
Experiences Monitoring and Managing QoS using

SDN on Testbeds Supporting Different Innovation

Stages
Stuart E. Middleton, Senior Member, ACM, and Stefano Modafferi

IT Innovation Centre

University of Southampton

Southampton, UK

{sem, sm}@it-innovation.soton.ac.uk

Abstract— In recent years there has been a big increase in the

number of network-related experiments using software defined

networking (SDN) technology. We report on our practical

experience over 2 years running network experiments on three

classes of testbed facility, each supporting researchers working at

a different innovation stage. We run experiments using the

commercial Amazon EC2 cloud facility, pre-commercial

federated testbed of FIWARE Lab instances and the OFELIA

experimental facility. We run an idealized common network

experiment on each testbed, reducing its scope where needed to

match testbed capabilities, and report details of the practical

experience gained using a set of qualitative metrics for direct

comparison across classes of testbed. We conclude with a

concrete recommendation for pre-commercial testbed facilities to

allow better support for network experiments in the future.

Keywords—Experiment; Software Defined Networking; SDN;

Quality of Service; QoS; Testbed; Innovation Stage

I. INTRODUCTION

Over the last few years there has been a big increase in the
number of network-related experiments performed by
researchers using software defined networking (SDN)
technology. Helping to support this trend a number of testbed
facilities are appearing, in both the commercial domain and
from national sources such as the European Commission's
Future Internet Research and Experimentation (FIRE)
programme [7]. In SDN deployments network devices become
packet forwarding devices (i.e. the data plane), while the
control logic is implemented in a controller (i.e. the control
plane). This technology makes it much easier to change the
network programmatically, allowing network-wide traffic
forwarding decisions to be implemented and network-wide
monitoring and control of Quality of Service (QoS) simpler.

Network experiments requiring testbed support are by their
nature at a pre-commercial stage. In the 1960's [1] proposed
that adopters of any new innovation or idea could be
categorized as innovators, early adopters, early majority, late
majority and laggards. This rate of adoption has subsequently

The work presented in this paper is part of the research in the EU FP7

OFERTIE project (contract number 318665) and EU FP7 XIFI project
(contract number 604590). In addition we would like to acknowledge the help

provided by Jack Edge & Martin Hall-May (IT Innovation Centre) and

Giuseppe Cossu (Create-Net) when setting up and running experiments.

become known as the 'diffusion of innovations model', and
represents an s-shaped curve when plotted over time. Different
experimental testbed facilities support experimenters at
different innovation stages. For innovators there are
experimental testbeds such as the OFELIA experimental
facility [6]. For early adopters and the early majority there are
pre-commercial facilities such as BonFIRE [4] and federated
testbeds made up of FIWARE Lab instances created under the
XIFI project [5]. For early majority and late majority there are
commercial cloud providers such as Microsoft Azure and
Amazon EC2

1
. Each testbed environment has its own particular

set of characteristics, including its capabilities, limitations and
support levels for practitioners running network experiments.

This paper reports our work on the qualitative evaluation of
the practical limitations experienced when running network
experiments across multiple experimental frameworks
designed to support different innovation stages. We apply an
idealized common experiment (connecting Minecraft

2
 clients

with a Minecraft server) to 3 different test beds, each designed
for a different innovation stage with a focus on the practical
experience of executing the experiment on each class and the
limitations imposed on the experiment by the testbed. This
experiment measures the network quality of service
differentiated between premium and non-premium players. The
hypothesis is that control of the data centre network topology
allows bandwidth allocation to be guaranteed for premium
users, even at peak load periods, which ultimately helps ensure
a good Quality of Experience (QoE) for the Minecraft players.
This experiment represents an archetype for experiments that
network researchers might want to run on an experimental
testbed facility.

II. RELATED WORK

Software-defined networking (SDN) [2] approaches are
currently a very active network research area. The ease by
which changes in network routing can now be executed is
allowing new ideas to be implemented on testbeds quickly,
helping to speeding up progress in the field of network
research. In any SDN deployment there is a northbound
interface, which allows applications to task the controller and
set network policies, and a southbound interface, which
concerns the protocols used by the controller when

1
 http://azure.microsoft.com; http://aws.amazon.com/ec2

2
 http://minecraft.net

programming network switches. OpenFlow
3
 is one of the most

common southbound interfaces, with many network switch
vendors supporting it. The northbound interface is less well
standardized [8] with a variety of application specific
approaches on offer.

Network experimenters are applying SDN techniques to
areas [9] [10] such as data centre management, internet service
provider backbones, wireless networks and enterprise
networks. Challenges for the experimenters include
performance, scalability and resilience testing of SDN
approaches. To support such experimenters a growing number
of testbed facilities have been created, including programmes
such as FIRE [7], the Future Internet [5] and commercial
offerings such as Amazon EC2 and Microsoft Azure.

In the area of wireless networking there have been surveys
[11] of the currently available testbed infrastructures,
categorizing them using metrics. We want to do something
similar for SDN wired network testbed facilities, reporting
qualitative metrics based on our own practical experience using
some of these testbeds. Our qualitative metrics categorized
testbeds in terms of the features they provide and the support
they offer for network experimenters.

III. ARCHITECTURE

The architecture of the services that underpin the common
experiment used in this paper connects an application server, in
this case a Minecraft server, with its clients via a configurable
network switch topology hosted by a data centre. The network
switch topology is controlled by a SDN (typically via
Floodlight

4
 Openflow controller). A packet sniffer (e.g.

TCPDump
5
) is used to record all network packet headers. We

also added a plugin to the Minecraft server to publish ping
statistics, providing us with a ground truth in-game latency
measurement. Our network profiler is based on a supervised
learning approach which can be trained to identify network
events such as periods of high latency or packet loss and label
them in our sample measurement database. Finally the network
measurement and network behaviour profile data are checked
against QoS guarantee thresholds appearing in a service level
agreement to see if any thresholds have been violated and a
penalty clause triggered for poor performance.

IV. APPROACH AND EXPERIMENT SETUP

We focus on measuring how testbed features limit the
ability to perform an idealized experiment, and how effectively
that experiment can be executed using the testbed support
apparatus provided. Our experimental approach is to define an
'idealized' common network experiment which makes use of
the architecture and components identified in section III. We
then apply this common experiment to our 3 testbeds, each of
which are tailored to support a different innovation stage. A set
of qualitative metrics are then measured, recording the
practical experiences whilst executing the experiment.

3
 https://www.opennetworking.org/sdn-resources/openflow

4
 http://www.projectfloodlight.org/floodlight

5
 http://www.tcpdump.org

Testbeds configuration is shown in Fig. 1 for (a) Amazon
EC2 cloud, (b) FIWARE Lab instances and (c) OFELIA. We
designed two versions of the experiment to support different
capabilities. One version involving real players for Amazon
EC2 and FIWARE lab instances and one involving bots and
SDN control for FIWARE lab instances and OFELIA.

A. Common Experiment

The idealized common experiment run on each of the 3
testbeds consists of a Minecraft server hosting a mixture of
premium and general users. A premium user is a user who has
paid a subscription fee to receive better QoS than the free to
play general user. The network topology of the testbed consists
of a high bandwidth premium route and a low bandwidth best-
efforts route to the Minecraft server. The premium player
traffic is always routed through the high bandwidth path.
Under low load conditions (i.e. phase 1) the general player
traffic is routed across both the low and high bandwidth paths
as the high bandwidth connection is nowhere near saturated.
Under high load conditions (i.e. phase 2) only premium player
traffic is routed through the high bandwidth path, leaving
general player traffic using the best-efforts low bandwidth
path.

TCPDump is run on the Minecraft server virtual machine
so an independent measure of the network traffic is recorded,
which is then parsed and profiled by the OFERTIE network
services. The Minecraft server is a custom built Craft Bukkit
6
version of the Minecraft server with instrumented code to

record a ground truth in-game latency measure for all players;
this is used at the start of the experiment to execute a training
run and create a Minecraft specific labelled training set for the
supervised-learning-based classifier in the QoS profiler.

Halfway through each experiment the player load is
increased from low to high for a short period of time; this is
done by inviting many players to play on the server. We are
interested to see how the SDN responds to the increase in
player load and when it changes the network routing to ensure
the premium players’ bandwidth is always enough for a good
QoE. The final part of the experiment involves SLA violation
checks against an experiment WS-Agreement SLA document
defining acceptable thresholds for QoS metrics (i.e. bandwidth
and number/duration of classified high latency behaviour
periods).

B. Qualitative Metrics

In order to evaluate our practical experiences trying to run
the idealized experiment across each of the 3 testbeds we have
defined a set of qualitative metrics. This approach allows a fair
and consistent comparison to be performed across the
otherwise heterogeneous testbeds. We use two types of metrics
categorized into either feature support metrics or experimental
support metrics. Below is a list of the qualitative metrics based
on feature support and experimental support:

SDN support - we need programmatic switching of
network routing in response to increases in network load. This
can be either native support or via our own installed SDN
software (e.g. OpenFlow).

6
 http://bukkit.org/

Fig. 1. Testbed configuration for (a) commercial Amazon EC2 cloud, (b) pre-commercial FIWARE Lab instances and (c) experimental OFELIA testbeds

QoS monitoring - we need to monitor real-time network
level QoS (i.e. throughput/bandwidth, latency, packet loss) in
order to base decisions about when to switch network routing.
This can be via access to network switch counters (e.g. via
Floodlight) or native measurement logs from the testbed itself.

External IP addresses - as we want real Minecraft players
to connect we need the testbed to allow external IP addresses
(i.e. players) to connect to it, and provide static Domain Name
System (DNS) visible IP addresses so we can register the
Minecraft server with publically available server listings to
attract real players.

Network slice isolation - we need to isolate our network
from other network traffic occurring on the testbed from other
experiments. This is critical as we will be measuring patterns in
network traffic and trying to do behaviour classification and
SLA violation checking against it.

Reliability - we need a testbed that provides a reliable
network slice that is stable for the several days each experiment
will last. Major peaks in network performance or downtime
will provide noise to the experimental results and probably
render them useless for analysis.

Ease of access to testbed slice - we need easy remote
access to the Minecraft server via standard tools such as Secure
Shell (SSH). The more difficult and unreliable access is to the
server the more time consuming experiment testbed to provide
sufficient network and server resource to run the experiment.

Testbed helpline support - when problems do happen we
need a fast and effective response to solve the issue and resume
the experiment. Support is needed in both the experimental
setup phase and runtime phase.

Cost - the cost of testbed provision must be affordable in
relation to the benefits gained from running the experiment in
the first place.

V. RESULTS

A. Experiment 1 - Commercial Class Testbed

The Amazon EC2 cloud testbed was very simple to
purchase and setup with good support via the Amazon EC2
web interface. The dynamic IP mapping provided by Amazon

meant we could have as many external IP addresses as we
needed. Amazon EC2 provides no support for SDN so we had
to limit our experiment to a simple static network topology
with no bandwidth control. Instead we focussed on profiling
network high latency events from players with poor ISP
connections as a replacement for being able to change the
bandwidth in response to observed high throughput. We ran the
experiment over several days and had up to 7 player online at
any one time using our server. For QoS monitoring Amazon
provides high level network usage reports, focussed on metrics
for billing purposes. We therefore relied on the TCPDump data
for our network monitoring purposes. We found the network
slice isolation good, with the network connection never
reaching a bandwidth limited situation. Overall it was easy to
setup, 100% reliable and had a reasonable cost.

B. Experiment 2 - Pre-commercial Class Testbed

The XIFI project operates a 'cloud data centre' approach to
networking similar to Amazon EC2, where network traffic
between different tenants is globally optimized. As such this
federated testbed does not provide direct access for tenants to
the network switches or the routing tables of these switches.
This choice to optimize globally across the supports testbed
administrators, but prevents network experimenters (i.e.
tenants) from running a wide range of experiment types that
require access to switch measurement and routing.

For the first experiment, using real players, our observed
behaviour is consistent with what we saw in the Amazon EC2
testbed. The experience in setting up this environment has been
smooth and the support received adequate despite the need to
synchronize our test period with hardware and testbed software
upgrades that caused testbed downtime periods.

For the second experiment we used a manual interface to
the XIFI controller to be able to set the QoS of the traffic
directed or coming from each VM at run-time. Support for
QoS management on incoming traffic based on the source of
traffic is a feature not yet generally available in the OpenStack
implementation, where QoS management is mostly applied for
load balancing of the destination servers. The XIFI controller
was therefore used to control QoS via soft throttling of
bandwidth into and out of each VM. We simulated premium
and general class users with groups of Minecraft bots assigned

to a premium or general class hosting VM, both in the Lannion
testbed region. The Minecraft server was on another VM in the
Trento testbed region.

Our practical experience in doing this was that using the
QoS environment was challenging, despite receiving full
support from the testbed administrators in the XIFI project.
The QoS features therefore, although promising in nature, lack
maturity meaning that experimenters must rely on ad-hoc
support when running the experiments for now.

C. Experiment 3 - Experimental Class Testbed

The OFELIA testbeds allow access to the network layer via
FlowVisor. However, this was not easy to set up and several
problems occurred. The main problem with the OFELIA
testbed was the unreliable behaviour of the network switches
when working with the OFERTIE network controller. Switch
downtime occurred frequently and each time took hours to
resolve as access to switch reset could only be achieved via the
testbed administrators.

In addition to switch problems the OFELIA testbed was
difficult to access, requiring experimenters to pass through
multiple VPN connections to get to the testbed. We also had to
use Minecraft bots, as opposed to real players, as OFELIA
islands were only set up to permit experiment connections to
other OFELIA islands and not external ISP's. This is a serious
limitation for any network experiment that involves real
applications with real users.

The OFELIA facilities are free to use for experimenters but
support is largely dependent on the goodwill of the testbed
owners as there was no sustainable commercial funding stream
in place on which to base support activities. Our experiments
spanned a period at the end of, and beyond the end of, the
OFELIA project's lifetime. Our experience is that the upgrades
and maintenance schedules of the testbeds appeared to be
correlated with the testbed owner's ability to participate in
funded projects that use the testbed. This experience matches
other FIRE testbed sustainability plans, such as AmpliFIRE
and Fed4FIRE, where securing funding is linked to the
continued performance of these test facilities.

After several months trying to overcome the network
switching issues we eventually resorted to running the
experiment on a Mininet emulation of the OFELIA testbed
using manual SDN control. We could execute our experiment
using bots connected to the testbed simulation which allowed
us to test bandwidth control. We added network latency and
packet loss to the Minecraft server using the NETEM

7
 tool to

allow us to test high latency profiling. However as this is
essentially a simulation our empirical results were limited to
supporting the validation of the OFERTIE network services.

VI. DISCUSSION

A comparison matrix is shown in Table 1 highlighting the
qualitative metrics across all 3 testbeds. Each testbed class
offers a different range of capabilities. The practical issues
experienced in running our experiments fall into four broad
classes - testbed availability & reliability, aging testbed

7
 http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

software, network slice isolation and access to external
networks.

The issues of both testbed availability & reliability and
aging testbed software are really related to the testbed owner's
ability to maintain the testbed and have an effective
incremental update strategy in place for both the hardware and
software on that testbed. In contrast to commercial testbeds,
where testbed use generates revenue to feed into testbed
updates, we see that for pre-commercial and experimental class
testbeds there is a reliance on external funding to be secured
before upgrades are made. This leads to an ad-hoc incremental
improvement strategy, where the testbeds have aging hardware
and software for prolonged periods of time.

The issue of access to external networks creates restrictions
on the ambition and value of the type of network experiments
that can be executed. A lot of potential network experiments
involve working with realistic network traffic, stochastic in
nature and often based on real users using real applications
over the network topology. This is hard to simulate accurately.
Currently experimental class, and even to some degree pre-
commercial testbeds in their current state, do not support this
type of experiment well at all. It should also be noted that if a
testbed cannot connect to an external network resource then the
scale of the experiment is limited to the size of the testbed. For
experimental class testbeds the scale tends to be small with 10's
of CPU cores available for VM's and 5-10 network switches.
For pre-commercial testbeds the scale is much larger with
1,000's of CPU cores available for VM's. Ambitious network
experiments, such as trying to simulate part of a national
network backbone topology, involve 10's to 100's of network
switches. Currently experimental class testbeds are not large
enough to allow this.

Network slice isolation is an important feature for most
network experiments, since the presence of network traffic
noise from other experimenters sharing a common network
resource adds bias and/or error to the final measurements. We
can see that commercial and pre-commercial class testbeds do
not provide direct allocation of network switches to slices, and
instead provide a virtual switch layered across an undeclared
switch topology within a data centre. Typically bandwidth is
soft throttled for tenants on these testbeds and everything else
is on a best efforts basis. This can result in unpredictable
packet loss and switch latency spikes when parallel
experiments happen to reach peak load at the same time on the
underlying physical switch. In practice this means that only
experimental class testbeds can really support network
experiments that want to work at the limits of a network
switch’s capability.

VII. CONCLUSIONS

We have reported in this paper our practical experience
running network experiments across three classes of testbed
facility. The commercial class testbeds (e.g. Amazon EC2)
provide a standard cloud-based virtualized offering without
SDN, and are well suited to large scale experiments that do not
need to change the network topology.

TABLE 1: COMPARISON MATRIX FOR QUALITATIVE METRICS ACROSS ALL TESTBEDS

Qualitative Metric Commercial

Testbed

Amazon EC2

Pre-Commercial

Testbed

Federated testbed of FIWARE LAB instances

Experimental

Testbed

OFELIA

SDN support NO YES in terms of QoS (bandwidth setup) YES - outdated FlowVisor software

prevented its use however in practice

QoS monitoring Only network usage logging per
VM is provided

Currently available for testbed owners and not
for tenants but this is foreseen in the future

Access to switches was permitted via
Floodlight controller

External IP

addresses

YES YES - although the QoS management enabled

environment is currently private there are plans

for it to go public soon

NO - testbed islands were only

designed to connect to other islands

Network slice

isolation

VPN is provided that soft

throttles the underlying network

bandwidth allocation.

Tenant isolation is guaranteed (run-time

bandwidth) whilst complete network slice

isolation is not (due to global optimization layer)

YES - network slices are provided

Reliability Excellent Fair Poor - experiments are provided 'best
efforts' support only and availability is

intermittent.

Ease of access Excellent - SSH credentials are

provided for a direct SSH

tunnel to VM

Good Poor - multiple VPN layer are required

to access slice from a remote location.

Scale of resources

available

Excellent Good - the experiment can transparently take

advantage of inter-region MD-VPN

Average - compute and network

hardware is heterogeneous and
somewhat outdated.

Support for

experimenters

Excellent - web interface

provided to tenant

Excellent - web interface provided to tenant Average - testbed administrators

required for all restarts

Cost Commercial rates Free for FI-PPP experimenters Free

The pre-commercial class testbeds (e.g. federated
FIWARE Lab instances) also provide a virtualized network
environment, but do support testbed-mediated SDN control
of the underlying network. This is well suited for medium-
scale network experiments in areas such as QoS
management, where the network switches are not directly
accessed. The experimental class testbeds (e.g. OFELIA
facility) offer network slice isolation and direct access to
network switches, supporting well small scale experiments
that aim to stress network switch topologies.

At present no testbed class fully supports the range of
network experiments researchers are working on today. The
experimental class testbeds follow a closed 'sandbox' type
approach, which prevent experiments from scaling up and
does not allow realistic network traffic which usually comes
from real users connecting via external ISP's. The pre-
commercial and commercial class testbeds follow a scalable
'cloud data centre' type approach, where network resource is
virtualized and therefore true network isolation is impossible.
We think that there is a clear opportunity in the future for
pre-commercial class testbed facilities to offer something
different from commercial cloud offerings. They could use
modern SDN controllers to provide experimenters with
closed network switch topologies, and direct dedicated
access to the network switches, alongside access to gateway
switches offering external IP addresses and access to ISP
network backbones.

If adopted this recommended change for pre-commercial
class testbeds could significantly expand the type, scale and
ambition of experiments possible on these testbeds. In turn
this would increase the significance and value of the
experimental results coming from the testbeds, which then
leads to more measureable impact from the research
activities supported by these testbed facilities.

REFERENCES

[1] E.M. Rogers, "Diffusion of Innovations", Glencoe: Free Press, ISBN
0-612-62843-4,1962

[2] H. Kim, N. Feamster, "Improving Network Management with
Software Defined Networking", IEEE Communications Magazine,
Feb 2013

[3] X. Jeannin, K. Meyer, "White Paper: The Opportunities for
MultiDomain VPN services in GÉANT", GÉANT project, 2014

[4] A.C. Hume. et al. "Bonfire: A multi-cloud test facility for internet of
services experimentation.", In Testbeds and Research Infrastructure.
Development of Networks and Communities, pp. 81-96. Springer
Berlin Heidelberg, 2012

[5] E. Escalona, et al. "Using SDN for cloud services provisioning: the
XIFI use-case", In 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), pp. 1-7, Trento, 2013

[6] M. Suñé et al. "Design and implementation of the OFELIA FP7
facility: the European OpenFlow testbed", Computer Networks 61,
132-150, 2014

[7] S. Rao, "Research Experiment Facilities in Europe", White Paper,
AmpliFIRE Support Action, 2013

[8] T. Humernbrum, F. Glinka, S. Gorlatch, “Using Software-Defined
Networking for Real-Time Internet Applications”, In Proc. of the
International MultiConference of Engineers and Computer Scientists
(IMECS 2014), Lecture Notes in Engineering and Computer Science,
Newswood Limited, pp. 150–155, 2014

[9] C. Kachris, K. Kanonakis, I. Tomkos, "Optical interconnection
networks in data centers: recent trends and future challenges", IEEE
Communications Magazine, Vol 51, Issue 9, 2013

[10] B.A.A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, T. Turletti,
"A Survey of Software-Defined Networking: Past, Present, and
Future of Programmable Networks", IEEE Communications Surveys
& Tutorials, Vol. 16, Issue 3, 2014

[11] J. Horneber, A. Hergenroder, "Survey on Testbeds and
Experimentation Environments for Wireless Sensor Networks", IEEE
Communications Surveys & Tutorials, Vol. 16 , Issue 4, 201

