next up previous contents
Next: Anisotropy energy Up: Micromagnetic description Previous: Micromagnetic description   Contents

Exchange energy

Taking the atomic representation for exchange energy between two moments (equation 2.2), we can assume that the angle between two neighbouring spins is $ \phi_{i,j}$. The sum of all the exchange energies based on equation 2.4 can be rewritten as:


$\displaystyle \mathcal{E}_{\mathrm{ex}}$ $\displaystyle =$ $\displaystyle - \mathcal{J}S^2 \sum_i \sum_{j\in \mathcal{N}_i} \cos{\phi}_{i,j}$ (2.18)

where $ S=1$ since $ \ensuremath{\mathbf{S}}$ is a unit vector (equation 2.3) and for small values of $ \phi_{i,j}$ we use the leading terms in the Taylor expansion of $ \cos{\phi}_{i,j}$ (figure 2.6):
$\displaystyle \cos{\phi}_{i,j}$ $\displaystyle \approx$ $\displaystyle 1-{\phi^2_{i,j} \over 2}$ (2.19)

With this assumption, equation 2.18 can be rewritten:
$\displaystyle \mathcal{E}_{\mathrm{ex}}$ $\displaystyle =$ $\displaystyle \mathcal{K} + {\mathcal{J}S^2 \over 2} \sum_i \sum_{j\neq i}^{\mathcal{N}} {\phi}_{i,j}^{2}$ (2.20)

where $ \mathcal{K}$ is a constant. Since $ \ensuremath{\mathbf{S}}_i = {\ensuremath{\mathbf{M}}(\ensuremath{\mathbf{r}}_i) \over M_s}$ and $ \vert\ensuremath{\mathbf{S}}_i\vert = \vert\ensuremath{\mathbf{S}}_j\vert = 1$ (figure 2.5):
$\displaystyle \vert\phi_{i,j}\vert$ $\displaystyle \approx$ $\displaystyle \vert\ensuremath{\mathbf{S}}_i-\ensuremath{\mathbf{S}}_j\vert$ (2.21)
  $\displaystyle =$ $\displaystyle a { \vert\ensuremath{\mathbf{S}}_i-\ensuremath{\mathbf{S}}_j\vert \over a }$ (2.22)

and $ { \vert\ensuremath{\mathbf{S}}_i-\ensuremath{\mathbf{S}}_j\vert \over a }$ approximates the spatial derivative of $ \ensuremath{\mathbf{S}}$ over the lattice spacing $ a$.

If we take $ \ensuremath{\mathbf{r}}_{i,j}$ to be a lattice translation vector of magnitude $ a$ as in figure 2.5, the directional derivative $ \nabla_{\ensuremath{\mathbf{r}}_{i,j}}\ensuremath{\mathbf{S}}$ can be used to express $ \vert\ensuremath{\mathbf{S}}_i-\ensuremath{\mathbf{S}}_j\vert$.

Inserting this into equation 2.18, the exchange energy can now be represented as (Blundell, 2001):


$\displaystyle \mathcal{E}_{\mathrm{ex}}$ $\displaystyle =$ $\displaystyle - \mathcal{J}S^2 \sum_i \sum_{j\neq i}^{\mathcal{N}} \left [ (\ensuremath{\mathbf{r}}_{i,j} \cdot \nabla)\ensuremath{\mathbf{S}} \right ] ^2$ (2.23)
  $\displaystyle =$ $\displaystyle - \mathcal{J}S^2a^2 \sum_i \sum_{j\neq i}^{\mathcal{N}} \left [(\nabla m_x)^2 + (\nabla m_y)^2 + (\nabla m_z)^2 \right ]$ (2.24)

if we take $ \ensuremath{\mathbf{r}}_{i,j}$ outside the summations and redefine this as $ a$ (the nearest neighbour distance). Since we will integrate over volume to obtain the continuous representation, if we consider a unit cell site number $ z=1$, $ 2$ or $ 4$ (for simple cubic, body-centred cubic and face-centred cubic respectively), we can define the exchange coupling constant (Aharoni, 2000):
$\displaystyle A$ $\displaystyle =$ $\displaystyle {\mathcal{J}S^2z \over a}$ (2.25)

$ A$The exchange coupling constant $ z$The cell site number; $ z=1$, $ 2$ or $ 4$ for simple cubic, body-centred cubic and face-centred cubic respectively $ a$The distance between nearest neighbours in a crystalline lattice

We can now ignore the discrete lattice, yielding the continuous form:

$\displaystyle \mathcal{E}_{\mathrm{ex}}$ $\displaystyle =$ $\displaystyle A \int_V \left [ (\nabla S_x)^2 + (\nabla S_y)^2 + (\nabla S_z)^2 \right ] \mathrm{d}^3r$ (2.26)

Figure: The functions $ \cos{\phi}$ (solid black) and $ 1-{\phi ^2 \over 2}$ (dashed red). The dotted green line represents the difference between the two functions
\includegraphics[width=1.0\textwidth,clip]{images/smallcos}


next up previous contents
Next: Anisotropy energy Up: Micromagnetic description Previous: Micromagnetic description   Contents
Richard Boardman 2006-11-28