next up previous contents
Next: Supporting equations for the Up: thesis Previous: Summary   Contents


Analytical calculation of the stray field

Since the phase shift of the cantilever attached to the sharp tip in a magnetic force microscope (Sáenz et al., 1987) when measured corresponds to the measured signal (McVitie et al., 2001), the second derivative of the stray field (Rugar et al., 1990, Hug et al., 1998) is proportional to the rate of change of the force on the tip (Barthelmeß et al., 2004).

If the second derivative is evaluated at a fixed height above a demagnetising energy dataset of micromagnetic simulation results then this is comparable to a magnetic force microscope. This derivative is presented in this appendix.

The dipolar energy between two points in a magnetic system, assuming each discrete cell is a dipole, can be considered to be


$\displaystyle E_{\mathrm{pot}}$ $\displaystyle =$ $\displaystyle {\mu_0 } {\ensuremath{\mathbf{m}}\cdot \ensuremath{\mathbf{m'}} -...
...thbf{r'}}\vert^3} \forall \ensuremath{\mathbf{r}} \neq \ensuremath{\mathbf{r}}'$ (A.1)

where $ \ensuremath{\mathbf{e}}$ is the unit vector of $ \ensuremath{\mathbf{r}}$.

For fixed $ \ensuremath{\mathbf{m}}'$ (such as that in the magnetic tip in magnetic force microscopy), the effective field is

$\displaystyle \ensuremath{\mathbf{H}}_d$ $\displaystyle =$ $\displaystyle {\ensuremath{\mathbf{m}} - 3(\ensuremath{\mathbf{m}}\cdot\ensurem...
...athbf{e}} \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r'}}\vert^3}$ (A.2)

because $ E = -\mu_0\ensuremath{\mathbf{m}}\cdot\ensuremath{\mathbf{H}}_d$, noting that $ \ensuremath{\mathbf{m}}$ is located at $ \ensuremath{\mathbf{r}}$ and $ \ensuremath{\mathbf{m}}'$ -- the tip -- is located at $ \ensuremath{\mathbf{r}}'$. We define:
$\displaystyle \ensuremath{\mathbf{e}}$ $\displaystyle =$ $\displaystyle {\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}' \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert}$ (A.3)

For the MFM data:
$\displaystyle {\partial^2E_{\mathrm{pot}} \over \partial z'^2}$ $\displaystyle \propto$ $\displaystyle {\partial^2\ensuremath{\mathbf{H}}_d^z \over \partial z'^2}$ (A.4)

Expand A.1 by substituting A.3:
$\displaystyle E_{\mathrm{pot}}$ $\displaystyle =$ $\displaystyle {\mu_0 } { {\ensuremath{\mathbf{m}}\cdot\ensuremath{\mathbf{m}}' ...
...f{r}}')) \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^5}}$ (A.5)

We precompute some expressions:
$\displaystyle g(\ensuremath{\mathbf{r}},\ensuremath{\mathbf{r}}')$ $\displaystyle \equiv$ $\displaystyle \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert$ (A.6)
  $\displaystyle =$ $\displaystyle \sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}$ (A.7)
  $\displaystyle \bigl(=$ $\displaystyle \sqrt{(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')^2}\bigr)$ (A.8)


$\displaystyle {\partial g(\ensuremath{\mathbf{r}}, \ensuremath{\mathbf{r}}') \over \partial z'}$ $\displaystyle =$ $\displaystyle {1 \over {2 \sqrt{(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')^2}}}\cdot{2(-1)(z-z')}$ (A.9)
  $\displaystyle =$ $\displaystyle {1 \over {\sqrt{(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')^2}}}\cdot{-1(z-z')}$ (A.10)
  $\displaystyle =$ $\displaystyle {-(z-z') \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert}$ (A.11)
  $\displaystyle =$ $\displaystyle {z'-z \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert}$ (A.12)


$\displaystyle f$ $\displaystyle \equiv$ $\displaystyle g^3$ (A.13)
  $\displaystyle =$ $\displaystyle \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^3$ (A.14)


$\displaystyle {\partial f \over \partial z'}$ $\displaystyle =$ $\displaystyle {\partial f \over \partial g}\cdot {\partial g \over \partial z'}$ (A.15)
  $\displaystyle =$ $\displaystyle 3 \cdot g(\ensuremath{\mathbf{r}}, \ensuremath{\mathbf{r}}')^2\cd...
...artial g \over \partial z' }(\ensuremath{\mathbf{r}}, \ensuremath{\mathbf{r}}')$ (A.16)
  $\displaystyle =$ $\displaystyle 3 \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^2 \cdot {z' - z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r'}}\vert}$ (A.17)
  $\displaystyle =$ $\displaystyle 3 \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert(z' - z)$ (A.18)


$\displaystyle \tilde{f}$ $\displaystyle \equiv$ $\displaystyle {1 \over f}$ (A.19)
  $\displaystyle =$ $\displaystyle {1 \over g^3}$ (A.20)
  $\displaystyle =$ $\displaystyle {1 \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^3}$ (A.21)
  $\displaystyle =$ $\displaystyle g^{-3}$ (A.22)


$\displaystyle {\partial \tilde{f} \over \partial z'}$ $\displaystyle =$ $\displaystyle {\partial \tilde{f} \over \partial g} {\partial g \over \partial z'}$ (A.23)
  $\displaystyle =$ $\displaystyle -3g^{-4}\cdot {\partial g \over \partial z'}$ (A.24)
  $\displaystyle =$ $\displaystyle -3 {1 \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}...
...\cdot {z'-z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert}$ (A.25)
  $\displaystyle =$ $\displaystyle -3 {z'-z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^5}$ (A.26)


$\displaystyle h$ $\displaystyle \equiv$ $\displaystyle g^5$ (A.27)

so
$\displaystyle {\partial h \over \partial z'}$ $\displaystyle =$ $\displaystyle {\partial h \over \partial g} {\partial g \over \partial z'}$ (A.28)
  $\displaystyle =$ $\displaystyle 5g^4\cdot {z'-z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert}$ (A.29)
  $\displaystyle =$ $\displaystyle 5 \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^3\cdot (z'-z)$ (A.30)


$\displaystyle \tilde{h}$ $\displaystyle \equiv$ $\displaystyle g^{-5}$ (A.31)

so
$\displaystyle {\partial \tilde{h} \over \partial z'}$ $\displaystyle =$ $\displaystyle {\partial \tilde{h} \over \partial g} {\partial g \over \partial z'}$ (A.32)
  $\displaystyle =$ $\displaystyle -5g^{-6} {z'-z \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert}$ (A.33)
  $\displaystyle =$ $\displaystyle -5 {z'-z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^7}$ (A.34)

Looking at the mixed terms in A.5:
$\displaystyle \Psi(\ensuremath{\mathbf{r}}, \ensuremath{\mathbf{r}}')$ $\displaystyle \equiv$ $\displaystyle \bigl[\ensuremath{\mathbf{m}}\cdot (\ensuremath{\mathbf{r}} - \en...
...ath{\mathbf{m}}'\cdot(\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}')\bigr]$ (A.35)
  $\displaystyle =$ $\displaystyle \bigl[m_x(x-x') + m_y(y-y') + m_z(z-z')\bigr]$  
    $\displaystyle \cdot \bigl[m'_x(x-x') + m'_y(y-y') + m'_z(z-z')\bigr]$ (A.36)


$\displaystyle {\partial \Psi \over \partial z'}$ $\displaystyle =$ $\displaystyle \bigl[\ensuremath{\mathbf{m}}(\ensuremath{\mathbf{r}}-\ensuremath...
...dot{\partial \over \partial z'}\bigl(m'_x(x-x') + m'_y(y-y') + m'_z(z-z')\bigr)$  
    $\displaystyle + \bigl[\ensuremath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensurem...
...igr]\cdot {\partial \over \partial z'}\bigl(m_x(x-x')+m_y(y-y')+m_z(z-z')\bigr)$  
  $\displaystyle =$ $\displaystyle \ensuremath{\mathbf{m}}(\ensuremath{\mathbf{r}} - \ensuremath{\ma...
...emath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')\cdot(-m_z)$ (A.37)


$\displaystyle \phi$ $\displaystyle \equiv$ $\displaystyle {\Psi \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^5}$ (A.38)
  $\displaystyle =$ $\displaystyle \Psi \over h$ (A.39)


$\displaystyle {\partial \phi \over \partial z'}$ $\displaystyle =$ $\displaystyle { h \cdot {\partial \Psi \over \partial z'} - \Psi \cdot {\partial h \over \partial z'} \over h^2}$ (A.40)
  $\displaystyle =$ $\displaystyle {g^5 \cdot {\partial \Psi \over \partial z'} - \Psi \cdot 5g^3(z'-z) \over g^{10}}$ (A.41)
  $\displaystyle =$ $\displaystyle { {\partial \Psi \over \partial z'} \over g^5} - {5 \Psi (z'-z) \over g^7}$ (A.42)
  $\displaystyle =$ $\displaystyle {-\ensuremath{\mathbf{m}}\cdot({\ensuremath{\mathbf{r}} - \ensure...
...{r}}')m_z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^5}$  
    $\displaystyle - { 5 (\ensuremath{\mathbf{m}} \cdot (\ensuremath{\mathbf{r}} - \...
...'))(z'-z) \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^7}$ (A.43)

Combining the above to give the first derivative of the dipolar interaction energy as A.5:
$\displaystyle E_{\mathrm{pot}}$ $\displaystyle =$ $\displaystyle {\mu_0} \Bigl( {\ensuremath{\mathbf{m}}\cdot\ensuremath{\mathbf{m...
...}}')) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5}\Bigr)$ (A.44)

With respect to $ z'$:
$\displaystyle {\partial E_{\mathrm{pot}} \over \partial z'}$ $\displaystyle =$ $\displaystyle {\mu_0} \left ( {\ensuremath{\mathbf{m}}\cdot\ensuremath{\mathbf{...
...) \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^5} \right.$  
    $\displaystyle \left. + {3 \ensuremath{\mathbf{m}} \cdot (\ensuremath{\mathbf{r}...
...z \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^5} \right.$  
    $\displaystyle \left. + 3 {5(\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}...
... \over \vert\ensuremath{\mathbf{r}} - \ensuremath{\mathbf{r}}'\vert^7} \right )$ (A.45)
  $\displaystyle =$ $\displaystyle {\mu_0} (\mathcal{A} + \mathcal{D} + \mathcal{E} + \mathcal{F})$ (A.46)


$\displaystyle \mathcal{A}$ $\displaystyle \equiv$ $\displaystyle {3\ensuremath{\mathbf{m}}\cdot\ensuremath{\mathbf{m}}'(z-z') \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5}$ (A.47)


$\displaystyle \mathcal{D}$ $\displaystyle \equiv$ $\displaystyle {3\ensuremath{\mathbf{m}}(\ensuremath{\mathbf{r}}-\ensuremath{\ma...
...)\cdot m'_z \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5}$ (A.48)


$\displaystyle \mathcal{E}$ $\displaystyle \equiv$ $\displaystyle {3\ensuremath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\m...
...')\cdot m_z \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5}$ (A.49)


$\displaystyle \mathcal{F}$ $\displaystyle \equiv$ $\displaystyle {15(\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}}-\ensurem...
...}}'))(z'-z) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$ (A.50)


$\displaystyle \mathcal{A}$ $\displaystyle =$ $\displaystyle {\mathcal{B} \over \mathcal{C}}$ (A.51)

To find $ {\partial^2E_{\mathrm{pot}} \over \partial z'^2}$, we need the derivatives of $ \mathcal{A}$, $ \mathcal{D}$, $ \mathcal{E}$ and $ \mathcal{F}$:
$\displaystyle {\partial \mathcal{A} \over \partial z'}$ $\displaystyle =$ $\displaystyle { \mathcal{C}\cdot {\partial \mathcal{B} \over \partial z'} - \mathcal{B}\cdot{\partial \mathcal{C} \over \partial z'} \over \mathcal{C}^2}$ (A.52)
  $\displaystyle =$ $\displaystyle { \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5 \c...
...^3(z'-z) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^{10}}$ (A.53)
  $\displaystyle =$ $\displaystyle {-3\ensuremath{\mathbf{m}}\cdot\ensuremath{\mathbf{m}}' \over \ve...
...}}'(z-z')^2 \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$ (A.54)


$\displaystyle {\partial \mathcal{D} \over \partial z'}$ $\displaystyle =$ $\displaystyle {\mathcal{C}\cdot{\partial \over \partial z'}(3\ensuremath{\mathb...
...^3(z'-z) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^{10}}$ (A.55)
  $\displaystyle =$ $\displaystyle {3m'_z {\partial \over \partial z'}(m_x(x-x')+m_y(y-y')+m_z(z-z')) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5}$  
    $\displaystyle + {15\ensuremath{\mathbf{m}}(\ensuremath{\mathbf{r}}-\ensuremath{...
...)m'_z(z-z') \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$ (A.56)
  $\displaystyle =$ $\displaystyle {3m'_z (-m_z) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mat...
...\mathbf{m}} \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$ (A.57)


$\displaystyle {\partial \mathcal{E} \over \partial z'}$ $\displaystyle =$ $\displaystyle { 3 \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5 ...
...cdot m_z \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^{10}}$  
    $\displaystyle -{3\ensuremath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\...
...^3(z'-z) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^{10}}$ (A.58)
  $\displaystyle =$ $\displaystyle {3(-m'_zm_z) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\math...
...')m_z(z-z') \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$ (A.59)


$\displaystyle r_0$ $\displaystyle =$ $\displaystyle 15(\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}}-\ensurema...
...ensuremath{\mathbf{m}}'\cdot(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'))$ (A.60)
  $\displaystyle =$ $\displaystyle 15(m_x(x-x')+m_y(y-y')+m_z(z-z'))$  
    $\displaystyle \cdot (m'_x(x-x')+m'_y(y-y')+m_z(z-z'))$ (A.61)


$\displaystyle \mathcal{F}_1$ $\displaystyle =$ $\displaystyle r_0(z'-z)$ (A.62)

In the derivative, only the terms with $ z'$ matter:
$\displaystyle \mathcal{F}_0$ $\displaystyle =$ $\displaystyle {\mathcal{F}_1 \over z'-z}$ (A.63)


$\displaystyle {\partial \mathcal{F}_0 \over \partial z'}$ $\displaystyle =$ $\displaystyle {\partial \over \partial z'} \left ( 15 \left ( m_x(x-x')m'_z(z-z') \right. \right.$  
    $\displaystyle + m_y(y-y')m'_z(z-z')$  
    $\displaystyle \left. \left. + m_z(z-z')m'_z(z-z')\right ) \right )$ (A.64)


$\displaystyle {\partial \over \partial z'}$ $\displaystyle =$ $\displaystyle m_zm'_z\cdot 2(z-z')(-1)$ (A.65)


$\displaystyle {\partial \mathcal{F}_0 \over \partial z'}$ $\displaystyle =$ $\displaystyle 15 (m_x(x-x')m'_z(-1)$  
    $\displaystyle + m_y(y-y')m'_z(-1)$  
    $\displaystyle + m_zm'_z\cdot 2(z-z')(-1)$  
    $\displaystyle + m_zm'_x(x-x')(-1)$  
    $\displaystyle + m_zm'_y(y-y')(-1))$  
  $\displaystyle =$ $\displaystyle -15 (\ensuremath{\mathbf{m}}\cdot (\ensuremath{\mathbf{r}}-\ensur...
...h{\mathbf{m}}'\cdot(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')\cdot m_z)$ (A.66)


$\displaystyle {\partial \mathcal{F}_1 \over \partial z'}$ $\displaystyle =$ $\displaystyle \mathcal{F}_0 {\partial \over \partial z'}(z'-z) + (z'-z){\partial \mathcal{F}_0 \over \partial z'}$ (A.67)
  $\displaystyle =$ $\displaystyle 15(\ensuremath{\mathbf{m}}\cdot (\ensuremath{\mathbf{r}}-\ensurem...
...th{\mathbf{m}}'\cdot (\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'))\cdot 1$  
    $\displaystyle + (z'-z)(-15)(\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}...
... \ensuremath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')m_z)$ (A.68)
  $\displaystyle =$ $\displaystyle 15((\ensuremath{\mathbf{m}}\cdot (\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'))$  
    $\displaystyle +\ensuremath{\mathbf{m}}\cdot (\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')m'_z(z-z')$  
    $\displaystyle +\ensuremath{\mathbf{m}}'\cdot(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')m_z(z-z'))$ (A.69)


$\displaystyle q$ $\displaystyle \equiv$ $\displaystyle g^7$ (A.70)
  $\displaystyle =$ $\displaystyle \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7$ (A.71)


$\displaystyle {\partial q \over \partial z'}$ $\displaystyle =$ $\displaystyle {\partial q \over \partial g} {\partial g \over \partial z'}$ (A.72)
  $\displaystyle =$ $\displaystyle 7g^6 {\partial g \over \partial z'}$ (A.73)
  $\displaystyle =$ $\displaystyle {7g^6 (z' - z) \over g}$ (A.74)
  $\displaystyle =$ $\displaystyle 7 \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5(z'-z)$ (A.75)


$\displaystyle {\partial \mathcal{F} \over \partial z'}$ $\displaystyle =$ $\displaystyle {g^7\cdot {\partial \mathcal{F}_1 \over \partial z'} - \mathcal{F}_1\cdot {\partial g^7 \over \partial z'} \over {(g^7)}^2}$ (A.76)
  $\displaystyle =$ $\displaystyle { {\partial \mathcal{F}_1 \over \partial z'} \over g^7} - {\mathcal{F}_1 \cdot {\partial g^7 \over \partial z'} \over g^{14}}$ (A.77)
  $\displaystyle =$ $\displaystyle {15 \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\v...
...'))(\ensuremath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'))$  
    $\displaystyle + \ensuremath{\mathbf{m}}(\ensuremath{\mathbf{r}}-\ensuremath{\ma...
...remath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')m_z(z-z'))$  
    $\displaystyle - {15 (\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}}-\ensu...
...5(z'-z)) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^{14}}$ (A.78)
  $\displaystyle =$ $\displaystyle {15 \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\v...
...'))(\ensuremath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'))$  
    $\displaystyle + \ensuremath{\mathbf{m}}(\ensuremath{\mathbf{r}}-\ensuremath{\ma...
...remath{\mathbf{m}}'(\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}')m_z(z-z'))$  
    $\displaystyle + {105 (\ensuremath{\mathbf{m}}\cdot (\ensuremath{\mathbf{r}}-\en...
...-z')(z'-z)) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^9}$ (A.79)

The second derivative is:
$\displaystyle {\partial^2E_{\mathrm{pot}} \over \partial z'^2}$ $\displaystyle =$ $\displaystyle {\mu_0} (\mathcal{A}' + \mathcal{D}' + \mathcal{E}' + \mathcal{F}')$ (A.80)

Where possible, collecting terms and expanding gives:
$\displaystyle {\partial^2E_{\mathrm{pot}} \over \partial z'^2}$ $\displaystyle =$ $\displaystyle {\mu_0} \left ( {-3\cdot \ensuremath{\mathbf{m}}\cdot \ensuremath...
...}}' \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5} \right.$  
    $\displaystyle + {15 \cdot \ensuremath{\mathbf{m}}\cdot \ensuremath{\mathbf{m}}' (z-z')^2 \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$  
    $\displaystyle - {6 \cdot m'_zm_z \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^5}$  
    $\displaystyle + {30 (\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}}-\ensu...
...)m'_z(z-z') \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$  
    $\displaystyle + {30 (\ensuremath{\mathbf{m}}'\cdot(\ensuremath{\mathbf{r}}-\ens...
...))m_z(z-z') \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$  
    $\displaystyle + {15 (\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r}}-\ensu...
...thbf{r}}')) \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^7}$  
    $\displaystyle \left. - {105 (\ensuremath{\mathbf{m}}\cdot(\ensuremath{\mathbf{r...
...^2 \over \vert\ensuremath{\mathbf{r}}-\ensuremath{\mathbf{r}}'\vert^9} \right )$ (A.81)

This is the final second derivative, which should be proportional to the signal at the tip of the MFM -- assuming the MFM tip is a dipole:

$\displaystyle \ensuremath{\mathbf{m}}' = \left( \begin{array}{c} 0\\ 0\\ C \end{array} \right )$ (A.82)


next up previous contents
Next: Supporting equations for the Up: thesis Previous: Summary   Contents
Richard Boardman 2006-11-28