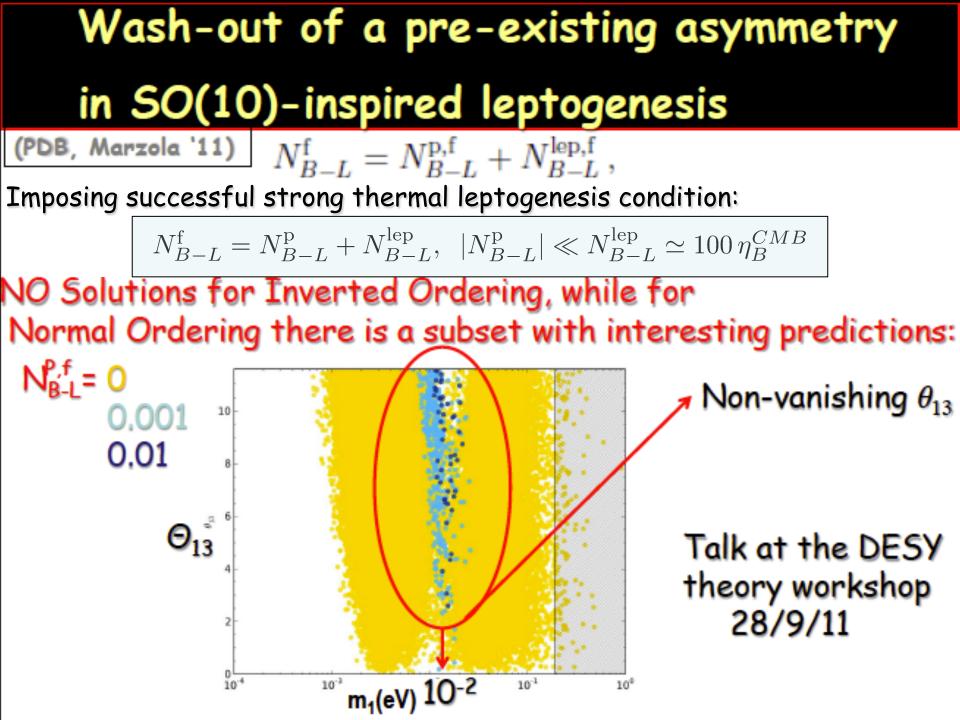
 $M_1 \gg \alpha_1^2 10^5 \text{GeV}, M_2 \gg \alpha_2^2 10^{10} \text{GeV}, M_3 \gg \alpha_3^2 10^{15} \text{GeV}$

since $M_1 \ll 10^9 \text{ GeV} \Rightarrow \eta_B(N_1) \ll \eta_B^{CMB}$ = ...realizes the N₂-dominated scenario and also...

Strong thermal SO(10)-inspired solution


> successful leptogenesis can be attained ($\eta_B = \eta_B^{CMB}$) for some allowed regions in the space of low energy neutrino parameters (see-saw is overconstained!): YELLOW REGIONS. This happens because α_1 and α_3 cancel out in the calculation of the asymmetry

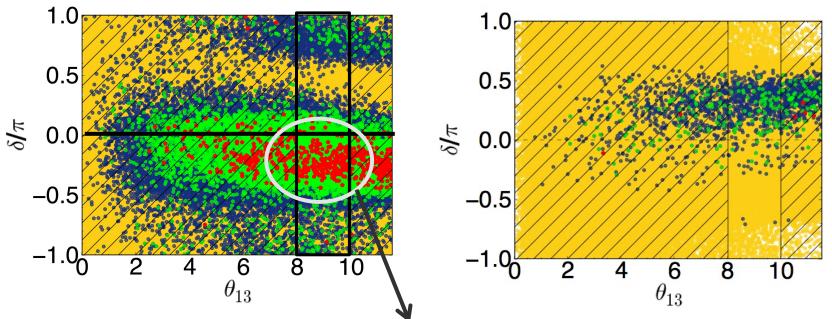
(PDB, Marzola '11-'12)


the strong thermal leptonesis condition can be also satisfied for a subset of the solutions (red, green, blue regions)

(PDB, Marzola '11-'12)

 $\alpha_2=5$ NORMAL ORDERING $N_{B-L}^{P,i}=0.001, 0.01, 0.1$ I $\leq V_L \leq V_{CKM}$

For IO marginal allowed solutions but not satisfying strong thermal!

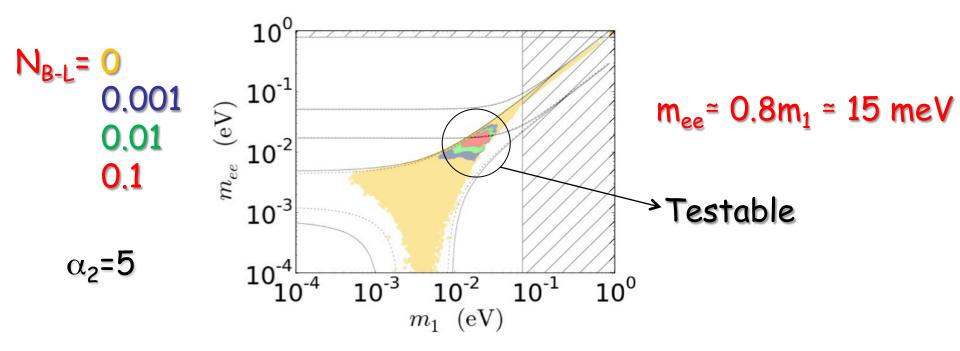

SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'12)

Imposing successful strong thermal leptogenesis condition:

 $N_{B-L}^{\rm f} = N_{B-L}^{\rm p} + N_{B-L}^{\rm lep}, \ |N_{B-L}^{\rm p}| \ll N_{B-L}^{\rm lep} \simeq 100 \, \eta_B^{CMB}$

Link between the sign of J_{CP} and the sign of the asymmetry $\eta_B = \eta_B^{CMB}$ $\eta_B = -\eta_B^{CMB}$

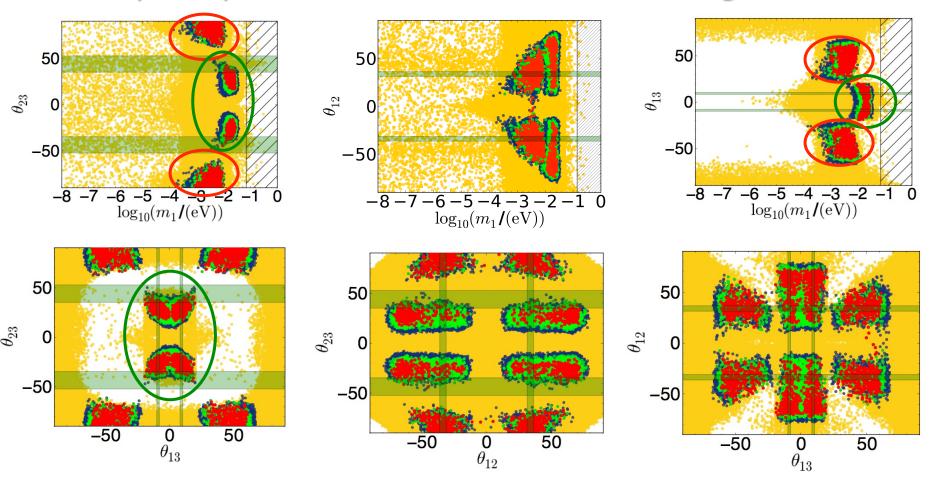

A Dirac phase $\delta \sim -45^{\circ}$ is favoured for large θ_{13}

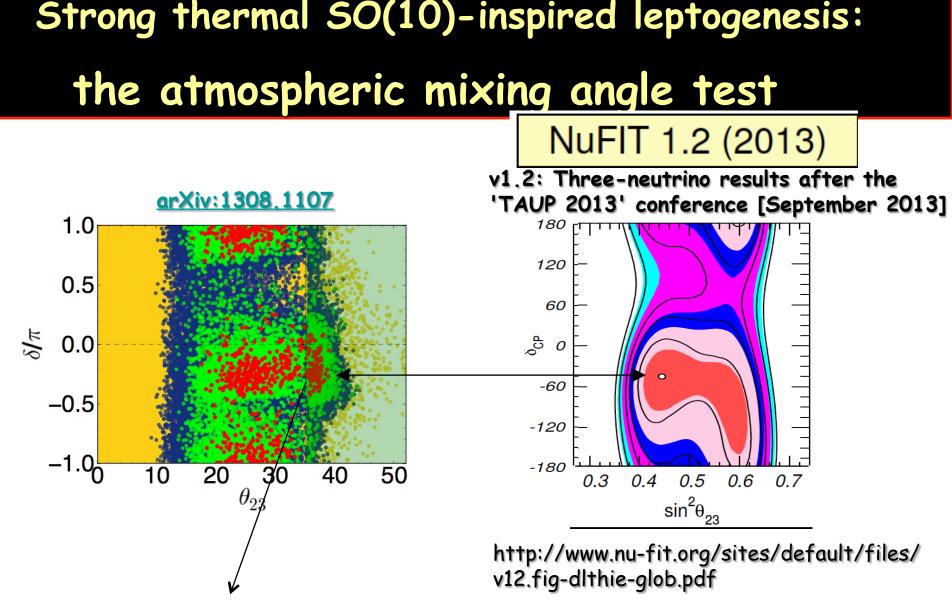
SO(10)-inspired+strong thermal leptogenesis

(PDB, Marzola '11-'12) $N_{B-L}^{\rm f} = N_{B-L}^{\rm p,f} + N_{B-L}^{\rm lep,f}$,

$$N_{B-L}^{\rm f} = N_{B-L}^{\rm p} + N_{B-L}^{\rm lep}, \ |N_{B-L}^{\rm p}| \ll N_{B-L}^{\rm lep} \simeq 100 \, \eta_B^{CMB}$$

Sharp predictions on the absolute neutrino mass scales

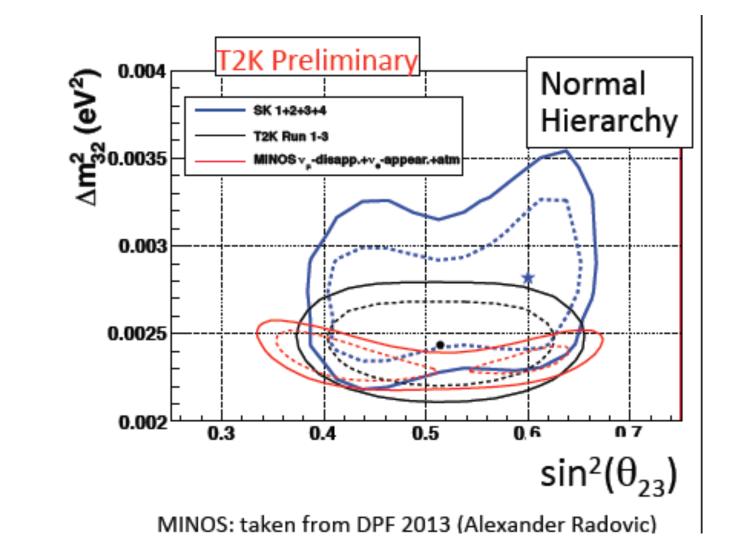



Strong thermal SO(10)-inspired leptogenesis:

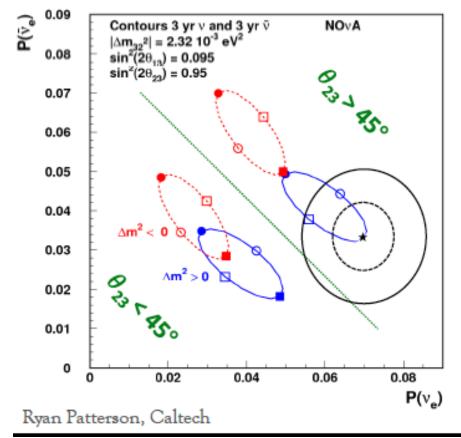
on the right track?

(PDB, Marzola '13)

If we do not plug any experimental information (mixing angles left completely free) : 1 **excluded** + 1 **allowed** region



For large values of $\theta_{23} \gtrsim 35^{\circ}$ the Dirac phase is predicted to be $\delta \sim -45^{\circ}$


It is interesting that low values of the atmospheric mixing angle are also necessary to reproduce $b-\tau$ unification in SO(10) models (Bajc. Senjanovic. Vissani '06)

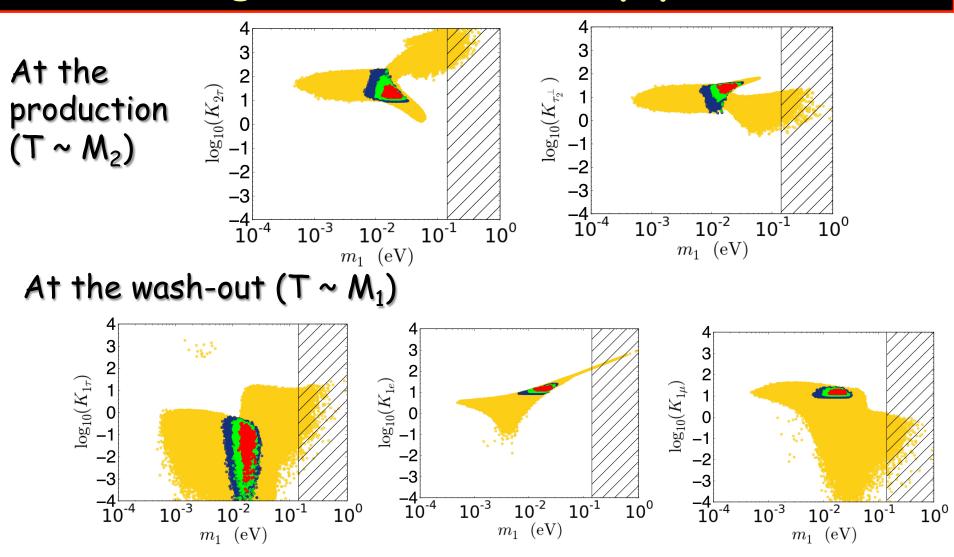
The atmospheric mixing angle test

Experimentl test on the way: NOvA

Expected NOvA contours for one example scenario at 3 yr + 3 yr

Final Remarks

- ✓ If confirmed the BICEP2 signal would support the existence of a very high energy scale (intriguingly close to the grand-unified scale) and likely of very high values of the reheat temperature
- ✓ This would certainly be compatible with a high energy model of baryogenesis such as traditional high scale thermal leptogenesis but it also makes the problem of the initial conditions more compelling
- \checkmark With flavour effects the N2-dominated scenario is the only one able to satisfy strong thermal condition (holds for hierarchical spectrum)
- ✓ But measured values of mixing angles imply a deviation of neutrino masses from the hierarchical limits that might be detected and this is more compelling for NO (BOSS hint as a preliminary hint?)
- ✓ SO(10)-inspired models realise the N₂-dominated scenario and can also realise strong thermal leptogenesis


Strong thermal SO(10)-inspired leptogenesis solution

ORDERING	NORMAL
θ ₁₃	≳ 3°
θ ₂₃	≲ 42°
δ	~ -45°
m _{ee} ~ 0.8 m ₁	≃ 15 meV

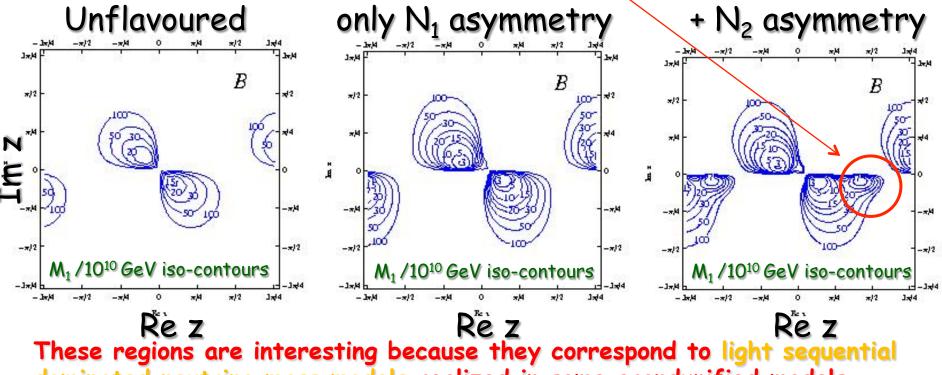
A (truly) final remark

"A hypothesis has to take a risk, has to stick is neck out. If a theory does not take a risk at all Because it is compatible with every possible observation that it is not scientific" (K. Popper)

Some insight from the decay parameters

Flavour projection

(Engelhard, Nir, Nardi '08 , Bertuzzo,PDB,Marzola '10) Assume M_{i+1} ≥ 3M_i (i=1,2)


The heavy neutrino flavour basis cannot be orthonormal 2 otherwise the CP asymmetries would vanish: this complicates the calculation of the final asymmetry $p_{ij} = |\langle \ell_i | \ell_j \rangle|^2 \qquad p_{ij} = \frac{\left| (m_D^{\dagger} m_D)_{ij} \right|^2}{(m_D^{\dagger} m_D)_{ij} (m_D^{\dagger} m_D)_{ij}}.$ 10c (1-P12) $N_{B-L}^{(N_2)}(T \ll M_1) = N_{\Delta_1}^{(N_2)}(T \ll M_1) + N_{\Delta_{1\perp}}^{(N_2)}(T \ll M_1)$ Component from heavier RH neutrinos Contribution from heavier RH parallel to l1 and washed-out by N1 neutrinos orthogonal to l₁ and escaping inverse decays N₁ wash-out $N^{(N_2)}_{\Delta_1}(T \ll M_1) = p_{12} e^{-\frac{3\pi}{8}K_1} N^{(N_2)}_{B-L}(T \sim M_2)$

2 RH neutrino scenario revisited

(King 2000;Frampton,Yanagida,Glashow '01,Ibarra, Ross 2003;Antusch, PDB,Jones,King '11) In the 2 RH neutrino scenario the N₂ production has been so far considered to be safely negligible because ε_{2α} were supposed to be strongly suppressed and very strong N₁ wash-out. But taking into account:

- the N_2 asymmetry N_1 -orthogonal component
- an additional unsuppressed term to $\epsilon_{2\alpha}$

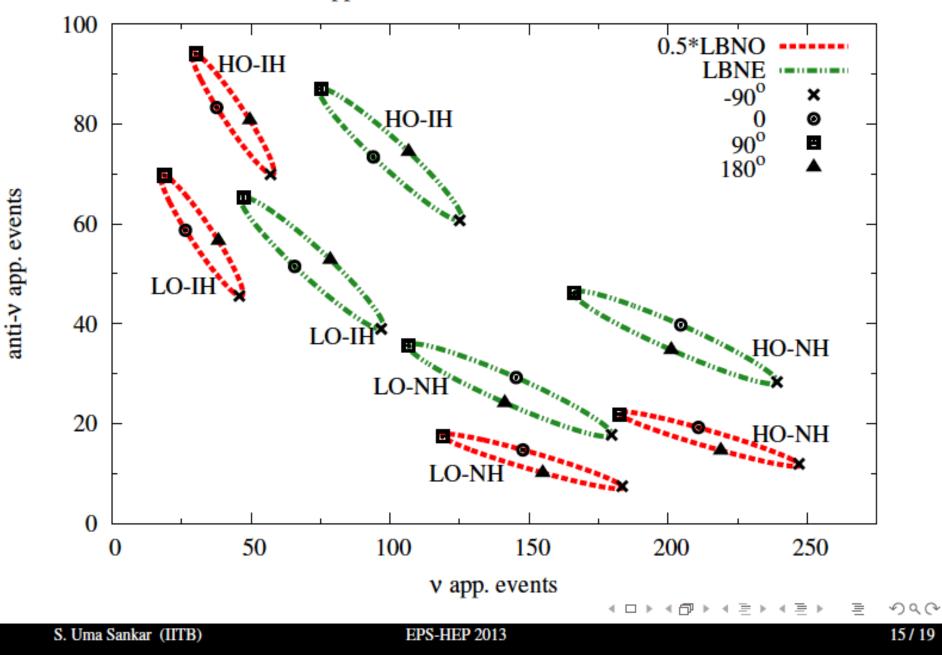
New allowed N₂ dominated regions appear

dominated neutrino mass models realized in some grandunified models

Affleck-Dine Baryogenesis (Affleck, Dine '85)

In the Supersymmetric SM there are many "flat directions" in the space of a field composed of squarks and/or sleptons

$$V(\phi) = \sum_{i} \left| \frac{\partial W}{\partial \phi_i} \right|^2 + \frac{1}{2} \sum_{A} \left(\sum_{ij} \phi_i^*(t_A)_{ij} \phi_j \right)^2$$



A flat direction can be parametrized in terms of a complex field (AD field) that carries a baryon number that is violated dynamically during inflation

$$\frac{n_B}{s} \sim 10^{-10} \left(\frac{m_{3/2}}{m_{\Phi}}\right) \left(\frac{m_{\Phi}}{\text{TeV}}\right)^{-\frac{1}{2}} \left(\frac{M}{M_P}\right)^{\frac{3}{2}} \left(\frac{T_R}{10 \text{ GeV}}\right)$$

The final asymmetry is $\propto T_{RH}$ and the observed one can be reproduced $\,$ for low values $T_{RH} \sim 10~GeV\,$!

Electron appearance events for 0.5*LBNO and LBNE

