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Summary:

Estimation of the long-term health effects of air pollution is a challenging task, especially when modelling spatial

small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying

spatial autocorrelation structure in these data, which is accounted for using random effects modelled by a globally

smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which

are also globally smooth. To avoid this collinearity a Bayesian localised conditional autoregressive model is developed

for the random effects. This localised model is flexible spatially, in the sense that it is not only able to model areas

of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological

development allows us to improve the estimation performance of the covariate effects, compared to using traditional

conditional auto-regressive models. These results are established using a simulation study, and are then illustrated

with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The

model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have

been consistently attenuated by the currently available globally smooth models.
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1. Introduction

Quantification of the health effects of air pollution is an important problem of considerable

public interest, both in terms of its financial and health impact. In the UK, the Department

for the Environment, Food and Rural Affairs (DEFRA) estimate that “in 2008 air pollution

in the form of anthropogenic particulate matter (PM) alone was estimated to reduce average

life expectancy in the UK by six months. Thereby imposing an estimated equivalent health cost

of £19 billion”, (DEFRA Air Quality Subject group (2010)). These estimates are based on

large numbers of epidemiological studies, which have quantified the impact of both short-term

and long-term exposure. The effects of long-term exposure can be estimated from individual-

level cohort studies such as Laden et al. (2006) and Beverland et al. (2012), but they are

expensive and time consuming. Therefore ecological small-area study designs have also been

used, including Elliott et al. (2007), Lee et al. (2009), Haining et al. (2010) and Greven

et al. (2011). While these studies cannot assess the causal health effects of air pollution due

to their ecological design, they are quick and cheap to implement, and they contribute to,

and independently corroborate, the body of evidence about the long-term population level

impact of air pollution.

This ecological design is a form of geographical association study, where the study region is

partitioned into non-overlapping areal units, such as counties or census tracts. The numbers

of disease cases observed in each areal unit is modelled, using Poisson regression, by risk

factors including air pollution concentrations, socio-economic deprivation and demography.

However, residual spatial autocorrelation may remain in these data, due to unmeasured

confounding, neighbourhood effects (where individual areal unit’s behaviour is influenced by

that of neighbouring units) and grouping effects (where individual units seem to be close

to similar units). This autocorrelation is accounted for by adding a set of random effects to
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the model, which are usually represented by a conditional autoregressive (CAR, Besag et al.

(1991)) prior as part of a hierarchical Bayesian model.

The majority of CAR priors are globally smooth, and have recently been shown by Reich

et al. (2006), Hodges and Reich (2010), Paciorek (2010) and Hughes and Haran (2013) to

be potentially collinear with any covariate such as air pollution that is also globally smooth.

Such collinearity leads to poor estimation performance for the fixed effects, and additionally

suggests that the residual spatial autocorrelation is unlikely to be globally spatially smooth

as that component of the spatial variation in the disease data will have been accounted for.

Instead, the residual spatial autocorrelation is likely to be strong in some areas showing

smoothness, and weak in some other areas exhibiting abrupt step changes. The widely used

intrinsic and convolution CAR models proposed by Besag et al. (1991) force the random

effects to exhibit a single global level of spatial smoothness determined by geographical

adjacency, and are thus not flexible enough to capture the complex localised structure likely

to be present in the residual spatial autocorrelation. The lack of flexibility in the intrinsic

and convolution CAR models and the collinearity problems highlighted by Hodges and Reich

(2010) and others has motivated us to develop a new Localised Conditional AutoRegressive

(LCAR) prior for modelling residual spatial autocorrelation, which is presented in Section 3.

Existing solutions to these problems have been proposed by Reich et al. (2006), Hughes

and Haran (2013) and Lee and Mitchell (2013), and a selection of them are compared by

simulation to the LCAR prior proposed in this paper in Section 4.

To contain the required flexibility the LCAR prior captures localised residual spatial auto-

correlation by allowing random effects in geographically adjacent areas to be autocorrelated

or conditionally independent, and we show that this prior distribution can have realisations
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at both spatial smoothing extremes, namely global smoothness and independence. However,

this flexibility leads to a large increase in the computational burden and a lack of parsimony

causing problems of parameter identifiability, and a critique of the limitations of the existing

literature in this area is given in Section 2. Here we solve these problems with a novel prior

elicitation method based on historical data, which is similar in spirit to power priors (see Chen

and Ibrahim (2006)). Our elicitation is based on an approximate Gaussian likelihood, and

produces a set of candidate correlation structures for the residual spatial autocorrelation. The

LCAR prior combines a discrete uniform distribution on this set of candidate structures with

a modified CAR prior for the random effects, which combined with the Poisson likelihood

completes a full Bayesian hierarchical model. Inference is obtained using Markov chain Monte

Carlo (MCMC) methods, and the model allows us to simultaneously estimate the random

effects, their local spatial structure as well as the fixed effects. We conduct a large simulation

study in Section 4 to show improved parameter estimation when using the proposed LCAR

prior distribution. We follow up this investigation by analysing the motivating data set for

the city of Glasgow in Section 5. But first, we present the motivating data set and discuss

the background modelling and prior distributions in Section 2.

2. Background

2.1 Motivating study

The study region is the health board comprising the city of Glasgow and the river Clyde

estuary, which in 2011 contained just under 1.2 million people. The region is partitioned into

n = 271 administrative units called Intermediate Geographies (IG), which contain just over

4,000 people on average. The data used in this study are freely available, and can be down-

loaded from the Scottish Neighbourhood Statistics (SNS) database (http://www.sns.gov.uk).

The response variable is the numbers of admissions to non-psychiatric and non-obstetric hos-
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pitals in each IG in 2011 with a primary diagnosis of respiratory disease, which corresponds

to codes J00-J99 and R09.1 of the International Classification of Disease tenth revision.

Differences in the size and demographic structure of the populations living in each IG are

accounted for by computing the expected numbers of hospital admissions using external

standardisation, based on age and sex specific respiratory disease rates for the whole study

region. An exploratory estimate of disease risk is given by the Standardised Incidence Ratio

(SIR), which is the ratio of the observed to the expected numbers of admissions. It is displayed

in the top panel of Figure 1, and shows that the risks are highest in the heavily deprived

east end of Glasgow (east of the study region) as well as along the southern bank of the river

Clyde, the latter of which flows into the sea in the west and runs south east through the

study region.

Ambient air pollution concentrations are measured at a network of locations across Scot-

land, details of which are available at http://www.scottishairquality.co.uk/. However, the

network is not dense at the small-area scale required by this study, so instead we make use

of modelled yearly average concentrations at a resolution of 1 kilometre grid squares provided

by the DEFRA (see http://laqm.defra.gov.uk/maps/ ). We use concentrations for 2010 in this

study rather than 2011, because it ensures that the air pollution exposure occurred before

the hospital admissions due to respiratory illnesses. These modelled concentrations were

computed using dispersion models and were then calibrated against the available monitoring

data, and further details are available from Grice et al. (2009). They were subsequently

converted to the intermediate geography scale by computing the median value within each

IG. Concentrations of carbon monoxide (CO, in mgm−3), nitrogen dioxide (NO2, in µgm−3),

sulphur dioxide (SO2, in µgm−3) and particulate matter are available for this study, the latter

being measured as both PM10 (particles less than 10µm in diameter) and PM2.5 (particles



A Bayesian localised conditional autoregressive model 5

less than 2.5µm in diameter). The PM10 data are displayed in the bottom panel of Figure

1, which shows the highest concentrations are in the centre of the city of Glasgow as expected.

A number of other covariates were considered in this study, the most important of which

is a measure of socio-economic deprivation. The relationship between deprivation and ill

health is well known (for example see Mackenbach et al. (1997)), and in this study we use

the percentage of people living in each IG in 2010 who are in receipt of Job Seekers Allowance

(JSA). Other variables we also consider are measures of ethnicity (the percentage of school

children in each IG who are non-white), access to alternative forms of health care (the average

time taken to drive to a doctor’s surgery) and a measure of urbanicity (a factor variable with

6 levels, with level one defined as urban and level six as rural).

[Figure 1 about here.]

2.2 Modelling

The study region is partitioned into n areal units A = {A1, . . . ,An}, and the vectors of

observed and expected numbers of disease cases are denoted by Y = (Y1, . . . , Yn) and E =

(E1, . . . , En) respectively. In addition, let X = (xT

1 , . . . ,x
T

n)T denote the matrix of p covariates

and a column of ones for the intercept term, where the values relating to areal unit Ak are

denoted by xT

k = (1, xk1, . . . , xkp). A Bayesian hierarchical model is typically used to model

these data, and a general specification is given by

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n,

ln(Rk) = xT

kβ + φk, (2.1)

where the disease counts are assumed to be conditionally independent given the covariates

and the random effects. Here β = (β0, β1, . . . , βp) denotes the vector of covariate effects,
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while Rk represents disease risk in areal unit Ak. A value of Rk greater (less) than one

indicates that areal unit Ak has a higher (lower) than average disease risk, and in terms

of interpretation, Rk = 1.15 corresponds to a 15% increased risk of disease. As previously

discussed the random effects φ = (φ1, . . . , φn) capture any residual spatial autocorrelation

present in the disease data, and are typically assigned a conditional autoregressive prior,

which is a special case of a Gaussian Markov Random Field (GMRF). Such models are

typically specified as a set of n univariate full conditional distributions, that is as f(φk|φ−k)

for k = 1, . . . , n, where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φn). However, the Markov nature of

these models means that the conditioning is only on the random effects in geographically

adjacent areal units, which induces spatial autocorrelation into φ. The adjacency information

comes from a binary n × n neighbourhood matrix W , where wki equals one if areal units

(Ak,Ai) share a common border (denoted k ∼ i) and is zero otherwise (denoted k � i). The

intrinsic model (Besag et al. (1991), IAR) is the simplest prior in the CAR class, and its full

conditional distributions are given by

φk|φ−k, τ 2,W ∼ N

(∑n
i=1wkiφi∑n
i=1wki

,
τ 2∑n

i=1wki

)
. (2.2)

The conditional expectation is the mean of the random effects in neighbouring areas,

while the conditional variance is inversely proportional to the number of neighbours. The

joint multivariate Gaussian distribution for φ corresponding to (2.2) has a mean of zero

but a singular precision matrix Q(W )/τ 2, where Q(W ) = diag(W1) − W , and 1 is an

n dimensional vector of ones. This prior is appropriate if the residuals from the covariate

component of the model, that is ln(Y/E)−Xβ, are spatially smooth across the entire region,

because the partial autocorrelation between (φk, φj) conditional on the remaining random

effects (denoted φ−kj) is
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Corr[φk, φj|φ−kj,W ] =
wkj√

(
∑n

i=1wki)(
∑n

i=1wji)
. (2.3)

Equation (2.3) shows that all pairs of random effects relating to geographically adjacent

areal units are partially autocorrelated (wkj = 1), which smoothes the random effects across

geographical borders. The most common extension to the IAR model to allow for varying

levels of spatial smoothness is the BYM or convolution model (Besag et al. (1991)), which

augments the linear predictor in (2.1) with a second set of independent Gaussian random

effects with a mean of zero and a constant variance. A further alternative using a single set

of random effects was proposed by Stern and Cressie (1999), but this and other extensions

have a single spatial autocorrelation parameter (for the BYM model it is the ratio of the

two random effects variances) that controls the level of spatial smoothing globally across the

entire region. Thus these models are inappropriate for capturing the likely localised nature

of the residual spatial autocorrelation, which may contain sub-region of spatial smoothness

separated by step changes.

A small number of papers have extended the class of CAR priors to account for localised

spatial smoothing, the majority of which have treated W = {wkj|k ∼ j, k > j} as a set

of binary random quantities, rather than forcing them to equal one. The neighbourhood

matrix is always assumed to be symmetric so that changing wkj also changes wjk, while the

other elements in W relating to non-neighbouring areal units remain fixed at zero. Equation

(2.3) shows that this allows (φk, φj) corresponding to adjacent areal units to be conditionally

independent or autocorrelated, and if wkj (and hence wjk) is estimated as zero a boundary

is said to exist between the two random effects. One of the first models in this vein was

developed by Lu et al. (2007), who proposed a logistic regression model for the elements

in W , where the covariate was a non-negative measure of the dissimilarity between areal
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units (Ak,Aj). Similar approaches were proposed by Ma and Carlin (2007) and Ma et al.

(2010), who replace logistic regression with a second stage CAR prior and an Ising model

respectively. However, these approaches introduce a large number of partial autocorrelation

parameters into the model, which for the Glasgow data considered here has n = 271 data

points and |W| = 718 partial autocorrelation parameters. Therefore, full estimation ofW as

a set of separate unknown parameters results in a highly overparameterised precision matrix

for φ, and Li et al. (2011) suggest that the individual elements are poorly identified from

the data and are computationally expensive to update.

A related approach was proposed by Lee and Mitchell (2012), who deterministically model

the elements of W as a function of measures of dissimilarity and a small number of pa-

rameters, rather than modelling each element as a separate random variable. However,

their approach is designed for the related fields of disease mapping and Wombling, whose

aims are not, as they are here, to estimate the effects of an exposure on a response. An

alternative approach was suggested by Lee and Mitchell (2013), who propose an iterative

algorithm in which W is updated deterministically based on the joint posterior distribution

of the remaining model parameters. However, their algorithm has the drawback that only an

estimate of each wkj is provided, rather than the posterior probability that wkj = 1. Finally,

Reich et al. (2006) and Hughes and Haran (2013) take an alternative approach, and force

the random effects to be orthogonal to the covariates using a residual projection matrix.

3. Methodology

Our methodological approach follows the majority of the literature critiqued above, and

treats the elements in W relating to contiguous areal units as a set of binary random

quantities. As conditional autoregressive priors are a special case of an undirected graphical

model, we follow the terminology in that literature and refer to W as the set of edges,
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and further define any edge wkj ∈ W that is estimated as zero as being removed. Our

methodological innovation is a Localised Conditional AutoRegressive (LCAR) prior, which

comprises a joint distribution for an extended set of random effects φ̃ and the set of edges

W , rather than the traditional approach of assuming the latter is fixed. We decompose this

joint prior distribution as f(φ̃,W) = f(φ̃|W)f(W), and the next three sub-sections describe

its two components as well as the overall hierarchical model.

3.1 Prior distribution - f(φ̃|W)

The IAR prior given by (2.2) is an inappropriate model for φ in the context of treating W

as random, because of the possibility that all of the edges for a single areal unit could be

removed. In this case
∑n

i=1wki = 0 for some k, resulting in (2.2) having an infinite mean and

variance. Therefore we consider an extended vector of random effects φ̃ = (φ, φ∗), where φ∗

is a global random effect that is potentially common to all areal units and prevents any unit

from having no edges. The extended (n + 1) × (n + 1) dimensional neighbourhood matrix

corresponding to φ̃ is given by

W̃ =

 W w∗

wT

∗ 0

 , (3.1)

where w∗ = (w1∗, . . . , wn∗) and wk∗ = I[
∑

i∼k(1− wki) > 0]. Here I[.] denotes an indicator

function, so that wk∗ = 1 if at least one edge relating to areal unit Ak has been removed, oth-

erwise wk∗ equals zero. Based on this extended neighbourhood matrix we propose modelling

φ̃ as φ̃ ∼ N(0, τ 2Q(W̃ , ε)−1), where the precision matrix is given by

Q(W̃ , ε) = diag(W̃1)− W̃ + εI. (3.2)

The component diag(W̃1) − W̃ corresponds to the IAR model applied to the extended

random effects vector φ̃, while the addition of εI ensures the precision matrix is diagonally
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dominant and hence invertible. The requirement for Q(W̃ , ε) to be invertible comes from the

need to calculate its determinant when updatingW , a difficulty not faced when implementing

model (2.2) becauseW and hence Q(W ) are fixed. The addition of a small positive constant

ε to the diagonal of the precision matrix has been suggested in this context by Lu et al.

(2007). A sensitivity analysis to different values of ε was conducted in the simulation study

in Section 4, and the results were robust to this specification. Therefore we recommend setting

ε = 0.001 when implementing the model. The full conditional distributions corresponding to

the LCAR model are given by:

φk|φ̃−k ∼ N

(∑n
i=1wkiφi + wk∗φ∗∑n
i=1wki + wk∗ + ε

,
τ 2∑n

i=1wki + wk∗ + ε

)
k = 1, . . . , n, (3.3)

φ∗|φ̃−∗ ∼ N

( ∑n
i=1wi∗φi∑n

i=1wi∗ + ε
,

τ 2∑n
i=1wi∗ + ε

)
.

In (3.3) the conditional expectation is a weighted average of the global random effect φ∗

and the random effects in neighbouring areas, with the binary weights depending on the

current value of W . This shows that φ∗ acts as a global non-spatial random effect, which

influences the conditional expectation of any other random effect that corresponds to an areal

unit with at least one edge removed. The conditional variance is approximately (due to ε)

inversely proportional to the number of edges remaining in the model, including the edge to

the global random effect φ∗. Removing the kjth edge fromW sets wkj (and hence wjk) equal

to zero and makes (φk, φj) conditionally independent, and means that the global random

effect φ∗ is included in the conditional expectation to allow for non-spatial smoothing. In the

extreme case of all edges being retained in the model (3.3) simplifies to the IAR model for

global spatial smoothing, while if all edges are removed the random effects are independent

with a constant mean and variance, which are approximately (again due to ε) equal to φ∗

and τ 2 respectively.
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3.2 Prior distribution - f(W)

The dimensionality of W is NW = 1TW1/2, and as each edge is binary the sample space

has size 2NW . The simplest approach would be to assign each edge an independent Bernoulli

prior, but as described in Section two this is likely to result in W being weakly identifiable.

Therefore we treatW as a single random quantity, and propose the following discrete uniform

prior for its neighbourhood matrix representation W̃ ;

W̃ ∼ Discrete Uniform(W̃ (0), W̃ (1), . . . , W̃ (NW )). (3.4)

The last candidate value W̃ (NW ) retains all NW edges in the model, that is wkj = 1 ∀ wkj ∈

W , and corresponds to the IAR model for global spatial smoothing. Moving from W̃ (j) to

W̃ (j−1) removes an edge from W , which sets one additional wkj = wjk = 0. This means

that W̃ (0) contains no edges and corresponds to independent random effects. Thus the set

{W̃ (j)|j = 1, . . . , NW − 1} corresponds to localised spatial smoothing, where some edges are

present in the model and the corresponding random effects are smoothed, while other edges

are absent and no such smoothing is enforced. This restriction reduces the sample space

of W to being one-dimensional, because the possible values (W̃ (0), W̃ (1), . . . , W̃ (NW )) have a

natural ordering in terms of the number of edges present in the model.

We propose eliciting the set of candidate values (W̃ (0), W̃ (1), . . . , W̃ (NW )) from disease

data prior to the study period, because such data are typically available and should have a

similar spatial structure to the response. Let ((Yp
1,E

p
1), . . . , (Y

p
r ,E

p
r)) denote these vectors

of observed and expected disease counts for the r time periods prior to the study period.

The general likelihood model (2.1) gives the vector of expectations for the study data as

E[Y] = E exp(Xβ + φ), which is equivalent to ln (E[Y]/E) = Xβ + φ. Then as φ ∼

N(0, τ 2Q(W̃ , ε)−11:n), we make the approximation
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φp
j = ln

[
Yp

j

Ep
j

]
≈ ln

[
Y

E

]
∼approx N(Xβ, τ 2Q(W̃ , ε)−11:n) for j = 1, . . . , r. (3.5)

Based on this approximation the prior elicitation takes the form of an iterative algorithm,

which begins at W̃ (NW ) (which retains all edges in the model) and moves from W̃ (j) to W̃ (j−1)

by removing a single edge from W . The algorithm continues until it reaches W̃ (0), where all

edges have been removed. The algorithm moves from W̃ (j) to W̃ (j−1) by computing the joint

approximate Gaussian log-likelihood for (φp
1, . . . ,φ

p
r) based on (3.5). This is given by

ln[f(φp
1, . . . ,φ

p
r|W̃ (∗))] =

r∑
j=1

ln[N(φp
j |Xβ̂, τ̂ 2Q(W̃ ∗, ε)−11:n)], (3.6)

≈ r

2
ln(|Q(W̃ ∗, ε)1:n|)−

nr

2
ln(τ̂ 2)

− 1

2τ̂ 2

r∑
j=1

(φp
j −Xβ̂)TQ(W̃ ∗, ε)1:n(φp

j −Xβ̂),

where the constant in the likelihood function has been removed. This likelihood ap-

proximation is calculated for all matrices W̃ (∗) that differ from W̃ (j) by having one ad-

ditional edge removed. From this set of candidates W̃ (j−1) is equal to the value of W̃ (∗)

that maximises the above log-likelihood. This prior elicitation approach removes edges from

W in sequence conditional on the current value of W , rather than naively treating each

edge independently of the others. However, this approach requires (3.6) to be evaluated

NW(NW + 1)/2 times, which makes the approach computationally intensive. This compu-

tational burden is reduced by estimating (β̂, τ̂ 2) by maximum likelihood, that is, based

on W̃ (j), β̂ = (XTQ(W̃ (j), ε)1:nX)−1XTQ(W̃ (j), ε)1:n( 1
n

∑r
j=1 φ

p
j) and τ̂ 2 = 1

nr

∑r
j=1(φ

p
j −

Xβ̂)TQ(W̃ (j), ε)1:n(φp
j − Xβ̂). In addition, to speed up the computation of the quadratic

form in (3.6), the above estimators are based on W̃ (j) rather than on each individual W̃ (∗).
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3.3 Overall model

The Bayesian hierarchical model proposed here combines the likelihood (2.1) with the priors

(3.3) and (3.4) and is given by

Yk|Ek, Rk ∼ Poisson(EkRk) for k = 1, . . . , n,

ln(Rk) = xT

kβ + φk, (3.7)

φ̃ ∼ N(0, τ 2Q(W̃ , ε = 0.001)−1),

W̃ ∼ Discrete Uniform(W̃ (0), W̃ (1), . . . , W̃ (NW )),

βj ∼ N(0, 1000) for j = 1, . . . , p,

τ 2 ∼ Uniform(0, 1000).

Diffuse priors are specified for the regression parameters β and the variance parameter τ 2,

while ε is set equal to 0.001. A sensitivity analysis to the latter is presented in Section 4,

which shows that model performance is not sensitive to this choice. Inference for this model is

based on MCMC simulation, using a combination of Metropolis-Hastings and Gibbs sampling

steps. The spatial structure matrix W̃ is updated using a Metropolis-Hastings step, where

if the current value in the Markov chain is W̃ (j), then a new value is proposed uniformly

from the set (W̃ (j−q), . . . , W̃ (j−1), W̃ (j+1), . . . , W̃ (j+q)). Here q is a tuning parameter, which

controls the mixing and acceptance rates of the update. Functions to implement model (3.7)

as well the prior elicitation are available in the statistical software R, and are provided in

the supplementary material accompanying this paper. The increased flexibility provided by

the LCAR model inevitably means that it is more computationally demanding than the

commonly used BYM model. Specifically, it takes 90% longer to produce the same number

of MCMC samples compared with the BYM model, while the prior elicitation step takes

around 40 seconds for the Glasgow data considered here.
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4. Simulation study

This section presents a simulation study, which compares the performance of the LCAR

model proposed here against the BYM model and the recent innovations proposed by Lee

and Mitchell (2013) for localised spatial smoothing (hereafter referred to as LM) and Hughes

and Haran (2013) for smoothing orthogonal to the covariates (hereafter referred to as HH).

For the latter q = 50 basis functions are used, because it is the default choice in the ngspatial

software. However, we applied the model with a range of different q values, and the results

showed little sensitivity to this value.

4.1 Data generation and study design

Simulated data are generated for the 271 IGs that comprise the Greater Glasgow study

region described in Section 2. Disease counts are generated from model (2.1), where the

size of the expected numbers E is varied to assess its impact on model performance. The

log risk surface is a linear combination of a single spatially smooth covariate acting as air

pollution, and localised residual spatial autocorrelation. The pollution covariate is generated

as the average of two Gaussian spatial processes with different ranges, one of which has

the same range and hence is confounded with the localised spatial autocorrelation. Both

spatial processes are generated using the Matérn family of correlation functions, where the

smoothness parameter equals 2.5. The regression coefficient for the covariate is fixed at

β = 0.1, while new realisations of the covariate and the residual spatial autocorrelation are

generated for each simulated data set. The residual autocorrelation is also generated from

a Gaussian process with a Matérn correlation function, where localised spatial structure is

induced via a piecewise constant mean. The template for this is shown in Figure 2, and only

has three distinct values {−1, 0, 1}. These values are multiplied by a constant M to obtain the

expectation, where larger values of M lead to bigger step changes in the spatial surface. The

study is split into nine different scenarios comprising pairwise combinations of M = 0.5, 1, 1.5
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and Ek ∈ [10, 25], [50, 100], [150, 200]. The size of E quantifies disease prevalence, while

M determines the extent of local rather than global residual autocorrelation (larger values

correspond to more prominent localised structure). Each simulated data set consists of study

data and three years of prior data, which is the number of prior data sets used in the Glasgow

motivating study. The residual spatial autocorrelation for the latter is generated by adding

uniform random noise in the range [−0.1, 0.1] to the realisation generated for the real data,

which mimics the realistic situation where the spatial patterns in the prior and real data are

similar but not identical.

[Figure 2 about here.]

4.2 Results

Five hundred data sets are generated under each of the nine scenarios and the results are

displayed in Figure 3 and Table 1, which respectively summarise the root mean square

error (RMSE) of the estimated regression parameter and the coverage and widths of the

95% uncertainty intervals. The back dots in the figure display the RMSE values for all four

models, while the vertical lines represents bootstrapped 95% uncertainty intervals based on

1000 bootstrapped samples. The figure shows that no single model exhibits the lowest RMSE

values for all scenarios, as the LCAR model performs best in this regard for 6 scenarios and

second best in the remaining 3, while the LM model has the lowest values for 3 scenarios.

The latter performs well when the magnitude of the localised structure is large (large M),

which is likely to be because it induces localised smoothness only when there are substantial

differences between neighbouring random effects. In contrast, it performs on a par with the

BYM model when the localised structure is less prominent, and is substantially worse than

the LCAR model in these situations. The HH model performs consistently poorly relative

to the other models, which is likely to be because although it induces spatial smoothing

orthogonal to the covariates, the smoothing is global (each basis function is a globally
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smooth quantity) and does not allow adjacent areas to have very different values (step

changes). The figure also illustrates the importance of choosing an appropriate model for

spatial autocorrelation, as reductions in RMSE between the best and worst model range

between 6.3% and 68.3% depending on the scenario. The differences between the models can

also be substantial, as the bootstrapped 95% uncertainty intervals for the RMSE often do

not overlap.

Table 1 shows that overall the uncertainty intervals from the BYM model are closest to

their nominal 95% coverage levels, with values above 90% for all scenarios. The intervals

from the LCAR model are also close to their nominal levels in most scenarios, with all but

three being above 90%. However, the generally small increases in coverages exhibited by the

BYM model compared to the LCAR model come at the cost of wider uncertainty intervals,

which are between 5.4% and 38.2% wider depending on the scenario. The coverages from the

LM model are relatively poor in comparison, being between 67.0% and 92.8% respectively.

Finally, the intervals from the HH model exhibit very poor coverage, which is likely to be

due to both the relatively poor estimation performance as summarised by Figure 3 and their

comparatively narrow average widths. RMSE values for the fitted values EkRk and coverage

probabilities for the corresponding uncertainty intervals are displayed in the supplementary

material accompanying this paper, and show broadly similar but less dramatic patterns to

the results presented here for the fixed effects. Finally, a sensitivity analysis to the choice of

the diagonally dominant constant ε was conducted, where the middle values of M = 1 and

Ek ∈ [50, 100] were used. Values of ε = 0.0001, 0.001, 0.01 were considered, and the results

were robust to this choice.

[Figure 3 about here.]

[Table 1 about here.]
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5. Results from the Glasgow study

5.1 Modelling

Initially, a simple Poisson log-linear model including the four non-pollution covariates was

fitted to the data, and only job seekers allowance exhibited a significant relationship with

respiratory disease risk. The remaining three covariates were thus removed from the model,

and each of the pollutants were included in separate models due to their collinearity. The

residuals from these models exhibited substantial overdispersion, with an estimate of 3.47

when PM2.5 was included in the model. The presence of residual spatial autocorrelation was

assessed by a permutation test based on Moran’s I statistic, which yielded a highly significant

p-value of 0.00001. Random effects were thus added to the model, and we implement the

four models compared in the simulation study. These models induce different types of spatial

smoothing, and include the commonly used BYM model for global spatial smoothing, the

LCAR model proposed here and the proposal of Lee and Mitchell (2013) for localised spatial

smoothing, and the model proposed by Hughes and Haran (2013) for smoothing orthogonal

to the covariates. Finally, for the LCAR model the prior elicitation was based on respiratory

disease data from 2008 to 2010.

5.2 Results - Model fit

Posterior inference for all models was based on 3 parallel Markov chains, with the exception

being the model proposed by Lee and Mitchell (2013) which uses Integrated Nested Laplace

Approximations (INLA) instead of MCMC simulation. These chains were burnt in for a

period of 50,000 iterations, by which time convergence was assessed to have been reached,

and then run for an additional 50,000 iterations, yielding 150,000 samples in total. The results

are displayed in Table 2, which quantifies the overall goodness of fit of the models and the

estimated covariate effects. The results relating to model fit are those where PM2.5 was the

pollution metric, but similar results were obtained for the other pollutants. The goodness-
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of-fit of each model is summarised by its Deviance Information Criterion (DIC, Spiegelhalter

et al. (2002)), where a smaller value represents a better fitting model. The table shows that

the LCAR model exhibits the best fit to the data according to the DIC, while the LM model

is the next best in that regard. In particular, both these localised smoothing models appear

to fit the data better than the global smoothing BYM model, with differences of 11.6 and

8.2 respectively. The HH model exhibits the worst fit to the data in terms of DIC, which is

likely to be because it contains q = 50 basis functions compared with the 271 random effects

used by the other models. The presence of residual spatial autocorrelation was then assessed

using a Moran’s I permutation test (based on 10,000 random permutations), and all four

models had removed the spatial autocorrelation present in the residuals from the covariate

only model.

5.3 Results - covariate effects

Table 2 also displays the estimated relationships between each covariate and the response,

where all results are presented as relative risks for an increase of one standard deviation in

each covariates value. The table shows that nitrogen dioxide and both particulate matter

metrics exhibit substantial effects on respiratory disease risk, as their estimated relative

risks range from 1.026 to 1.043 depending on the pollutant chosen and the model that

was fitted. In contrast, neither CO nor SO2 exhibit any substantial health impact, as both

have relative risks close to the null risk of one for the majority of the four models. The

estimated relative risks for a single pollutant show considerable variation between the four

models, which suggests that the choice of spatial smoothing prior impacts on the fixed effects

estimates. This result thus confirms the results of Reich et al. (2006), and the simulation

study conducted here suggests that the estimates from the LCAR model are likely to be the

most accurate. Based on those results NO2, PM2.5 and PM10 exhibit substantial effects on

respiratory ill health (95% credible intervals do not include the null risk of one), with relative
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risks of 4.0%, 3.9% and 4.0% respectively. Consistent attenuation of the estimated pollution

effects are observed for the global smoothing BYM model (and the LM model) compared

with the LCAR and HH models, which may be due to the collinearity between the fixed

and random effects. Also noteworthy is the substantially smaller credible intervals obtained

from the HH model compared with those from the other models, which is consistent with

the simulation study results. Finally, we note that while the risks estimated in this study are

relatively large, they are broadly in line with existing studies such as Lee et al. (2009) and

Haining et al. (2010). Furthermore, these risks should not be compared with those estimated

from short-term time series studies, because a fixed µgm−3 increase in a persons short-term

exposure is likely to have a smaller health impact than the same increase in their exposure

over the long-term.

[Table 2 about here.]

5.4 Results - localised residual spatial autocorrelation

Figure 4 displays the posterior distribution for the number of edges removed from the model,

where the three grey lines are chain specific estimates while the bold black line represents

the combined distribution from all three Markov chains. The figure shows close agreement

between the chains, as all three give similar density estimates. There are 718 edges in total in

the Greater Glasgow region, and the middle 95% of the posterior distribution lies between 171

and 385 of these having been removed. The figure suggests that while the posterior variability

is relatively wide, there is information in the data to estimate the number of edges to remove.

Specifically, the posterior distribution is multi-modal, with the largest mode occurring when

231 edges are removed. The figure also provides strong evidence that the random effects are

neither globally spatially smooth not independent, as there is no posterior mass at either

end of the range of possible values (0 or 718 edges removed).

[Figure 4 about here.]
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6. Discussion

This paper has proposed a new localised conditional autoregressive (LCAR) prior for mod-

elling residual spatial autocorrelation, which is flexible enough to capture either spatial

smoothness or a distinct step change in the data between adjacent areal units. This flexibility

is due to the treatment of the neighbourhood matrix W as a random quantity, rather

than assuming it is fixed based on geographical adjacency. However, this requires a large

number of partial correlation parameters to be estimated, and the resulting lack of parsimony

is overcome by using prior information to greatly reduce the size and dimensionality of

the sample space for W . The proposed model can estimate a range of localised spatial

autocorrelation structures, as well as patterns that are globally smooth or independent in

space. These residual autocorrelation structures are also unlikely to be collinear to the fixed

effects, because they are elicited from the prior information after the covariate effects have

been removed.

The simulation study has shown that the LCAR model exhibits generally superior estima-

tion performance for fixed effects compared with both the commonly used BYM model and

the recent innovations by Lee and Mitchell (2013) and Hughes and Haran (2013). It generally

estimated the fixed effects with the smallest RMSE, had coverages only slightly below their

nominal levels, and had narrower credible intervals than the BYM model. This superior

performance is likely to result from the LCAR model having the flexibility to represent

a range of localised spatial autocorrelation structures, which by construction are unlikely

to be collinear to the estimated fixed effects. In this sense it contains the localised spatial

smoothing aspects of Lee and Mitchell (2013), while having a high likelihood of not producing

random effects that are collinear to the fixed effects as in Hughes and Haran (2013). The

final conclusion from the simulation study is that inappropriate control for residual spatial
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autocorrelation can greatly retard fixed effects estimation, meaning that its careful modelling

is vital even if it is not itself of direct interest.

The epidemiological study presented in this paper shows substantial evidence that particu-

late air pollution and nitrogen dioxide are harmful to respiratory health in Greater Glasgow,

with an estimated increase in the population’s disease burden of around 4% if yearly average

concentrations increased by one standard deviation. However, one must remember that this is

an observational ecological study design, and the results must not be interpreted in terms of

individual level cause and effect (ecological bias). Even so, as small-area studies are cheaper

and quicker to implement than individual level cohort studies, they form an important

component of the evidence base quantifying the health effects of long-term exposure to

air pollution.

There are many avenues for future work in this area, including the extension of the

methodology to the spatio-temporal domain. In an epidemiological context the extension of

the present study to the whole of the United Kingdom would be of interest to policymakers,

as it would give the UK government a national rather than a regional picture of the extent of

the air pollution problem. In addition, while the motivation for this paper was an ecological

regression problem, the methodology developed will also be directly relevant to the fields of

disease mapping and Wombling, whose aims are to estimate the spatial pattern in disease

risk and to identify any boundaries in the estimated risk surface.

Acknowledgements

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC)

grant numbers EP/J017442/1 and EP/J017485/1, and the data and shapefiles were provided

by DEFRA and the Scottish Government. Finally, the authors would like to thank the



22 Biometrics, 000 0000

associate editor and two reviewers whose comments improved the content and presentation

of this paper.

Supplementary Materials

This paper contains on-line supplementary material which is available with the electronic

version. This material takes the form of additional simulation results, software (functions in

R) to implement the LCAR model, the data used in the Glasgow air pollution study, and

code to partially re-create the analysis presented in Section 5.

References

Besag, J., J. York, and A. Mollie (1991). Bayesian image restoration with two applications

in spatial statistics. Annals of the Institute of Statistics and Mathematics 43, 1–59.

Beverland, I., C. Robertson, C. Yap, M. Heal, G. Cohen, D. Henderson, C. Hart, and R. Agius

(2012). Comparison of models for estimation of long-term exposure to air pollution in

cohort studies. Atmospheric Environment 62, 530–539.

Chen, M., J. Ibrahim (2006). The Relationship Between the Power Prior and Hierarchical

Models. Bayesian Analysis 1, 551–574.

DEFRA Air Quality Subject group (2010). Air Quality Appraisal - Valuing Environmental

Limits. Department for the Environment, Food and Rural Affairs.

Elliott, P., G. Shaddick, J. Wakefield, C. Hoogh, and D. Briggs (2007). Long-term associa-

tions of outdoor air pollution with mortality in Great Britain. Thorax 62, 1088–1094.

Greven, S., F. Dominici, and S. Zeger (2011). An Approach to the Estimation of Chronic

Air Pollution Effects Using Spatio-Temporal Information. Journal of the American

Statistical Association 106, 396–406.

Grice, S., S. Cooke, J. Stedman, T. Bush, V. K, H. M, J. Abbott, and A. Kent (2009). Uk



A Bayesian localised conditional autoregressive model 23

air quality modelling for annual reporting 2007 on ambient air quality assessment under

Council Directives 96/62/EC, 1999/30/EC and 2000/69/EC. AEA Technology.

Haining, R., G. Li, R. Maheswaran, M. Blangiardo, J. Law, N. Best, and S. Richardson

(2010). Inference from ecological models: estimating the relative risk of stroke from air

pollution exposure using small area data. Spatial and Spatio-temporal Epidemiology 1,

123–131.

Hodges, J. and B. Reich (2010). Adding Spatially Correlated Errors Can Mess Up the Fixed

Effect You Love. The American Statistician 64, 325–334.

Hughes, J. and M. Haran (2013). Dimension reduction and alleviation of confounding for

spatial generalized linear mixed models. Journal of the Royal Statistical Society Series

B 75, 139–159.

Laden, F., J. Schwartz, F. Speizer, and D. Dockery (2006). Reduction in fine particu-

late air pollution and mortality. American journal of Respiratory and Critical Care

Medicine 173, 667–672.

Lee, D., C. Ferguson, and R. Mitchell (2009). Air pollution and health in Scotland: a multicity

study. Biostatistics 10, 409–423.

Lee, D. and R. Mitchell (2012). Boundary detection in disease mapping studies. Biostatis-

tics 13, 415–426.

Lee, D. and R. Mitchell (2013). Locally adaptive spatial smoothing using conditional

autoregressive models. Journal of the Royal Statistical Society Series C 62, 593–608.

Li, P., S. banerjee, and A. McBean (2011). Mining boundary effects in areally referenced

spatial data using the Bayesian information criterion. Geoinformatica 15, 435–454.

Lu, H., C. Reilly, S. Banerjee, and B. Carlin (2007). Bayesian areal wombling via adjacency

modelling. Environmental and Ecological Statistics 14, 433–452.

Ma, H. and B. Carlin (2007). Bayesian Multivariate Areal Wombling for Multiple Disease



24 Biometrics, 000 0000

Boundary Analysis. Bayesian Analysis 2, 281–302.

Ma, H., B. Carlin, and S. Banerjee (2010). Hierarchical and Joint Site-Edge Methods for

Medicare Hospice Service Region Boundary Analysis. Biometrics 66, 355–364.

Mackenbach, J., A. Kunst, A. Cavelaars, F. Groenhof, and J. Geurts (1997). Socioeconomic

inequalities in morbidity and mortality in western Europe. Lancet 349, 1655–1659.

Paciorek, C. (2010). The importance of Scale for Spatial-Confounding Bias and Precision of

Spatial Regression Estimators. Statistical Science 25, 107–125.

Reich, B., J. Hodges, and V. Zadnik (2006). Effects of Residual Smoothing on the Posterior

of the Fixed Effects in Disease-Mapping Models. Biometrics 62, 1197–1206.

Spiegelhalter, D., N. Best, B. Carlin, and A. Van der Linde (2002). Bayesian measures of

model complexity and fit. Journal of the Royal Statistical Society series B 64, 583–639.

Stern, H. and N. Cressie (1999). Inference for extremes in disease mapping, Chapter

Disease mapping and Risk Assessment for Public Health. Lawson, A and Biggeri, D

and Boehning, E and Lesaffre, E and Viel, J and Bertollini, R (eds). Wiley.



A Bayesian localised conditional autoregressive model 25

Figure 1. Maps displaying the spatial pattern in the standardised incidence ratio for
respiratory disease in 2011 (top panel) and the modelled yearly average concentration (in
µgm−3) of PM10 in 2010 (bottom panel).
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Figure 2. A map showing the piecewise constant mean function (with possible values
{−1, 0, 1}) for the random effects that generate localised spatial correlation in the simulation
study.
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Figure 3. Root mean square errors (RMSE) for the estimated regression parameter β. In
each case the dot represents the estimated RMSE while the black bars are bootstrapped
95% uncertainty intervals. The models are: a - BYM, b - LCAR, c - the model of Lee and
Mitchell (2013), and d - the model of Hughes and Haran (2013).
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Figure 4. Posterior density for the number of edges removed from the model. The three
grey lines display the estimates from the individual Markov chains, while the bold black line
displays the combined density from all three chains.
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Table 1
Percentage coverages and average widths (in brackets) for the 95% credible intervals for the estimated regression
parameter β.Here LM and HH refer to the models proposed by Lee and Mitchell (2013) and Hughes and Haran

(2013).

E M
Model

BYM LCAR LM HH

0.5 94.2 (0.204) 92.2 (0.193) 92.8 (0.197) 73.8 (0.131)
[10, 25] 1 94.2 (0.290) 92.8 (0.248) 91.0 (0.266) 53.0 (0.128)

1.5 94.4 (0.392) 93.0 (0.298) 80.0 (0.284) 32.8 (0.122)

0.5 92.6 (0.158) 90.2 (0.134) 86.6 (0.139) 46.2 (0.065)
[50, 100] 1 94.0 (0.257) 89.8 (0.184) 73.8 (0.148) 28.0 (0.063)

1.5 90.8 (0.365) 92.8 (0.236) 79.0 (0.134) 20.4 (0.060)

0.5 94.2 (0.147) 89.6 (0.113) 78.2 (0.099) 31.4 (0.042)
[150, 200] 1 90.2 (0.248) 85.8 (0.165) 67.0 (0.098) 18.0 (0.041)

1.5 92.4 (0.353) 93.0 (0.218) 81.4 (0.087) 12.6 (0.040)
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Table 2
A summary of the overall fit of each model (top panel) and the estimated covariate effects (bottom panel). The
former includes the DIC (effective number of parameters in brackets) and the Moran’s I statistic applied to the
residuals (p-value in brackets). The estimated covariate effects are presented as relative risks for a one-standard

deviation increase in each covariates value, which are JSA (2.78%), CO (0.0076 mgm−3), NO2 (5.0µgm−3), PM2.5

(1.1µgm−3), PM10 (1.5µgm−3), and SO2 (0.48 µgm−3). Here LM and HH refer to the models proposed by Lee and
Mitchell (2013) and Hughes and Haran (2013).

Model
BYM LCAR LM HH

DIC 2124.0 (178.5) 2112.4 (173.4) 2115.8 (167.7) 2467.6 (157.1)
Moran’s I -0.025 (0.7078) -0.082 (0.9834) -0.121 (0.9997) -0.089 (0.9909)

JSA 1.304 (1.268, 1.342) 1.283 (1.247, 1.320) 1.306 (1.272, 1.341) 1.318 (1.300, 1.336)
CO 0.997 (0.954, 1.038) 1.011 (0.973, 1.045) 0.998 (0.959, 1.036) 1.021 (1.006, 1.035)
NO2 1.036 (0.998, 1.072) 1.040 (1.012, 1.067) 1.033 (1.003, 1.065) 1.043 (1.028, 1.059)
PM2.5 1.029 (0.991, 1.067) 1.039 (1.007, 1.071) 1.026 (0.989, 1.063) 1.035 (1.021, 1.050)
PM10 1.032 (0.994, 1.071) 1.040 (1.007, 1.073) 1.028 (0.993, 1.064) 1.034 (1.021, 1.048)
SO2 1.009 (0.980, 1.040) 1.016 (0.989, 1.044) 1.010 (0.983, 1.037) 1.010 (0.998, 1.024)


