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Summary

In the United Kingdom air pollution is linked to around 40,000 premature deaths each year, but

estimating its health effects is challenging in a spatio-temporal study. The challenges include spa-

tial misalignment between the pollution and disease data; uncertainty in the estimated pollution

surface; and complex residual spatio-temporal autocorrelation in the disease data. This article

develops a two-stage model that addresses these issues. The first stage is a spatio-temporal fusion

model linking modelled and measured pollution data, while the second stage links these predic-

tions to the disease data. The methodology is motivated by a new five-year study investigating

the effects of multiple pollutants on respiratory hospitalisations in England between 2007 and

2011, using pollution and disease data relating to local and unitary authorities on a monthly time

scale.
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1. Introduction

Air pollution remains a global public health problem in the United Kingdom (UK), with an

estimated 40,000 premature deaths attributable each year (Royal College of Physicians, 2016).

Nitrogen dioxide (NO2) is predicted to exceed European Union (EU) limits until after 2030 in

some urban areas of the UK (Department for the Environment Food and Rural Affairs, 2015),

meaning that pollution will remain a key environmental problem for some time. The long-term

effects of air pollution are predominantly estimated from cohort studies such as Miller and others

(2007), but such studies are expensive and time consuming to implement. Therefore spatio-

temporal areal unit studies such as Lee and others, 2009 and Greven and others, 2011 are also

used, and as they make use of freely available population-level data they are quick and inexpensive

to implement. Thus although they can be prone to ecological bias, they are used to independently

corroborate the evidence from cohort studies.

Poisson log-linear models are used to analyse data from these studies, where the spatio-

temporal pattern in disease risk is modelled by known covariates and a set of spatio-temporal

random effects. The latter account for any residual spatio-temporal autocorrelation remaining in

the disease data, which could be caused by unmeasured confounding, neighbourhood effects and

grouping effects. However, this study design presents a number of statistical challenges, and this

paper presents a rigorous statistical framework for addressing them.

The first challenge is the estimation of air pollution at fine spatio-temporal scales, and existing

studies typically use either measured data (e.g. Elliott and others, 2007 and Greven and others,

2011) or estimated concentrations from an atmospheric pollution model (e.g. Lee and others, 2009

and Haining and others, 2010). Bayesian fusion models for combining modelled and measured

pollution data have been proposed by Berrocal and others (2009, 2012) and Sahu and others
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(2010) for pollution prediction purposes, and a challenge to combining them with a health model is

the change of support problem, as there will be spatial variation in the pollution surface within an

areal unit. This problem is typically ignored by computing the average concentration in each unit

(see Elliott and others, 2007, Lee and others, 2009), leading to the possibility of ecological bias (see

Wakefield and Shaddick, 2006). A further source of pollution uncertainty is posterior uncertainty

in the point-level predictions, which is typically ignored by computing a point estimate.

The other main modelling challenge is accounting for residual spatio-temporal autocorrelation

via the random effects, and typically globally smooth Gaussian Markov random field (GMRF)

priors are used (e.g. Rushworth and others, 2014). However, global smoothness is restrictive, as

the residual autocorrelation will likely be localised and present between some pairs of adjacent

areal units but absent between other pairs. Such localised structure is present in the England study

motivating this paper (see Figure 1 top right), and Lee and Sarran (2015) have shown that using

globally smooth models produces poor health effect estimates in a purely spatial domain. This

paper therefore makes two key contributions to the literature. First, Section 3 proposes a rigorous

statistical framework for estimating the long-term health effects of air pollution, that is the first

to simultaneously address the challenges outlined above. Second, we apply our methodology to a

new comprehensive study of air pollution and health in England between 2007 and 2011, which is

outlined in Section 2. The results of the study are presented in Section 4 after the methodological

development, while Section 5 presents a concluding discussion.

2. Study design and exploratory analysis

2.1 Disease data

The study region is mainland England, UK, partitioned into k = 1, . . . ,K = 323 Local and

Unitary Authorities (LUA), and data are available for t = 1, . . . , T = 60 months between 2007

and 2011. Counts of the numbers of respiratory hospitalisations for LUA k and month t are
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denoted by Ykt, which have a median value of 111 and a range from 6 to 2485. The monthly time

scale matches the study by Greven and others (2011), whereas the majority of studies such as Lee

and others (2009) utilise yearly data. An advantage of the monthly scale is that it requires less

aggregation of the data away from the individual level, but it does mean that Ykt could include

admissions driven by both chronic and acute pollution exposure.

The magnitude of Ykt depends on the size and demographics of the population at risk, which

we adjust for by computing the expected number of hospital admissions Ekt using indirect stan-

dardisation from national age and sex specific hospitalisation rates. The spatial (top left panel)

and temporal (bottom panel) patterns in the Standardised Morbidity Ratio, SMRkt = Ykt/Ekt

are displayed in Figure 1, where a value of 1.2 corresponds to a 20% increased risk compared to

Ekt. The figure shows the highest risks are in cities in the centre and north of England, such as

Birmingham, Leeds and Manchester, while the temporal pattern is strongly seasonal, with higher

risks of admission in the winter due to factors such as influenza epidemics and cold temperature.

We partially adjust for this by seasonally adjusting Ekt by a monthly correction factor, resulting

in a modified SMR that does not exhibit seasonal behaviour.

In previous studies socio-economic deprivation is the key confounder, because areas that are

impoverished have worse health on average than more affluent areas. However, poverty is multi-

dimensional, and we represent it by proxy measures of unemployment rate and property price.

Specifically, we have measures of the proportion of the working age population in receipt of Job

Seekers Allowance (denoted JSA), a benefit paid to those without employment, and the average

property price (denoted Price), both of which are available from the UK Data Archive. Addi-

tionally, we also control for the potential effect of ethnicity via the percentage of the population

that were born in the UK as of the 2001 UK Census. Finally we also control for monthly mean

temperature, which will account for any year-to-year variation not captured by the seasonally

adjusted {Ekt}.
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2.2 Pollution data

Daily mean concentrations of nitrogen dioxide (NO2), ozone (O3) and particles less than 10µm

(PM10) and 2.5µm (PM2.5) were obtained at n = 142 locations from the Automatic Urban and

Rural Network (AURN, http://uk-air.defra.gov.uk/networks) in England and Wales, the latter

included to increase the available information. Their locations are displayed in Figure 2, and 6

sites are in Wales but close to the English - Welsh border, which thus provides information on

the study region. These data were averaged to a monthly temporal resolution to align with the

disease data, but contain a large number of missing (not present) values due to discontinuation

of sites, introduction of new sites, instrument malfunction, and because not all sites measure

all pollutants. The percentages of missing observations are summarised in the supplementary

material (Section 2), which shows that roughly 35%, 60%, 65% and 70% are missing for NO2,

O3, PM2.5 and PM10 respectively. The majority of the missingness occurs in long temporal blocks

(e.g. before a monitor is introduced), and it is noticeable that there are many more sites measuring

PM2.5 after 2008.

Numerical and graphical summaries are provided in the supplementary material (Section 2) by

site type, which shows that 16 sites are Rural, 80 are Urban (which includes suburban sites) and

46 are roadside or kerbside (RKS). These results show that rural sites are less polluted than urban

and RKS sites for NO2, PM10 and PM2.5, while the converse is true for O3, suggesting a negative

correlation between them. Additionally, RKS sites have a larger spread for NO2, PM2.5 and PM10

due to many extreme observations. Finally, one can also see that pollution concentrations vary

little from year to year.

We also use estimated hourly concentrations from the Air Quality Unified Model (AQUM,

Savage and others, 2013), available on the corners of a 12 kilometer square grid covering England.

AQUM is a 3-dimensional weather and chemistry transport model used by the Met Office to

deliver air quality forecast for the Department for the Environment, Food and Rural Affairs
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(DEFRA) and for scientific research. These hourly estimates were averaged to daily (for ozone

daily maximum values were computed as is standard) and then to monthly summary values, to

temporally align with the measured concentrations. Bilinear interpolation is then used to estimate

monthly AQUM values at the 142 AURN locations (not on the 12km grid), and Figure 3 in the

supplementary material shows scatter plots of the measured against the modelled concentrations.

These plots show moderate correlations of 0.45 for NO2, 0.69 for O3, 0.46 for PM10 and 0.37 for

PM2.5 respectively, as well as inherent negative bias in the modelled concentrations. Our use of

AQUM output frees us from needing emission or meteorological data, since these variables are

not significant after including AQUM outputs.

In the analysis we predict pollution concentrations at the corners of the 12 kilometre grid

across England, but this results in 49 city LUAs not containing a prediction location. We therefore

insert an additional prediction point within each of these LUAs, yielding 1516 prediction sites

within England. These prediction sites do not have an associated site type classifier (Rural, Urban

or RKS), so for prediction purposes each site is assigned the same type as its corresponding LUA

(Rural or Urban), using the classification developed by the Office for National Statistics.

2.3 Exploratory analysis

A simple Poisson generalised linear model was applied to the disease data with the covariates

(PM2.5 was the pollutant included), and the residuals exhibited significant moderate spatio-

temporal autocorrelation, with a median (over month) Moran’s I statistic of 0.363 (spatial) and

a median (over LUA) lag 1 autocorrelation coefficient of 0.422. The average spatial pattern in

the residuals is displayed in the top right panel of Figure 1, and visually shows localised spatial

autocorrelation that is strong between some neighbouring pairs but non-existent between others.
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3. Methodology

We propose a two-stage Bayesian hierarchical model for estimating the long-term health effects

of air pollution, that is the first to simultaneously predict pollution using both modelled and

measured data, incorporate both spatial variation and posterior uncertainty in the pollution

predictions when estimating the health effects, and control for localised spatio-temporal auto-

correlation in the disease data The first stage is a fusion model producing posterior predictive

distributions of pollution at the 1516 prediction locations, while in stage two the corresponding

health effects are estimated. We do not propose a single joint model because this would allow the

disease counts to influence the predicted pollution concentrations, which is firstly implausible and

secondly it is the relationship in the opposite direction we wish to make inference on. Inference

is based on Markov chain Monte Carlo (MCMC) simulation, and further details are provided in

the supplementary material (Sections 3 and 4) and in the software section after the discussion.

3.1 Stage 1 - pollution fusion model

3.1.1 Model specification Let z(si, t) and x(si, t) respectively denote the square roots of the

measured AURN pollution concentration and the bilinearly interpolated modelled AQUM con-

centration at location si, i = 1, . . . , n in month t = 1, . . . , T for a single pollutant. The square

root scale is used as pollution is non-negative and skewed to the right, although all predictive

accuracy measures are presented on the original scale. We model z(si, t) as Gaussian with a mean

µ(si, t), a spatio-temporal process η(si, t), and a white noise process ε(si, t) as follows:

Z(si, t) = µ(si, t) + η(si, t) + ε(si, t), ε(si, t) ∼ N(0, σ2
ε ), (3.1)

µ(si, t) = γ0 + γ1x(si, t) +
r∑
j=2

δj(si) (γ0j + γ1jx(si, t)) .

Here µ(si, t) comprises site type specific regressions on x(si, t), where (γ0, γ1) are the global slope

and intercept terms while (γ0j , γ1j) are the increments for site type j. Here r = 3 for Rural, Urban
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and RKS site types, and rural corresponds to the baseline level (j = 1). Finally, δj(si) equals

one if site si is of the jth site type and zero otherwise. Note, one could extend the above with

a spatially varying coefficient process γ(si), however this is likely to mask the site-type specific

effects of x(si, t), resulting in weak model identifiability and slow MCMC convergence.

Sahu and others (2010) and Berrocal and others (2012) have proposed alternatives to (3.1),

but they are full fusion models in the sense that they acknowledge x(si, t) to be areal data indexed

by grid cells rather than point locations si. However, as mentioned above bilinear interpolation

has been used to estimate x(si, t) at the n = 142 observation sites from the available data at

grid box corners. Hence, the change of support issues considered by the above references are not

necessary here.

We consider three modelling possibilities for η(si, t), which differ in their complexity. The first

assumes η(si, t) = 0 for all sites si and times t, which is used for comparison purposes with the

other two models. The second is an independent over time Gaussian process (GP) with a zero

mean and a Matérn covariance function:

ηt = (η(s1, t), . . . , η(sn, t))> ∼ N(0, σ2
ηHη(φ, ν)). (3.2)

Here Hη(φ, ν)ij = C(||si−sj ||;φ, ν), a Matérn correlation function with decay and smoothness pa-

rameters φ and ν respectively. The third model has a non-stationary covariance structure following

Sahu and Mukhopadhyay (2015), which is based on predictive process methodology (Banerjee and

others, 2008). First, define m knot-locations, S∗m = (s∗1, . . . , s
∗
m), where m is chosen to minimise

out of sample root mean square prediction error. Given S∗m let η∗t = (η(s∗1, t), . . . , η(s∗m, t))
> be

a zero mean GP with covariance function (3.2). Then our non-stationary model replaces η(si, t)

in (3.1) by η̃(si, t) = E [η(si, t)|η∗t ], the expectation of η(si, t) given the predictive process η∗t .

The (n+m)× 1 vector (ηt,η∗t ) is modelled jointly by the zero-mean GP given in (3.2). Thus by
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writing η̃t = (η̃(s1, t), . . . , η̃(sn, t))> we have

η̃t = C∗(φ, ν)H−1
η∗ (φ, ν)η∗t , (3.3)

where C∗(φ, ν) is the n ×m cross-correlation matrix between η and η∗, (i.e. (C∗)ij = C(||si −

s∗j ||;φ, ν)) and Hη∗(φ, ν) is the m × m correlation matrix of η∗t (i.e. Hη∗(φ, ν)ij = C(||s∗i −

s∗j ||;φ, ν)). Thus η̃t is a linear function of the m-dimensional η∗t instead of the n-dimensional ηt,

leading to computational savings when m is much smaller than n. However, for our data n = 142

is not large, hence this dimension reduction will be more beneficial to larger data sets. Finally,

we introduce temporal dependence via the autoregressive model:

η∗t ∼ N
(
%η∗t−1, σ

2
ηHη∗(φ, ν)

)
, for t = 1, . . . , T, (3.4)

with η∗0 = 0 and % is the autoregressive parameter. Sahu and Mukhopadhyay (2015) show that

random locations S∗m are preferable to a space filling design. We allow S∗m to come from M

potential locations, which are vertices of a 1 kilometre grid covering England. Additionally, we

consider a probability surface p(s∗j ) for these M locations, where
∑M
j=1 p(s

∗
j ) = 1 and p(s∗j ) > 0.

Here p(s∗j ) is the normalised population density, encouraging knots to be placed at high density

areas. The locations S∗m are thus updated in the MCMC algorithm via a Metropolis-Hastings

step, with proposals drawn from the prior p(s∗j ).

We complete our model by specifying vague but proper prior distributions for the regression

parameters (N(0, 104)), variance parameters (Inverse Ggamma(2, 1)), and autoregressive param-

eter (N(0, 104) truncated to the interval (-1, 1) to ensure stationarity). The Matérn covariance

parameters (φ, ν) are estimated by an empirical Bayes approach that minimises out of sample

root mean square prediction error, due to the issues regarding inconsistent estimation as outlined

by Zhang (2004). The estimates for φ are described in the results section while ν = 0.2 was chosen

as the optimal value in an initial validation exercise with hold out data for 15 sites among the

possible values 0.1, 0.2 and 0.5 (exponential). This indicates a sub-exponential smoothness in the
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underlying GP is optimal, which is perhaps due to the sparsity and the missingness in the data.

Previous studies have shown that the predictions are not greatly sensitive to the choice of these

correlation parameters (Sahu and others, 2007).

3.1.2 Prediction from the model For the kth LUA (denoted Ak) and tth month the average

pollution concentration is estimated by Monte Carlo integration as

Ẑkt =
1
|Ak|

∫
Ak

Z(s, t)ds ≈ 1
nk

nk∑
j=1

Z(vkj , t), (3.5)

where |Ak| is the area of the kth LUA and (vk1, . . . ,vknk
) form a grid of prediction locations

within the kth LUA. However, Z(vkj , t) in (3.5) is unknown and as a result Ẑkt is a random

variable whose uncertainty should be propagated into the disease model. First, the uncertainty

in Z(vkj , t) is summarised by its posterior predictive distribution:

π(z(vkj , t)|z) =
∫
π(z(vkj , t)|S∗m,η∗,θ, z)π(S∗m,η

∗,θ|z)dS∗mdη
∗dθ, (3.6)

where θ = (γ, %, σ2
ε , σ

2
η, φ, ν)T , η∗ = (η∗1, . . . ,η

∗
T ), and z denotes the complete set of pollution

data. Here π(z(vkj , t)|S∗m,η∗,θ) requires η̃(vkj , t) = c∗(φ, ν)Hη∗(φ, ν)−1η∗t , analogous to (3.3),

where c∗(φ, ν)1×m has elements c∗j = C(||vkj − s∗j ||;φ, ν).

Samples z(`)(vkj , t), for ` = 1, . . . , L are drawn from (3.6) by composition sampling, and a

corresponding sample from the posterior predictive distribution of (3.5) is computed as z(`)
kt =

1
nk

∑nk

j=1 z
(`)(vkj , t). The uncertainty in the LUA level pollution predictions are summarised in

these L samples, but a point estimate ẑkt = 1
L

∑L
`=1 ẑ

(`)
kt can also be computed. However, such a

point estimate ignores two sources of uncertainty, spatial variation in pollution within an LUA,

and posterior uncertainty in Ẑkt. In the next section we outline a range of disease models that

either ignore or account for these uncertainties.
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3.2 Stage 2 - disease model

The observed and expected numbers of disease cases (Ykt, Ekt) are related to a vector of covariates

ukt measuring poverty, ethnicity, temperature, and a single pollutant. The latter is obtained from

posterior predictive samples ZktL×nk
from stage 1, which contains elements z(`)(vkj , t) denoting

the `th sample from (3.6) at location vkj . A common model for these data is given by

Ykt ∼ Poisson (EktRkt) k = 1, . . . ,K, t = 1, . . . , T, (3.7)

Rkt = exp(u>ktβ + ẑktβz + ψkt),

where ẑkt is the point estimate of pollution defined above, βz is the effect of air pollution on

health and ψkt is a spatio-temporal random effect. Globally smooth GMRF priors are typically

used to model ψ = (ψ1, . . . ,ψT ), where ψt = (ψ1t, . . . , ψKt). The model proposed by Rushworth

and others (2014) uses the autoregressive decomposition:

ψt|ψt−1 ∼ N
(
αψt−1, τ

2Q(W, ρ)−1
)

t = 2, . . . , T, (3.8)

ψ1 ∼ N
(
0, τ2Q(W, ρ)−1

)
,

where α, ρ ∼ Uniform(0, 1) while τ2 ∼ Inverse Gamma(2, 1). Temporal autocorrelation is cap-

tured by the mean function (αψt−1) while spatial autocorrelation is captured by the precision

matrix Q(W, ρ) = ρ[diag(W1)−W] + (1− ρ)I. The latter was proposed by Leroux and others

(2000), where 1 is a K× 1 vector of ones while I is a K×K identity matrix. Spatial autocorrela-

tion is induced by a binary K ×K neighbourhood matrix W, where wki = 1 if areal units (k, i)

share a common border and wki = 0 otherwise (wkk = 0 for all k). The spatial smoothing from

this model is evident from its full conditional form, f(ψkt|ψ−kt) (where ψ−kt = ψt \ ψkt) which

for t = 1 is:

ψk1|ψ−k1 ∼ N

(
ρ
∑K
i=1 wkiψi1

ρ
∑K
i=1 wki + 1− ρ

,
τ2

ρ
∑K
i=1 wki + 1− ρ

)
. (3.9)

Here the conditional expectation is a weighted average of the random effects in neighbouring

areal units, with the amount of spatial smoothing controlled globally by ρ. However, (3.7) - (3.9)
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make a number of restrictive assumptions, which we relax in (A) to (C) below.

3.2.1 (A) - Spatial variation in pollution within an LUA Wakefield and Shaddick (2006) show

that using a representative measure ẑkt in (3.7) when there is within-area variation in pollution can

lead to (ecological) bias in its estimated health effect. Consider an idealised model for (Yktj , Ektj),

which relate to the proportion of the population who experience pollution exposure ẑ(vkj , t) =

1
L

∑L
`=1 z

(`)(vkj , t) at location vkj . Then an appropriate model is Yktj ∼ Poisson (EktjRktj),

where Rktj = exp(u>ktβ+ ẑ(vkj , t)βz +ψkt). Assuming conditional independence of Yktj |EktjRktj

across the nk grid squares (vk1, . . . ,vknk
) in area k, an appropriate aggregated model for Ykt =∑nk

j=1 Yktj is:

Ykt ∼ Poisson (EktRkt) , (3.10)

Rkt = exp(u>ktβ + ψkt)
nk∑
j=1

E∗ktj exp(ẑ(vkj , t)βz),

where E∗ktj = Ektj/Ekt and
∑nk

j=1E
∗
ktj = 1. The consequence is that (3.7) exponentiates the

spatially averaged pollution concentrations ẑkt while (3.10) averages the exponentiated risks

exp(ẑ(vkj , t)βz), and the resulting bias has been studied analytically by Wakefield and Shad-

dick (2006) and empirically by Lee and Sarran (2015). The latter show that when βz is small, as

is the case here, then the bias is likely to be negligible.

3.2.2 (B) - Posterior uncertainty in pollution Model (3.7) uses the posterior predictive mean

ẑkt, which ignores the posterior uncertainty in the L samples (z(1)
kt , . . . , z

(L)
kt ). We consider two

distinct approaches to allow for this uncertainty, the first of which treats (z(1)
kt , . . . , z

(L)
kt ) as the

complete knowledge about the unknown Zkt, and simply samples a new z
(`)
kt value at each itera-

tion of the MCMC algorithm when implementing the disease model independently of the other

parameters. The second approach treats the L samples (ẑ(1)
kt , . . . , ẑ

(L)
kt ) as the prior distribution
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for the unknown Zkt in the disease model, leading to the extended model:

Ykt ∼ Poisson (EktRkt) k = 1, . . . ,K, t = 1, . . . , T, (3.11)

Rkt = exp(u>ktβ + Zktβz + ψkt),

Zkt ∼ π(zkt|z).

A multivariate Gaussian approximation is made to the prior distribution π(Z1t, . . . , ZKt|z) for

all spatial units for each month t for ease in implementing the MCMC algorithm, and details are

given in the supplementary material.

3.2.3 (C) - Localised spatio-temporal autocorrelation The global smoothness assumption of

(3.8) is unrealistic, because as evidenced by Figure 1 the residual spatial autocorrelation exhibits

a mixture of spatial smoothness and sharp discontinuities. Therefore we allow spatially neigh-

bouring random effects to be correlated (inducing smoothness) or conditionally independent (no

smoothing), by modelling the non-zero elements of the neighbourhood matrix W as unknown

parameters. These adjacency parameters are collectively denoted by w+ = {wki|k ∼ i}, where

k ∼ i means areas (k, i) share a common border. Estimating wki ∈ w+ equal to zero means

(ψkt, ψit) are conditionally independent for all t given the remaining random effects, while esti-

mating it close to one means they are correlated. Here we use the model proposed by Rushworth

and others (2016), where each adjacency parameter in w+ is modelled on the interval [0, 1], by

placing a multivariate Gaussian prior on the transformation g+ = log (w+/(1−w+)). We utilise

a shrinkage prior for g+ with a constant mean and variance (µ, ζ2), which is given by:

f(g+|ζ2, µ) ∝ exp

− 1
2ζ2

 ∑
gik∈g+

(gik − µ)2

 , ζ2 ∼ IG(2, 1). (3.12)

Here the random effects surface g+ is not smoothed spatially, for example by a second level

GMRF prior, because work by Rushworth and others (2016) showed this results in poor estimation

performance. Under small values of ζ2 the elements of g+ are shrunk to µ, and here we follow
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the work of Rushworth and others (2016) and fix µ = 15 because it avoids numerical issues when

transforming between g+ and w+ and implies a prior preference for values of wik close to 1.

That is as ζ2 → 0 the prior becomes the global smoothing prior (3.8). Further discussion of these

points can be found in Rushworth and others (2016) .

4. Results

We now present the results of the England respiratory hospitalisation study described in Section 2,

where the first subsection quantifies the predictive performance of a range of pollution models,

while the second subsection presents the health effect estimates.

4.1 Pollution modelling results

We assessed the relative performances of 3 variants of the pollution model (3.1) of increasing

complexity, which are defined by: (a) η(si, t) = 0 and denoted Linear ; (b) η(si, t) modelled by

the Gaussian process (3.2) and denoted GP ; and (c) the full non-stationary Gaussian predictive

process model η̃(si, t) given by (3.3) - (3.4) and denoted GPP. In the latter the spatial range

parameter φ is fixed at effective ranges of 3500 (φ1), 3000 (φ2), 600 (φ3), 300 (φ4) and 100 (φ5)

kilometers respectively, and these choices are guided by the need to include moderate to large

amounts of spatial correlation into the model. Only the results for the best value of (φ1 . . . φ5)

are shown in the table, although all values gave similar results as expected since the predictions

are not very sensitive to the choice of the value of the decay parameter.

Table 1 summarises the results of a 10 fold cross-validation exercise conducted separately for

each pollutant, where the n = 142 sites are split into 10 equally sized groups (8 groups of 14 and 2

of 15). Each model is then applied to data from 9 of the 10 groups, and the resulting fitted model

is used to predict the concentrations in the 10th group. This procedure is conducted 10 times

leaving each group out once. All results are based on L = 5, 000 MCMC iterations, which were
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obtained following a burn-in period of 5,000 iterations at which point convergence was assessed

to have been reached. In all cases we take m = 25, which was chosen among the possible values of

16, 25, 36, 49 and 100 using a separate validation method, where data from 15 randomly chosen

sites were set aside. Table 1 presents the bias, root mean square prediction error (RMSPE), mean

absolute prediction error (MAPE) and coverage percentage of the 95% prediction intervals, from

which a number of key themes are apparent.

First, all models show relatively little amounts of bias on the scale of the pollutants, with

biases of less than 1.42 in all but one case. Second, the GPP model has better point prediction

for all pollutants than the other models, with noticeably lower RMSPE and MAPE values. In

contrast, the GP model exhibits poorest point prediction in all cases. As these results are averages

over all n = 142 observation locations, we present scatter plots of the individual predictions from

the GPP model against the observations in Section 5 of the supplementary material. These results

show that the predictions are well calibrated against the observations, except that the model is

unable to capture the very high NO2 values or the very low O3 values.

Finally, none of the coverage percentages are that close to their nominal 95% levels, and are

too low for the Linear and GPP models and too high for the GP models. These problems are

caused by the irregular and sparse nature of the monitored data, which is particularly evident for

PM2.5 where few observations are available for the first two years (see the supplementary material

Section 2). The GP model has almost 100% coverage, which is due to its 95% uncertainty intervals

being very wide compared to the other models (see the supplementary material Section 5). This is

because its spatio-temporal process η(si, t) is overly flexible in space and time with no temporal

autocorrelation and a separate random effect for each spatial location. In contrast, the GPP

model is autocorrelated in time and uses a reduced rank spatial predictive process, resulting in

more borrowing of strength in the estimation and reduced uncertainty.
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4.2 Disease modelling results

Following the cross-validation exercise described above we applied the non-stationary GPP model

to the pollution data from all n = 142 locations, and made L = 5000 predictions of each pollutant

at each of the 1516 prediction locations vkj across England for each of the 60 months in the study.

These predictions were then utilised in a number of different disease models, whose specifications

are summarised in Table 3. The results from fitting these single pollutant models are displayed in

Table 2, where single-pollutant analyses were undertaken in common with the existing literature

and because it is single pollutant effect estimates that inform regulatory standards. All results

are presented as relative risks for a one standard deviation (Sd) increase in each pollutant, which

is 16.07, 7.30, 4.90, and 4.11 (µgm−3), respectively for NO2, O3, PM10 and PM2.5. Inference

for all models in this section is based on 500,000 MCMC iterations, with the first 100,000 being

discarded as the burn-in period. The covariate effects are described below, while the remainder

of this section quantifies the impact of three aspects of the model, which coincide with labels (A)

- (C) in Section 3.2.

The covariates in each model include a pollutant, socio-economic deprivation (measured by

JSA and the natural log of property price), ethnicity and temperature, and the results presented

below relate to model M1 and are relative risks for a one standard deviation increase in each

covariate (JSA - Sd = 0.334; property price - Sd = 0.359; ethnicity - Sd = 7.98; and temper-

ature - Sd - 4.68). The posterior medians and 95% credible intervals are: JSA - 0.998 (0.994,

1.002), Price - 0.834 (0.819, 0.850), Ethnicity 0.783 (0.769, 0.795), Temperature 0.979 (0.964,

0.994). These results indicate a strong association between increasing non-British ethnicity and

increased disease risk, although this is likely confounded by inner-city deprivation, where ethnic

diversity tends to be largest. Property price is a good proxy for overall deprivation, with increased

prices strongly associated with decreases in risk. Finally, colder temperatures are associated with

increased respiratory admissions as expected.
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4.2.1 (A) - Allowing for spatial variation in pollution within an areal unit We compare the

ecological model (3.7) denoted by M1 that ignores within area pollution variation with the

correct aggregate model (3.10) denoted by M2 that allows for this variation. For the latter Ektj

are the estimated expected counts around each of the 1516 prediction locations vkj , computed

using electoral ward level (a much smaller unit than LUA) population data. In this comparison

uncertainty in the estimated pollution surface is ignored and the random effects are modelled

by the localised GMRF model given by (3.8) and (3.12). The main finding is that the estimated

relative risks from each model are almost identical, suggesting that ignoring spatial variation in

pollution within an areal unit does not bias the estimated health effects. This is likely to be

because the effect sizes are small, making the bias term discussed in Wakefield and Shaddick

(2006) negligible (of the order of β2
z where for NO2 β̂z = 0.00160). This result is corroborated by

Lee and Sarran (2015), as they showed that negligible bias would occur unless the effect size was

much larger. Another possible reason for the similarity of the results is that 49 of the 323 LUAs

only had a single prediction location due to their small geographical size. As a result within-area

variation in pollution is ignored in the remainder of this paper.

The second main finding is that NO2 exhibits substantial health effects, with a 16.07µgm−3

increase being associated with nearly a 2.6% increased risk of disease. The estimated effects for

the two particulate matter metrics are borderline significant at the 5% level, with increased risks

around 0.4%. In contrast, O3 shows a borderline negative effect, which is clearly erroneous, and

due to the negative correlation between this pollutant and all the others, resulting in an estimated

effect of the opposite sign.

4.2.2 (B) - Allowing for posterior uncertainty in the pollution predictions We compare three

approaches to dealing with posterior uncertainty, the simplest being model M1 that ignores it by

using the posterior predictive median ẑkt. In contrast, model M3 re-samples a new {ẑ(`)
kt } value
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at each step of the MCMC algorithm (denoted Posterior in the table), while model M4 treats the

samples (ẑ(1)
kt , . . . , ẑ

(L)
kt ) (based on a multivariate Gaussian approximation) as a prior distribution

for the unknown Zkt in the disease model (denoted Prior in the table). The results show that

re-sampling a new {ẑ(`)
kt } value at each step of the MCMC algorithm results in all the estimated

effects being greatly attenuated to the null risk of one, which occurs because the uncertainty

in the posterior predictive pollution distributions outweigh the spatio-temporal variation in the

pollution data, resulting in the estimated effects being washed away by large uncertainty. In

contrast, the results for the prior scheme are mixed, with the NO2 and PM2.5 results remaining

unchanged, the spurious O3 result being attenuated towards one, while the PM10 estimate is

actually increased to a substantial increased risk of 2.6%.

4.2.3 (C) - Allowing for residual spatio-temporal autocorrelation Finally, we compare three

approaches for controlling for unmeasured spatio-temporal autocorrelation. Model M5 ignores

this autocorrelation, that is ψkt = 0, model M6 uses the globally smooth model given by (3.8),

while model M1 uses the localised model given by (3.12). The results show a much larger effect

size for NO2 if the residual spatial autocorrelation is ignored (M5), while the other pollutants

show negligible differences. The differences in the estimated effect sizes between the globally

smooth and locally smooth random effects models are also largest for NO2, with a difference in

estimated relative risk of around 0.5%. This suggests that if there is a substantial relationship

between a pollutant and disease risk, then the choice of random effects model can impact the

results. However, if there is no relationship then the results appear to be consistent.

The Deviance Information Criterion (DIC) statistics are M6 - 157,131 and M1 - 155,538,

indicating a moderate improvement in overall fit under the localised approach. Additionally, the

effective number of parameters decreases substantially for the localised model (6205 compared

to 8198), despite it being more complex algebraically. This occurs because the random effects



Air pollution and health 19

variance, τ2 is much lower for the localised model (posterior medians of 0.0033 compared to

0.0248), resulting in stronger smoothing of the random effects and hence a simpler model with

fewer effective parameters. This result is consistent with a similar observation made by Rushworth

and others (2016), although as a caveat to these results we note that Plummer (2008) has shown

that the DIC has a tendency to underpenalise complex models. The localised nature of the spatial

autocorrelation is determined by w+, and posterior inference for w+ is summarised in Section 6

of the supplementary material.

5. Discussion

This article develops the first pollution-health model for simultaneously predicting pollution

concentrations using fusion methodology, and estimating its health effects accounting for within-

area variation and posterior predictive uncertainty in pollution, as well as localised residual

spatio-temporal autocorrelation. Software to implement the full model is available on figshare

(see software section for the url), while the disease model with with either a global or a localised

GMRF prior is available via the R package CARBayesST. The methodology was motivated by a

new study of air pollution and respiratory hospitalisations in England, and the main finding is

that areas with an increased monthly exposure to NO2 of 16.07µgm−3 exhibit an estimated 2.8%

increased risk of hospitalisation (assuming model M4). If this increase in pollution was applied

uniformly to England it would equate to around 17,000 extra admissions per year, as there are

around 613,000 admissions per year in England. This result, against the backdrop of many urban

areas of England likely to exceed EU NO2 emission targets until after 2030, suggests that NO2

concentrations will be a major public health threat for the foreseeable future. These findings are

in line with existing research, as Lee and Sarran (2015) and Haining and others (2010) (they

considered the related pollutant NOx) also found similar sized associations in areal unit studies,

albeit in different study regions (Haining and others, 2010) or time scales (Lee and Sarran, 2015)
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making the results not directly comparable. Our estimated effects for particulates were mostly

much smaller (except for PM10 under M4), and are generally similar or lower than what has

been found in the existing literature such as Elliott and others (2007) (using the similar black

smoke metric), Greven and others (2011), and Rushworth and others (2014).

The similarity in the estimated health effects of allowing for or ignoring within area variation

in exposure corroborate the findings of Haining and others (2010) and Lee and Sarran (2015),

and suggest that ecological bias is not a big problem in these studies where effect sizes are small.

However, the choice of spatio-temporal autocorrelation model does impact on the estimated

pollution-health effects if substantial associations are found, and Lee and Sarran (2015) also

find this when comparing models with differing levels of complexity. In common with the results

presented here, they find that localised autocorrelation models fit the data better, as measured

by DIC, than simpler global smoothing alternatives. However, if no association exists then the

three autocorrelation models considered here show similar results. Finally, the approach taken to

allowing for uncertainty in the estimated pollution surface when estimating its health effects has a

substantial impact on the results, and feeding the entire posterior predictive distribution through

the disease model (model M3) has washed away the pollution-health effects due to the magnitude

of the posterior uncertainty. In contrast, treating the posterior predictive pollution distribution

as a prior in the disease model has produced similar results to ignoring the uncertainty except

for PM10, where the effect size is greatly increased. Blangiardo and others (2016) also found that

incorporating uncertainty in pollution did not change the substantive conclusions, although they

adopted a different approach and ran the disease model separately for each posterior predictive

sample from the pollution model before combining the results. Quantifying the best approach to

allowing for pollution uncertainty in a disease model is in need of further research, as a number

of different approaches have been proposed to date with no systematic evaluation of their relative

performances.
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There are many other areas of future work in this field, including estimating the financial as

well as health cost of pollution, which additionally requires data on government health spending.

A second important application of the developed methodologies will be to apply them to data

from mega-cities in the developing world where air pollution levels are high, such as New Delhi in

India and Beijing in China. The main problem in doing so will be to gather reliable data on air

pollution exposure as well as health outcomes. Finally, a key methodological development will be

extending the methodology into a multivariate domain, so that the pollutants and their impacts

on multiple diseases can be modelled jointly, which allows one to estimate the overall impact of

air pollution on population health.

6. Software

The data and software used in this paper is available on figshare at https://figshare.com/

articles/Code_and_data_for_A_rigorous_statistical_framework_for_estimating_the_long-term_

health_impact_of_air_pollution_/3581235, and a simplified version of the disease model

without the uncertainty propagation or ecological bias correction is available via the R pack-

age CARBayesST.

7. Supplementary Material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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Model Bias RMSPE MAPE Coverage (%)
NO2

Linear -1.15 19.92 14.52 63.13
GP 1.29 20.73 15.78 98.79
GPP -1.19 18.94 14.03 88.63

O3

Linear -0.57 11.21 8.98 60.18
GP 2.80 11.77 9.38 99.28
GPP 1.41 8.86 6.73 87.84

PM10

Linear –0.28 5.91 4.70 65.51
GP 1.11 6.04 4.89 99.97
GPP –0.23 4.29 3.14 80.85

PM2.5
Linear –0.34 5.02 4.02 78.61
GP 1.41 5.20 4.37 100
GPP –0.06 3.10 2.29 74.83

Table 1. Summary of the 10 fold cross-validation for the Linear, GP and GPP models for all 4 pollutants.
Here RMSPE and MAPE respectively denote root mean square prediction error and mean absolute
prediction error.

Model NO2 O3 PM10 PM2.5
M1 1.026 (1.017, 1.036) 0.983 (0.971, 0.995) 1.004 (0.994, 1.015) 1.003 (0.991, 1.016)
M2 1.026 (1.012, 1.038) 0.981 (0.966, 1.000) 1.004 (0.994, 1.016) 1.003 (0.993, 1.015)
M3 1.001 (0.999, 1.002) 1.000 (0.999, 1.001) 1.000 (0.998, 1.003) 1.001 (0.997, 1.004)
M4 1.028 (1.021, 1.033) 0.997 (0.994, 0.999) 1.026 (1.011, 1.039) 1.006 (0.993, 1.020)
M5 1.107 (1.099, 1.116) 0.998 (0.992, 1.004) 1.003 (0.997, 1.010) 0.998 (0.991, 1.004)
M6 1.031 (1.019, 1.043) 0.989 (0.978, 1.001) 1.007 (0.996, 1.017) 1.006 (0.997, 1.014)

Table 2. Estimated health effects from each pollutant for a range of models. All results are presented as
relative risks for a one standard deviation increase in pollution, which is 16.07µgm−3 for NO2, 7.30µgm−3

for O3, 4.90µgm−3 for PM10, and 4.11µgm−3 for PM2.5. Note, the uncertainty intervals are credible
intervals for all but model M5 where they are confidence intervals.

Model Spatial Uncertainty Spatio-temporal
Variation Propagation autocorrelation

M1 Ignored Ignored Localised
M2 Allowed Ignored Localised
M3 Ignored Posterior Localised
M4 Ignored Prior Localised
M5 Ignored Ignored None
M6 Ignored Ignored Global

Table 3. A summary of the 6 models fitted to the disease data.
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Fig. 1. Display of the spatial (top left) and temporal (bottom) patterns in the SMR data. In the boxplots
the whiskers extend to the most extreme data point that is no more than 1.5 times the interquartile
range away from the box. The top right panel shows the spatial pattern in the residuals from fitting a
Poisson generalised linear model. Both spatial patterns are averages (means) over all time periods.
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Fig. 2. A map of England and Wales including the locations of the 142 monitoring sites plotted as “*”.
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