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1. INTRODUCTION

This supplementary material accompanies the main paper and contains the following content.
Section 2 provides additional exploratory data analysis for the pollution data used in the England
study. Section 3 provides brief details of the implementation of the pollution model, while Sec-
tion 4 provides similar details for the disease model. Finally, Sections 5 and 6 provide additional

results from the pollution and disease modelling respectively.

2. ADDITIONAL EXPLORATORY ANALYSIS OF THE POLLUTION DATA

As discussed in the main paper, pollution data from a monitoring network are often prone to

large numbers of missing values, due to factors such as instrument malfunction, discontinuation
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of some sites, introduction of new sites during the study period, or the fact that not all sites
monitor all pollutants. This missingness, broadly defined, for the AURN network is summarised
in Table 1 below, which shows largely constant levels of missingness over time except for PMs 5
which decreases after 2008 due to more sites measuring this pollutant. This increase in sites may
be due to the introduction of the EU Directive on Ambient Air Quality and Cleaner Air for
Europe (2008/50/EC) in 2008, which included a new focus on PMj 5 due to a recognition of a
lack of evidence about this pollutant.

Numerical and graphical summaries of the observed pollution data are given by Table 2 and
Figures 1 and 2, which respectively present the data by either site type (16 Rural, 80 Urban and
46 RKS) or year. The site type figure shows greater average concentrations and greater levels of
variation for RKS sites for NOy, PMs 5 and PMg, where as the converse is true for Oz in terms
of mean concentrations. The concentrations of all four pollutants show little variation by year,
with no discernible changes in average concentrations or the levels of variation. Finally, Figure 3
displays scatter plots of the measured against the bilinearly interpolated AQUM modelled pollu-
tion concentrations for each month and site, and shows moderate correlations ranging between
0.37 and 0.69 depending on the pollutant. The figure also shows clear bias in the AQUM output,
as the modelled concentrations are almost always lower than the measured concentrations. This
is not surprising for RKS sites, as the AQUM outputs are modelled background concentrations,

but is more surprising for the Urban and Rural sites.

3. IMPLEMENTATION OF THE POLLUTION MODEL

The details for fitting the independence and GP models are provided in Bakar and Sahu (2015).
Following are the details for implementing the space-time non-stationary model (3.3) and (3.4)

discussed in the main paper. The logarithm of the full posterior distribution is given by:
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where 6 = (v, 0,02,02,¢,v)" denotes the model parameters and 7(8) thus denotes its joint
prior distribution. Inference uses Markov chain Monte Carlo (MCMC) simulation, via a combina-
tion of Gibbs sampling and Metropolis-Hastings steps. Our implementation follows that described
in Section 3.2 of Guhaniyogi and others (2011), except that we take a different approach to up-
dating the knot-locations S} ,. We adopt the method developed by Sahu and Mukhopadhyay
(2015), where we simulate m proposed knots from the prior outlined in the main paper without
replacement, and then use a Metropolis-Hastings step to accept or reject the proposed knots.
The starting configuration of the knots is taken to be according to a space filling design, and we

tune the algorithm to have 15-40% acceptance rate as is common in practice.

4. IMPLEMENTATION OF THE DISEASE MODEL

The major challenge in implementing the disease model defined by (3.7), (3.8) and (3.12) is
computational, because there are 19,380 spatio-temporal observations (for example the study by
Elliott and others, 2007 used around 800 data points, while the largest study region used in Lee
and others, 2009 was around 1500). The random effects ¢ with the GMRF prior are updated
in the MCMC routine using computationally efficient algorithms written in C++, which utilise
the sparsity of the neighbourhood matrix W via its triplet form representation. The elements
of W are proposed in a computationally efficient manner by updating g™ in blocks of size 10.
In the acceptance ratio for each block proposal, a new determinant, det(Q(W, p)), is required,
which was calculated efficiently by updating the (sparse) Cholesky decomposition, L, so that

LL" = Q(W,p), and as a result det(Q(W,p)) = det(L)? = [[X, L2, since L is triangular.
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The health model, without the ecological bias correction or the uncertainty propagation, can
be implemented in the R package CARBayesST, which can also implement similar models with
binomial and Gaussian likelihoods.

The other major computational challenge is updating the set of spatio-temporal pollution
concentrations Zx; from (3.11), in the model where pollution is treated as unknown. These con-
centrations should not be updated independently for each areal unit and time period, because the
pollution model from stage one produces posterior predictive realisations of the spatio-temporal
pollution surface that are correlated in space and time. However, randomly selecting one of the
L posterior predictive samples (for all 19,380 data points) at random as a proposal, and then
accepting or rejecting it via a Metropolis-Hastings step is not feasible due to the curse of di-
mensionality, which results in very poor acceptance rates. Therefore we propose a multivariate
Gaussian approximation to the posterior predictive distribution for each time period separately,

that is:

W(th,...,ZKt‘Z)T:N(it,it) for t:L...7T7

where the kth element of z; is given by 2, = L%Lk 2?21 ZeL=1 2 (vy;,t), while the k and

k'th element of 3 is given by:

L
(2),,, = 71 G -Gl 2w,

While this specification disregards the temporal dependence between exposures that occur for

a single region, the spatial dependence structure is largely preserved. The Gaussian approximation

allows the univariate prior conditional distributions, m(Zg¢|Z—xt) for k = 1,..., K (where Z_j;

denotes the vector with the kth element removed) to be easily computed, making Metropolis-

Hastings updating one element at a time straightforward. We note that a full spatio-temporal

approximation could also be used, but that this would require a KT x KT covariance matrix
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to be constructed, from which it would be computationally demanding to calculate conditional

distributions.

5. ADDITIONAL POLLUTION MODELLING RESULTS

Scatter plots of the predictions from the GPP model against the observed values are displayed in
Figures 4 and 5 for all four pollutants, the latter being on the square root scale on which the data
are modelled. The figures show generally good agreement between the predicted and observed
values, with most lying close to the line of equality. The exceptions are that the models cannot
predict the very low Oz and the very high NOs concentrations that well, which is evident from
the non-linearities in the plots.

Figure 6 displays a scatter plot of the widths of the 95% prediction intervals for the GP and
GPP models for all four pollutants. The figure clearly shows that the intervals from the GP
models are almost always much wider than those from the GPP models, with the exceptions for
NOs being mainly 3 sites (60 months of predictions each) that are near the boundary of the study
region and thus far away from the predictive knot locations. The very large interval widths for
the GP model is why the former have a near 100% coverage. This is because its spatio-temporal
process 7)(s;, t) is overly flexible in space and time with no temporal autocorrelation and a separate
random effect for each spatial location. In contrast, the GPP model is autocorrelated in time and
uses a reduced rank spatial predictive process, resulting in more borrowing of strength in the
estimation and reduced uncertainty. The differences in widths are substantial, with for example
the average widths for PMy 5 being around 6 (GPP) and 45 (GP) respectively. Given the scale
of the PMj 5 data ranging from 2.66 to 36.45, a width of 45 is overly large and gives very little

information on the true predictive uncertainty.
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6. ADDITIONAL DISEASE MODELLING RESULTS

Here we present posterior inference for wt from the localised smoothing model given by (3.12),
specifically, or; = P(wi; < 0.5]Y), the posterior probability that each adjacency element wy;
is less than 0.5 which is the mid-point of the allowable unit interval. Recall that if wy; € wt
is estimated as zero then the random effects (¢, 1);;) for all times ¢ are conditionally inde-
pendent given all other random effects, while a wy; value close to one suggests strong partial
autocorrelation between the random effects. Thus using a cut-off value of 0.5 when computing
or; illustrates whether the balance of probability corresponds to partial autocorrelation or close
to conditional independence. A histogram of the posterior probabilities {ox;} over all 861 ad-
jacency elements in w™ is displayed in Figure 7, and shows a bimodal distribution, with most
values having either a very low or a very high posterior probability. To illustrate the locations
of these localised conditional independences, Figure 8 displays the locations where gi; > 0.99,
that is the posterior probability of wy; being less than 0.5 is greater than 0.99. These locations
are shown as white lines, and are superimposed on the estimated average (over the 60 months)
random effects surface. The figure shows that the majority of white lines correspond to borders
between areas with very different random effect values as expected. However, we note these are
conditional rather than marginal independences, and thus an assumed conditional independence
between two regions will also affect other neighbouring regions. The Figure contains 205 such
highlighted borders corresponding to 23.8% of the total number of borders in the study region,

which suggests the presence of widespread localised spatial autocorrelation in the random effects.
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2007 2008 2009 2010 2011

NO, 38.38 38.08 36.97 37.21 34.62
O3 5226 59.14 60.09 58.68 58.33
PM;, 6496 6626 69.37 7148 69.13
PMsys 96.53 91.43 65.96 64.32 64.03

Table 1. Percentage of missing monthly observations at the 142 sites in each year for each of the four
pollutants.

Type Min Median Mean Max Sd N
NOq
Rural (16) 3.21 17.30 19.53  52.79  9.68 696
Urban (80)  8.67 48.18 49.81 13590 17.92 2952
RKS (46) 17.77 71.55 76.54  227.30 33.27 1775
All (142) 3.21 50.46 54.67 227.30 29.61 5423
O3
Rural (16)  30.03 67.06 68.60 113.40 13.29 788
Urban (80) 13.38 54.62 56.00 120.70 16.01 2523
RKS (46) 10.99 49.12 48.58 101.40 17.64 322
All (142) 10.99 57.72 58.08 120.70 16.69 3633
PM,
Rural (16) 4.10 16.70 16.82 32.04 5.68 153
Urban (80) 7.16 19.09 20.03 44.84 6.24 1623
RKS (46) 5.79 20.99 22.74 54.01 7.92 988
All (142) 4.10 19.62 20.82  54.01 7.05 2764
PMs;.5
Rural (16) 5.38 10.11 10.72 2849 3.64 110
Urban (80)  2.66 12.95 13.72  36.45 5.27 1321
RKS (46) 4.11 13.66 14.71  36.22 6.08 620
All (142) 2.66 12.87 13.86  36.45  5.53 2051

Table 2. Summary of the monthly pollution data for the four pollutants from the 16 Rural, 80 Urban and
46 RKS sites over the 5 years. All pollutants are measured in pgm 2. Here Sd stands for standard devi-
ation and N is the number of available monthly averages on which the summaries have been calculated.
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Fig. 1. Boxplots of the monthly average concentrations for each pollutant by site type. The whiskers
extend to the most extreme data point that is no more than 1.5 times the interquartile range away from
the box.
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Fig. 2. Boxplots of the monthly average concentrations for each pollutant by year. The whiskers extend
to the most extreme data point that is no more than 1.5 times the interquartile range away from the
box.
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Fig. 3. Scatter plot of the observed concentrations against the bilinearly interpolated AQUM model
output for each of the four pollutants. The line y = = is superimposed.
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Fig. 4. Scatterplot of the predicted concentrations against the observed concentrations on the original
scale for all four pollutants. The line y = x is superimposed.
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Fig. 5. Scatterplot of the predicted concentrations against the observed concentrations on the modelled
square-root scale for all four pollutants. The line y = x is superimposed.
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Fig. 6. Scatterplot of the widths of the 95% prediction intervals for the GP and GPP models for all four
pollutants. The line y = x is superimposed.
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Fig. 7. Histogram of the posterior probabilities of {w,x} being less than 0.5.

Northing

Easting

Fig. 8. Map of the posterior median random effects surface averaged over all 60 time periods. The white
lines depict borders between areal units (k, j) where gx; > 0.99.
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