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Summary. The problem motivating the paper is the determination of sample size in clinical trials
under normal likelihoods and at the substantive testing stage of a financial audit where normality
is not an appropriate assumption. A combination of analytical and simulation-based techniques
within the Bayesian framework is proposed. The framework accommodates two different prior
distributions: one is the general purpose fitting prior distribution that is used in Bayesian analysis
and the other is the expert subjective prior distribution, the sampling prior which is believed to
generate the parameter values which in turn generate the data. We obtain many theoretical
results and one key result is that typical non-informative prior distributions lead to very small
sample sizes. In contrast, a very informative prior distribution may either lead to a very small or
a very large sample size depending on the location of the centre of the prior distribution and
the hypothesized value of the parameter. The methods that are developed are quite general
and can be applied to other sample size determination problems. Some numerical illustrations
which bring out many other aspects of the optimum sample size are given.

Keywords: Auditing; Bayesian inference; Book values; Clinical trials; Fitting prior; Mixture
distribution; Rare errors; Sampling prior; Simulation-based approach; Taints

1. Introduction

The problem motivating this paper is sample size determination (SSD). It arose in two areas:
clinical trials in medicine and substantive tests in auditing. In clinical trials SSD is a well-
debated problem and chapter 6 of Spiegelhalter et al. (2004) and the references therein provide
an excellent overview of current issues. The difficulties that arise are related to the practical
issues of the medical relevance of the specification of null and alternative hypotheses and the
choice of fixed error rates for the size and power; see for example Spiegelhalter et al. (1994). The
optimal sample size in the classical framework depends crucially on the choice of the alternative
hypothesis. Spiegelhalter and Freedman (1986) argued that often such a choice is dependent on
‘bewildering and rather ill-defined recommendations’. This is not so in a Bayesian formulation
of the problem since there is no need to specify a particular value of the alternative hypothesis.

Financial auditing involves several stages. At the first stage senior auditors review the system
generating the accounts and compare the current results with those of previous years and with
those of similar entities. In the light of this review a strategy for more detailed explorations and
tests is developed. The next stage is to test the working of the accounting system and, in par-
ticular, the implementation of controls and checks. This phase is known as compliance testing
and may exceptionally be done using a computer-generated set of transactions, running them
through the system and checking for compliance. The substantive testing of actual transactions
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follows. Errors in money values are rarely found in samples that are selected from well-designed
accounting systems and it is this paucity of actual values of errors that makes the SSD problem
so difficult.

There is a considerable literature on the analysis of audit data; see for example Smith (1976,
1979), Laws and O’Hagan (2000, 2002) and the references therein. The information from the
early stages of an audit is mainly qualitative and often leads to strong opinions about the quality
of the system. Combining this prior information with the hard data that are generated by sam-
pling at the substantive stage may be done in an ad hoc manner within the frequentist tradition
(see for example Heiner and Whitby (1980), Patterson (1993) and Shrivastava and Shafer (1994))
or more formally by using Bayes’s theorem. An important reference is Cox and Snell (1979)
who proposed a Bayesian mixture model for the analysis of substantive data. See Laws and
O’Hagan (2000, 2002) for an extension of this model. The practical problem is that if money
errors are rare then the number of errors that are found in small or medium-sized samples will
be very small, and possibly 0. Thus the effective sample size for frequentist inference about the
total of money errors is small and the resulting inferences will be unreliable. Using the avail-
able prior information within a Bayesian methodology should lead to more reliable conclusions
about the unknown error totals. Here standard frequentist methods that are based on normal
approximations are not appropriate and the alternative solutions that are proposed have often
been rejected by auditors since they give sample sizes and error limits that are far larger than
their expectations.

For SSD in any area the only information that is available is prior information. Introducing
uncertainty into prior estimates is a quintessentially Bayesian procedure and so we explore the
use of Bayesian methods for SSD within distributional frameworks that are relevant to auditing
and clinical trials. In both cases there are practical constraints that require the sample sizes to
be determined in advance, and so we assume that the objective is to determine an optimal fixed
sample size that satisfies a criterion based on the Bayes risk. Given specific loss functions and
sampling cost functions it is possible to carry out a full Bayesian analysis for SSD; see Raiffa
and Schlaifer (2000), Lindley (1997) and the references therein. In the absence of precise infor-
mation about costs and losses we approximate the loss functions and employ an approximate
Bayesian approach in the spirit of Adcock (1997), Joseph et al. (1995) and Wang and Gelfand
(2002) that should give reasonable estimates of sample size.

In this paper we adopt the framework that was proposed in Wang and Gelfand (2002) where
two different prior distributions are used for SSD. They proposed that the prior for inference,
the fitting prior, can differ from the prior that is used for averaging in the calculation of the
Bayes risk, the sampling prior. Spiegelhalter et al. (2004) also proposed the use of two different
priors, an enthusiastic and a sceptical prior, for the analysis and monitoring of clinical trials.
However, for SSD they proposed a hybrid Bayes–frequentist approach using a single prior elic-
ited from a team of experts. We shall see that the fitting prior distribution does not influence the
sample size much if it is assumed to be non-informative. The sampling prior, in contrast, has a
large influence on the optimal sample size. We explore these and other consequences of using
different fitting and sampling priors for SSD in our simulation studies in Sections 3 and 4.

The plan of the remainder of this paper is as follows. In Section 2 we develop the general meth-
odology. In Section 3 we discuss the problem of SSD in clinical trials and present results for the
normal distribution with an example. In Section 4 we discuss the problem of SSD in auditing
and present results for a mixture distribution that was first proposed by Cox and Snell (1979) for
this problem. We then illustrate these results numerically. The paper ends with some summary
remarks in Section 5. The derivations of the theoretical results are presented in Appendices A
and B.
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The S-PLUS program that was used to calculate sample sizes can be obtained from

http://www.blackwellpublishing.com/rss

2. Method

In both the auditing and the clinical trial problems the objective of the data analysis is to test a
specific hypothesis. The particular hypotheses are described more fully in Sections 3 and 4. In
each case the problem is to choose a sample size while taking into account the consequences of
wrong decisions about the hypothesis that is under test. To choose a sample size is to make a
decision. A full Bayesian approach to decision-making requires the specification of probability
distributions for both the data and the unknown parameters, a list of possible actions, the losses
that are consequent on wrong actions and the cost of sampling. In the absence of any of these
components approximations must be made to the full Bayesian approach, and this is the line
that we take in preference to abandoning the full Bayesian approach.

2.1. The hypothesis testing problem
Let X.n/ = .X1, . . . , Xn/ denote a random sample of size n from a population with density f.x|θ/
and let π.θ/ denote the prior distribution for the unknown parameter θ. Let π.θ|x.n// denote
the posterior distribution of θ given the observed sample x.n/.

We follow the development in Berger (1985), chapter 7, to set up the hypothesis testing prob-
lem, which is to choose between the two hypotheses

H0 :θ∈Θ0 versus H1 :θ∈Θ1,

where Θ0 is less than Θ1 in the sense that, if θ0 ∈Θ0 and θ1 ∈Θ1, then θ0 < θ1. In this paper we
shall take Θ0 ={θ :−∞<θ�θ0} and Θ1 ={θ :θ0 <θ<∞}.

In clinical trials θ0 is the null value, possibly 0, of the difference between a treatment and a
control. The choice of this null value is controversial (Spiegelhalter and Freedman, 1986) and
is the responsibility of the clinicians. We discuss this further in Section 3.

In the auditing context θ0 represents a value corresponding to a material error per item. If
θ< θ0 the error is not material and the account will be accepted. If, however, θ� θ0 the error
is material and the account will be rejected and the auditors will qualify that section of the
accounts in their conclusions. Note that θ0 is a positive quantity which is set in advance by the
auditors, not by statisticians. Setting θ= θ0 as a null hypothesis is not sensible for the auditing
problem as the critical region will fall into an area corresponding to a material error.

Let ai denote the action of accepting Hi for i = 0, 1 and L.θ, ai/ denote the loss for taking
decision ai when θ is the true value. The Bayes decision rule, denoted by δπn , is to select a0 if the
average posterior loss under a0 is less than that under a1, i.e. if∫

Θ1

L.θ, a0/π.θ|x.n// dθ<

∫
Θ0

L.θ, a1/π.θ|x.n// dθ: .1/

Under some parametric assumptions it is often possible to find a suitable function g.x.n// such
that inequality (1) holds if and only if g.x.n// < kπ.n/ where kπ.n/ is the value of g.x.n// for
which equality holds in expression (1) instead of the inequality. In the parametric family f.x|θ/,
if X̄n is sufficient for θ then Berger (1985) established that g.x.n//= x̄n. This will be so for our
normal error distribution in Section 3.1. However, this simplification is not possible for our
mixture model and in Section 4.1 we work with the appropriate g-function.
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The Bayes decision risk before sampling, which is denoted by r.π, δπn /, is given by

r.π, δπn /=
∫

Θ1

L.θ, a0/P{g.X.n//<kπ.n/|θ}π.θ/dθ+
∫

Θ0

L.θ, a1/P{g.X.n//�kπ.n/|θ}π.θ/dθ,
.2/

where P.·|θ/ denotes the probability of its argument when θ is the true value.
For SSD we may also define a cost function, c.n/ say, for obtaining the samples. In general

SSD problems c.n/ is often chosen to be an increasing function of n which does not involve the
parameters in the likelihood or prior distribution, whereas the risk decreases with n. The SSD
problem is to minimize

r.π, δπn /+ c.n/

over the values of the sample size n. The smallest n which minimizes the above expression is
the required sample size. In view of this we reformulate the SSD problem for an unknown cost
function as that of bounding the risk r.π.s/, δπ

.f/

n / by a prespecified quantity.
Note that the parametric assumption enters the sample size calculation through the proba-

bility P{g.X.n//� kπ.n/|θ}. The nonparametric approach of Walker (2003) approximates this
probability by using the central limit theorem. Therefore, the optimum sample sizes for the
Gaussian model should be similar to the samples sizes that are obtained from an equivalent
nonparametric approach for large sample sizes.

2.2. Fitting and sampling priors
All Bayesian model fitting exercises need a prior distribution for the unknown parameters in
the model. This is the prior distribution which would have been used for model fitting if the
sample data were available. Following Wang and Gelfand (2002) we call this the fitting prior
and denote it by π.f/.θ/. Often, π.f/.θ/ is assumed to be vague (or non-informative) so that the
modeller encourages the data to drive the inference; thus it is a general purpose working prior
distribution.

The fitting prior is to be used to obtain the posterior distribution π.θ|x.n// in expression
(1) and to emphasize this dependence we write the posterior distribution as π.f/.θ|x.n//. Thus
the decision rule is denoted by δπ

.f/

n and it selects a0 if inequality (1) holds for the posterior
distribution π.f/.θ|x.n//. The quantity kπ.n/ will also depend on the fitting prior that is used to
calculate the posterior distribution and we emphasize this dependence by writing kπ

.f/
.n/.

In the frequentist approach to SSD problems it is usually of interest to investigate the sensi-
tivity of the SSD procedure when the ‘true’ parameter θ assumes some particular values. This is
not considered to be satisfactory from a Bayesian perspective where the unknown parameter θ
is assumed to be random. To perform sensitivity analysis in a coherent Bayesian framework it is
natural to assume that the parameter θ follows an informative prior distribution concentrated
around some specific values of θ which are of particular interest to the practitioner. This is
the prior that a pure Bayesian would employ after full consideration of all the available prior
information. Wang and Gelfand (2002) formalized this concept by calling this informative prior
distribution the sampling prior. Here this prior is denoted by π.s/.θ/ and it replaces the familiar
assumption of fixing θ in the classical SSD problem.

2.2.1. What are the differences between the fitting and sampling priors and why should they
not be the same?
The sampling prior is the prior distribution that is used to generate the parameter values which
are then conditioned on to generate the data from f.x|θ/ in substantive experiments, i.e. data X.n/
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are generated from the joint hierarchical model π.s/.θ/ f.x|θ/. Once data are available we would
like to pretend that the informative prior distribution which generated the data is unknown to us,
and we would like to make inference with the assumption of a relatively non-informative prior
distribution. The sampling and fitting prior distributions should not be the same because they
serve two different purposes in the SSD problems. The sampling prior distribution addresses the
‘what if ?’ type of sensitivity scenarios, whereas the fitting prior distribution is used to form the
posterior distribution for making inference. In our numerical illustrations we shall investigate
the situation where the sampling prior is the same as the fitting prior, the conventional Bayesian
approach, and also explore the effect of different sampling and fitting priors.

The distinction between the sampling and fitting prior distributions will naturally affect the
calculation of the Bayes risk, r.π, δπn / that is given in equation (2). As mentioned above, the
decision rule δπn will need to be written as δπ

.f/

n . The prior distribution π.θ/, which is used
as the averaging measure in the integrals of equation (2), will be the sampling prior distribution
π.s/.θ/. Thus the Bayes risk (2) will have the form

r.π.s/, δπ
.f/

n /=
∫

Θ1

L.θ, a0/P{g.X.n//<kπ
.f/

.n/|θ}π.s/.θ/ dθ

+
∫

Θ0

L.θ, a1/P{g.X.n//�kπ
.f/

.n/|θ}π.s/.θ/ dθ: .3/

2.3. Specific losses and bounding the risk
In typical SSD problems a specific loss function needs to be assumed. There is a general con-
sensus that the loss function is a bounded function taking the value zero if a correct decision is
made. Often practitioners are very reluctant to specify a particular function or absolute values
of losses. However, we have found that they feel more comfortable in specifying the ratio of
losses that is defined below. Assuming the constant loss function L.θ, a0/ = L0 for θ> θ0 and
L.θ, a1/=L1 for θ�θ0, practitioners may provide the ratio of losses, L0=L1, or equivalently

η= L0

L0 +L1
:

Henceforth, we shall work with this particular loss function and the ratio wherever possible,
although the methodology can be applied more generally. Even with this assumption of a con-
stant loss function we shall see in Sections 3 and 4 that it is not possible to obtain the exact
analytical sample size. However, below we obtain an attractive interpretation of risk in terms
of two error probabilities and in Section 3 we obtain asymptotic results in terms of the prior
sample size.

Now we have the following simple form of the risk function (3):

r.π.s/, δπ
.f/

n /=L0

[∫
Θ1

P{g.X.n//<kπ
.f/

.n/|θ}π.s/.θ/ dθ

+1−η

η

∫
Θ0

P{g.X.n//�kπ
.f/

.n/|θ}π.s/.θ/ dθ
]
:

This risk function is a multiple of the loss L0 and it depends on the ratio of the losses η. In the
absence of the absolute values of the losses we reformulate the SSD problem as one of finding
the minimum n such that

r.π.s/, δπ
.f/

n /=L0 �M.η/
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for given values of η and M.η/. This is a canonical version of the SSD problem which bounds
the risk by L0 M.η/. Also, under the assumption that L0 = L1, i.e. the losses are equal for the
two possible wrong decisions, we see that the quantity to be bounded for the SSD is the sum of
two error probabilities, which is an appealing quantity to bound for practical problems. In our
numerical illustrations we shall experiment with three values of M.η/, i.e. 0.25, 0.15 and 0.10.
These particular values can be interpreted as follows: the test of H0 is carried out at the 5%-level
of significance and it is required to have 80%, 90% and 95% power respectively. Of course, the
last implies a very strict condition on the two error probabilities and we shall see that many
sample sizes will be very large. We set the optimum sample size to be ∞ if it is greater than
5000.

3. Application in clinical trials

The SSD problem in designing clinical trials to compare a new treatment against a standard
treatment has received much attention in the literature. See, for example, Spiegelhalter et al.
(2004), chapter 6, for a recent review. They discussed a range of issues including the differ-
ences between classical and Bayesian methods, the use of loss functions, specification of null
hypotheses and ethical considerations for randomization. In this paper we do not revisit those
discussions; rather our goal is to apply the methodology of Section 2 to the SSD problem.

For many SSD problems in clinical trials and elsewhere, the likelihood is approximated by a
normal distribution by appealing to the central limit theorem for a summary statistic such as
the log-odds-ratio; see for example Spiegelhalter et al. (2004), section 2.4. Even when using a
nonparametric model the central limit theorem may be used to approximate some key proba-
bilities that are required for the SSD problem; see for example Walker (2003), Clarke and Yuan
(2002) and Section 2.1 for more in this regard. In the remainder of this section we assume that
the observables, the Xis, are normally distributed. As is expected, this turns out to be an anal-
ytically tractable situation where our methods provide some exact solutions, though the final
sample size still needs to be calculated by using computer-intensive methods.

3.1. Sample size under normal likelihoods
Suppose that X|θ∼N.θ,σ2/ whereσ2 is known and assume thatπ.f/.θ/=N.µf , τ2

f / andπ.s/.θ/=
N.µs, τ2

s /. All hyperparameters are assumed to be known.
Using the derivations in Appendix A under the assumptions in Section 2.3 we investigate

the risk function and obtain analytical solutions. The risk function as given in equation (9) in
Appendix A is

r.π.s/, δπ
.f/

n /=L0 P.U>a, V<b/+L1 P.U<a, V>b/,

where U and V jointly follow the bivariate normal distribution with zero means, unit variances
and correlation ρ, and where

ρ=
(

1+ σ2

nτ2
s

)−1=2

,

a= θ0 −µs

τs
,

b=ρ
kπ

.f/
.n/−µs

τs
:
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(U<a,V>b)

(U>a,V<b)

U

V

Fig. 1. Particular contour plot

Here kπ
.f/

.n/ is as in equation (7) in Appendix A. ρ is always non-negative. The joint bivariate
distribution comes from the joint probability distribution of X̄n and θ as implied by the model-
ling of the likelihood and the prior. The quantity a depends on the sampling prior alone whereas
b depends on the sampling prior, the fitting prior and the sample size n. The correlation between
θ and X̄n is ρ, which also depends on n.

To fix ideas, we provide a particular contour plot of the joint distribution of U and V in Fig. 1.
The two regions

(a) U>a, V<b and
(b) U<a, V>b

have been shaded. These two regions intersect at the point .a, b/. The location of the point .a, b/

and the shape of the contours of the bivariate normal distribution will change depending on
the values of the sample size n and the prior parameters. Note, however, that the correlation
will always be non-negative. The probabilities of these two regions under the bivariate normal
distribution must be controlled to bound the risk function. How will it be possible to make the
two probabilities very small? Unfortunately, there is no simple answer to this as the probabilities
will depend on the actual prior parameters that are used and the sample size n through a and
b. However, we provide the following theoretical and numerical results.

The two probabilities will be small (even for small n) if a and b are of the same sign, and
both |a| and |b| are large. This happens when the point .a, b/ is far from the origin in either
direction along the major axis of the elliptical contours. When a and b are of opposite sign and
at least one of |a| and |b| is large then one of the probabilities will be 0 and the other will be
large for small values of n. Both the probabilities will be large for small n if the point .a, b/ falls
inside the high probability region of the contours. To reduce the high probabilities in the last
two cases a large value of n will be required. The large value of n will make the value of ρ close
to 1 and as a result the contours will shrink to the major axis and both the probabilities will
approach 0.

Suppose that τ2
f is large, corresponding to a non-informative fitting prior. Straightforward

calculation yields that
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b=ρ
(

a− qσ

τs
√

n

)
: .4/

With a further assumption that L0 =L1 (and equivalently η= 1
2 ) we have q = 0; now b will be

a positive multiple of a. Thus a large value of |a| will yield a large value of |b| of the same sign
even for small values of n. As a result, even a very small sample size will be sufficient to make
the two probabilities small. The quantity a will be large if the mean of the sampling prior µs
is quite far from θ0 in units of τs, the standard deviation of the sampling prior. Thus a smaller
sample size can be expected if the prior mean is quite far from the boundary value θ0 in either
direction in units of τs when L0 =L1 and the variance of the fitting prior is large.

If we assume that both the sampling prior and the fitting prior are non-informative (in the
sense that both τ2

s and τ2
f are large) then b will be approximately equal to a and as a result

the sampling prior alone may dictate the sample size, i.e. a smaller sample size can be expected
if the prior mean is quite far from the boundary value θ0 in either direction in units of τs.
Note that this conclusion does not require the equality assumption of the losses that was made
in the preceding paragraph, since from equation (4) we have b → a as τ2

s → ∞ even when
q �=0.

The two probabilities will be moderately large for small values of n if the point .a, b/ is near
the origin. The origin is the worst position of the point .a, b/ for making the probabilities of the
two regions small since each of the two regions will intersect heavily with high probability areas
of the bivariate normal distribution. Thus the a = 0 case for which the mean of the sampling
prior is equal to θ0 will require a larger sample size than the a �=0 cases. The actual sample size,
however, will depend on the magnitude of the quantity b and the tightness of the upper bound
on the risk function.

We make several standard assumptions to illustrate the sample sizes that are required in a
practical situation such as that in Section 3.2 below.

(a) Without loss of generality we assume that θ0 = 0; thus the null hypothesis is H0 : θ� 0
(assumption 1). Denoting θ to be the mean difference between the two rival treatments or
procedures, this may mean that the new procedure or drug is not better than the current
one. The alternative hypothesis is H1 :θ> 0.

(b) We suppose that L0 =L1, i.e. η= 1
2 and q = 0 (assumption 2). This implies that the loss

function is symmetric.
(c) We assume that τ2

f =σ2=nf and τ2
s =σ2=ns, so that nf and ns are the equivalent sample

sizes implied by the fitting and sampling prior distributions respectively (assumption 3).

These choices lead to the following values of ρ, a and b:

ρ=√{n=.n+ns/},

a=−µs
√

ns=σ,

b=−ρ.
√

ns=σ/.µs +µf nf =n/:


 .5/

With assumptions 1–3 we have the following results.

(a) Suppose that µf =µs = 0, corresponding to the assumption that both priors are neither
enthusiastic nor pessimistic about the two procedures since, by assumption 1, θ0 =0. This
implies that a=b=0 and as a result the sample size will be solely determined by ns, the
prior sample size for the sampling prior. The exact number of samples will be determined
by the rate at which ρ approaches 1, or equivalently ns=n approaches 0.

(b) Suppose that the sampling and the fitting priors are the same, i.e. µs =µf =µ0 and nf =
ns =n0. Then we have
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ρ=√{n=.n+n0/},

a=−µ0
√

n0=σ,

b=a=ρ:

(i) Let n0 → 0, corresponding to limiting non-informative priors. Then both a and b

approach 0 and ρ approaches 1. A small sample size is required in this case, since
the prior probability of θ being close to θ0 is very small and a small sample will indicate
the actual location of θ.

(ii) Let n0 →∞, corresponding to a set of very informative priors; then ρ approaches 0
but both |a| and |b| will approach ∞ when µ0 �= 0 and a small sample size is required
as expected. If, however, µ0 =0 then a=b=0 and a very large sample size is required
to guarantee that n0=n goes to 0, to have ρ→ 1. (Recall that the origin is the worst
position of (a,b) for SSD.) This also brings out a surprising finding that the optimal
data sample size n must dominate the prior sample size n0.

From this discussion it is clear that either a very small or a very large sample size is required
for limiting prior distributions. In the following subsection we consider a practical example
and illustrate the sample sizes in more realistic situations where these theoretical results are
reconfirmed. We also conduct experiments in the case where the fitting and sampling priors are
different.

3.2. A clinical trial example
Fayers et al. (2000) discussed the SSD problem for a trial for surgery for gastric cancer where
a radical surgery (new treatment) is compared with conventional surgery (standard treatment).
The log-hazard-ratio of death is the outcome of the trial and it follows an approximate normal
distribution with mean θ and standard deviation σ=2; see Spiegelhalter et al. (2004), page 198,
for justification of this assumption. The values of θ>0 favour the new treatment. In the classical
set-up the SSD problem is to determine n such that the test of

H0 :θ=0 versus H1 :θ=θa,

where θa is a fixed value specified as the alternative, at 5% significance level achieves 90% power.
Fayers et al. (2000) discussed many different values of θa corresponding to some specific possible
outcomes of the trials. By choosing θa =0:29, 0:39, 0:56, the approximate optimal sample sizes
are 500, 276 and 134 respectively.

For the Bayesian problem, our hypotheses are of the form: H0 :θ�0 and H1 :θ> 0, whereby
the new surgery will be selected if the mean log-hazard-ratio is positive. Here the magnitude of
the expected treatment effect will not dictate the sample size unlike that in the classical set-up
where the alternative hypothesis plays a crucial role. We also assume that the losses are equal
on the ground that an erroneous decision in either direction will incur the same amount of loss.
This assumption is adopted in the absence of any information to the contrary.

Fayers et al. (2000) reported prior opinions of 26 surgeons who were experienced in gastric
surgery. By fitting a normal distribution on an appropriate transformed scale Spiegelhalter et al.
(2004) concluded that the surgeons’ opinion can be summarized by the N.0:12, 0:192/ prior dis-
tribution for θ, which is an enthusiastic prior for the new treatment (radical surgery). This
corresponds to ns = 111 approximately since τ2

s =σ2=ns. The power and level of significance
requirements justify the value 0.15 for M.η/ in our implementation. The sample size that we
obtain by using the Bayesian method proposed is 287, which is close to the sample size of 276
that is obtained by using the classical method when θa = 0:39. This, in our opinion, is a mere
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Table 1. Optimum sample size for various values of prior mean (different columns) and prior sample sizes
(different rows) for the clinical trial example when the fitting and sampling priors are the same†

ns =nf Results for the following values of µf =µs:

−0.60 −0.50 −0.40 −0.30 −0.20 −0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

M(η)=0.25
200 2 2 2 2 2 2 201 2 2 2 2 2 2
111 2 2 2 2 2 53 111 53 2 2 2 2 2
100 2 2 2 2 2 53 101 53 2 2 2 2 2

50 2 2 2 2 2 37 51 37 2 2 2 2 2
25 2 2 2 2 13 21 25 21 13 2 2 2 2
16 2 2 2 5 11 15 17 15 11 5 2 2 2

4 2 3 3 3 3 3 5 3 3 3 3 3 2
1 2 2 2 2 2 2 2 2 2 2 2 2 2

M(η)=0.15
200 2 2 2 2 2 379 771 379 2 2 2 2 2
111 2 2 2 2 2 295 427 295 2 2 2 2 2
100 2 2 2 2 49 277 385 277 49 2 2 2 2

50 2 2 2 2 94 163 193 163 94 2 2 2 2
25 2 2 13 43 69 89 97 89 69 43 13 2 2
16 2 7 23 37 51 59 61 59 51 37 23 7 2

4 9 11 13 13 15 15 15 15 15 13 13 11 9
1 3 3 3 3 3 3 3 3 3 3 3 3 3

M(η)=0.10
200 2 2 2 2 2 1063 1895 1063 2 2 2 2 2
111 2 2 2 2 249 769 1051 769 249 2 2 2 2
100 2 2 2 2 269 715 947 715 269 2 2 2 2

50 2 2 2 109 265 411 473 411 265 109 2 2 2
25 2 17 67 123 179 221 237 221 179 123 67 17 2
16 17 43 71 101 127 145 151 145 127 101 71 43 17

4 25 29 31 35 37 37 37 37 37 35 31 29 25
1 9 9 9 9 9 9 9 9 9 9 9 9 9

†Here θ0 =0, η= 1
2 and σ=2.

coincidence since apart from the same total error rate (M.η/ = 0:15) the two procedures have
little in common.

A single reported sample size is not very informative on its own and its sensitivity with respect
to many different assumptions should be investigated. In a practical situation this sensitivity
needs to be explored and matched with the practical information that is available to decide the
sample size.

We first consider the case where the sampling and fitting prior distributions are the same, and
we report the resulting sample sizes in Table 1. As expected the largest sample size is required for
the µs =µf =0 case (the middle column in Table 1). This is expected because a=b=0 in this case
and recall that the origin is the worst position of a and b for SSD according to the discussion for
Fig. 1. Table 1 also reveals that the sample size decreases as the prior mean θ0 moves away from
0 in either direction, but the rate of decrease depends non-linearly on the assumed prior sample
size. The sample size decreases as the prior sample size ns = nf decreases, i.e. a larger sample
size is required for a tighter prior distribution.

It is clear from Table 1 that the sample size will be largest when both the prior means are equal
to θ0, the null value of the mean (which is assumed to be 0 here). This choice (µs =µf =θ0) has
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the potential to become a default case in many analyses since this corresponds to a prior distri-
bution with mean which is neither enthusiastic nor pessimistic. Suppose that the sampling and
fitting prior distributions have different variances (i.e. are based on different equivalent prior
sample sizes ns and nf ). In this case nf will not affect the optimum sample size since b is free
of nf and nf enters the sample size calculation only through b (see equation (5)) and note that
µs =µf = θ0 = 0. Now the optimum sample size will depend on the value of ns and M.η/. The
middle column (corresponding toµs =µf =0) of Table 1 provides the numerical results. As before
we continue to see that the sample sizes decrease with ns. In conclusion, we recommend that a
sensitivity study, like that conducted here, should be undertaken before reaching a decision in
any practical situation.

4. Application in financial audit

In auditing the final accounts about which a decision will be made comprise a set of subaccounts
such as income (possibly by category) and expenditure on specific functions, e.g. pay-roll, or on
products that are particular to the audited entity. Different subaccounts have different account-
ing processes, and hence different types of error, and so the audit can be broken down into
separate audits for each subaccount. If any subaccount is in serious error then the final audit
conclusion will identify this and qualify this section of the accounts. Statistically the audit is
stratified and inferences are made within strata as well as overall. Auditors use a concept called
material error to define the value of monetary error that would lead them to qualify an account.
We assume that the auditor has set the value of material error within each subaccount; typically
this will be a percentage of the total money value of the subaccount, say 1% or 2%. Samples will
be drawn from within strata and so we concentrate on SSD within each subaccount separately.
In the rest of the paper the term account will refer to the subaccount being audited.

4.1. A mixture model
In financial audits the recorded value of a transaction is often called the book value which can
be matched to a true value called the audit value. The error in a transaction is defined as the
difference X′

i =Bi −Ai between its book value Bi and audit value Ai. Often only overstatement
errors can occur in which case we have 0 < Ai < Bi for all i=1, . . . , n. Following Cox and Snell
(1979) we model the proportional errors, called the taints, Xi =X′

i=Bi.
Assume that Xi is non-zero with probability ψ and let there be m items which result in

positive errors. Denote these m positive values of X by Z1, Z2, . . . , Zm. Further, we assume that
the random sample Z1, Z2, . . . , Zm follows the exponential distribution with mean µ, 0 <µ< 1.
Now the parameter of interest is given by θ=ψµ, the proportion of error per money unit. The
total error is TBθ where TB =ΣBi is the known total book value of the account.

As in Cox and Snell (1979) we assume that a priori ψ follows the gamma distribution with
mean ψ0, G.a, a=ψ0/, and µ follows the inverse gamma distribution with mean µ0, IG{b, .b −
1/µ0}, independently for suitable values of a, b,ψ0 and µ0. These prior distributions are adopted
because they are conjugate, and as is well known a simpler analysis ensues under conjugate prior
distributions. This simplification can also be justified by the fact that any SSD problem must
involve a large number of assumptions and approximations. The joint prior density of ψ and µ
is given by

π.ψ,µ/=
(

a

ψ0

)a 1
Γ.a/

ψa−1 exp
(
−aψ

ψ0

){.b−1/µ0}b

Γ.b/

× 1
µb+1 exp

{
− .b−1/µ0

µ

}
, ψ> 0, µ> 0: .6/
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After some calculation, we see that the induced prior distribution of the parameter of interest
θ, π.θ/, is given by

π.θ/= c{π.θ/}F2a,2b

where

c {π.θ/}= .b−1/ψ0µ0

b
,

and Fν1,ν2 is the standard F random variable with .ν1, ν2/ degrees of freedom.
The prior mean of θ=ψµ is given by the product ψ0µ0; the other hyperparameters a and b

cancel out in the mean. However, the variance of θ depends on all the hyperparameters and we
shall return to their choices later.

The likelihood is obtained by arguing that m|n,ψ follows the Poisson distribution with param-
eter nψ and, given m > 0, Z1, . . . , Zm are independent and identically distributed exponential
random variables with mean µ. The resulting likelihood is given by

L.ψ,µ; n, m, z/∝ exp.−nψ/.nψ/m 1
µm

exp
(

− 1
µ

m∑
i=1

zi

)
:

The joint posterior distribution of ψ and µ is proportional to L.ψ,µ; n, m, z/π.ψ,µ/ and is
given by

π.ψ,µ|n, m, z/∝ exp.−nψ/.nψ/m 1
µm

exp
(

− 1
µ

m∑
i=1

zi

)
ψa−1

× exp
(

−aψ

ψ0

)
1

µb+1 exp
{

− .b−1/µ0

µ

}
,

forψ>0 andµ>0. If m=0 then we simply drop the terms involving m from the above expression
to obtain the posterior distribution.

After some integration, we see that the posterior distribution of the quantity θ=ψµ is given
by

π.θ|x.n//= c{π.θ|x.n//}F2.m+a/,2.m+b/,

where

c{π.θ|x.n//}= mz̄m + .b−1/µ0

n+a=ψ0

m+a

m+b
:

If m=0 then the posterior distribution is given by

π.θ|x.n//= c{π.θ|x.n//}F2a,2b,

where

c{π.θ|x.n//}= a

b

.b−1/µ0

n+a=ψ0
:

Further, when n=0 it is easy to see that the prior and posterior distributions of θ coincide, as
expected. The technical details for estimating the sample sizes are given in Appendix B.
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4.2. Numerical results
The prior mean and variance of θ are given by

mean=ψ0µ0,

variance= a+b−1
a.b−2/

.ψ0µ0/2:

We express our prior parameter values in units of the auditor’s material error θ0 as follows. We
assume thatψ0 =0:01 and obtain values of µ0 by using the relationshipψ0µ0 =k1θ0 for different
values of k1. We now set the prior standard deviation at k2 times θ0, i.e.{

a+b−1
a.b−2/

}1=2

ψ0µ0 =k2θ0:

This provides only one constraint for two undetermined parameters a and b, so many different
strategies can be adopted. To ensure positivity of both a and b we require that

b> 2+k2
1=k2

2:

We let

b=2+k2
1=k2

2 +b0,

a= b−1

k2
2.b−2/=k2

1 −1
,

where b0 is a non-negative parameter. A small value of b0 makes the prior distribution very spiky
and as a result the sample sizes become very large. That is why we illustrate with a moderate
value of b0 =10, although other values can be adopted.

In our illustration, we assume thatψ.s/
0 =ψ

.f/
0 =0:01 to reduce the number of parameters to be

given as input for the method. The remaining parameters in the prior distributions are obtained
by specifying particular values for k1 and k2. Note that we shall have four parameters k

.f/
1 , k

.f/
2 ,

k
.s/
1 and k

.s/
2 for the fitting and sampling priors.

(a) Suppose that the sampling and the fitting priors are the same. In this case we have as =af
and bs =bf . Note that these parameters are obtained by first assuming a particular value
for each of k

.s/
1 = k

.f/
1 = k1 and k

.s/
2 = k

.f/
2 = k2. The optimal sample sizes are reported in

Table 2. Here the sample sizes are not symmetric around the k1 = 1 column owing to
skewness of the mixture distribution. The sample sizes decrease when the prior variance
increases as in the normal case. Also note that there are some optimal sample sizes which
are ∞. These are due to the corresponding very small prior variances that are assumed.
The implied prior distribution for each of these cases resembles a spike (centred very
close to θ0) and huge numbers of samples are required to discriminate between the two
hypotheses. In practical auditing terms these infinite sample sizes will require a complete
audit.

(b) In Table 3 we assume that k
.s/
1 = k

.f/
1 = 1, but we specify different values of k

.s/
2 and k

.f/
2

for the sampling and fitting prior. As in the previous clinical trial example the optimum
sample sizes are not affected by the fitting prior distribution; the small variation between
the columns is due to sampling fluctuations in the simulation. Also, as seen previously,
higher sample sizes are needed for tighter sampling prior distributions (see the variations
between the rows of Table 3).

(c) Now we suppose that there is a mismatch between the means of the fitting and samp-
ling prior distributions. To illustrate we assume that k

.s/
1 =0:5 and k

.f/
1 =1. We report the
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Table 2. Optimum sample size for various values of k1
and k2 for the mixture example when the fitting and sam-
pling prior are the same†

k2 Results for the following values of k1:

0.25 0.5 0.75 1.0 1.25 1.5 1.75

M(η)=0.25
0.5 2 2 3 573 903 2 2
1.0 2 2 2 75 215 264 2
1.5 2 2 2 15 49 111 146
2.0 2 2 2 3 22 53 83
2.5 2 2 2 2 8 28 54

M(η)=0.15
0.5 2 2 426 2387 3646 2 2
1.0 2 2 86 398 822 1257 1008
1.5 2 2 20 94 293 555 648
2.0 2 2 6 31 123 195 416
2.5 2 2 2 14 56 137 219

M(η)=0.10
0.5 2 65 1500 ∞ ∞ 3341 2
1.0 2 37 275 1011 2285 3153 2809
1.5 2 6 80 307 746 1405 1871
2.0 2 2 27 103 318 701 1017
2.5 2 2 12 43 131 317 589

†Here θ0 =0:01, η= 1
2 , ψ.s/

0 =ψ
.f/
0 =0:01 and µ.s/

0 =µ
.f/
0 .

optimum sample sizes in Table 4 for various values of k
.s/
2 and k

.f/
2 but only for M.η/=0:1.

For the other two values of M.η/ the sample sizes were trivially small. The optimum sam-
ple size decreases when k

.s/
2 increases and is not affected much by the variance of the

fitting prior when the variance of the sampling prior is moderately large.

5. Discussion

There are so many uncertainties in SSD that approximate methods must be employed within
any theoretical framework. In this paper we have explored some of the implications of this within
a full Bayesian framework for SSD. Our approach is general and can be used for many problems
in statistical decision-making. We have found that typical non-informative prior distributions
lead to very small sample sizes. In contrast, a very informative prior distribution also leads to a
very small sample size when the prior mean is ‘far’ from the hypothesized value of the param-
eter. The sample sizes are the largest when the prior distribution concentrates very strongly at
the hypothesized value of the parameter. These results have been shown both theoretically and
numerically.

The results for the normal distribution apply to a wide range of applications, including the
clinical trial example that we have chosen. We feel that the Bayesian framework can incorporate
practitioners’ prior knowledge regarding the hypotheses and potential losses far more naturally
than those required in a frequentist framework.

A key result in the auditing context is that, if the prior mean is far from the boundary value θ0
(or the per item material error), then the sample size required is very small, which confirms the
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Table 3. Optimum sample size for various values of k.s/
2

and k.f/
2 for the mixture example†

k
.s/
2 Results for the following values of k

.f/
2 :

0.5 1.0 1.5 2.0 2.5

M(η)=0.25
0.5 497 595 592 556 490
1.0 72 79 76 78 51
1.5 15 16 15 14 14
2.0 3 3 3 4 5
2.5 2 2 2 2 2

M(η/=0.15
0.5 2260 2334 2230 2254 2256
1.0 420 368 328 357 389
1.5 131 107 106 121 105
2.0 46 34 37 29 37
2.5 24 13 15 18 14

M(η)=0.10
0.5 ∞ ∞ ∞ ∞ ∞
1.0 1086 1032 1058 1126 1039
1.5 337 334 304 301 325
2.0 128 142 99 129 114
2.5 75 66 64 50 48

†Here θ0 =0:01, k
.s/
1 =k

.f/
1 =1,ψ.s/

0 =ψ
.f/
0 =0:01 and η= 1

2 .

Table 4. Optimum sample size for various values of k.s/
2

and k.f/
2 for the mixture example†

k
.s/
2 Results for the following values of k

.f/
2 :

0.5 1.0 1.5 2.0 2.5

0.5 499 984 1003 991 971
1.0 37 58 63 65 63
1.5 4 6 5 5 8
2.0 2 3 2 2 3
2.5 2 2 2 2 2

†Here θ0 =0:01, k
.s/
1 =0:5, k

.f/
1 =1, ψ.s/

0 =ψ
.f/
0 =0:01, η= 1

2
and M.η/=0:10.

auditors’ views about the value of sampling. In this case a minimum sample size should be set
to satisfy auditing standards and to guarantee some level of quality assurance due to sampling.
If the prior mean is very close to the material error then, as expected, a large sample size is
required. This sample size becomes even larger for the tighter prior distributions. Also when the
upper bound on the two error probabilities, M.η/, is small the sample sizes become very large.

The substantive testing of items tests only the accuracy of the totals that are generated by the
system as specified at the first stage of the audit. This is not a procedure designed to discover
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large faults in the design of the system that may have led to recent accounting scandals such
as those at Enron and Parmalat. Discovering these system faults is the responsibility of senior
auditors at the system review stage.

The optimal sample sizes in the two examples have been found under two different parametric
assumptions on the error distribution, but the key conclusions remained the same across the two
models. The sample sizes are model dependent if the prior mean of θ is close to the hypothesized
value θ0. However, if the prior mean is very far from θ0, which is often the case, both the models
give very small sample sizes.

Lastly, we feel that a clear distinction should be made between the sampling and fitting prior
distributions. The sampling prior distribution relates to the data-generating mechanism whereas
the fitting prior drives the inference through the posterior distribution. Intuition suggests that
a non-informative fitting prior distribution should not influence the sample size and we have
demonstrated this here. The sampling prior distribution captures the practitioners’ usually
strong prior belief whereas the fitting prior distribution is a statistician’s device to implement the
analysis.
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Appendix A: Calculations for the normal likelihoods in Section 3.1

We recall that X|θ∼N.θ,σ2/ where σ2 is known and assume that π.f/.θ/=N.µf , τ 2
f / and π.s/.θ/=N.µs, τ 2

s /.
The posterior distribution of θ is normal with mean

E.θ|x̄n/=λ2
f

(
nx̄n

σ2
+ µf

τ 2
f

)
,

and

var.θ|x̄n/=λ2
f

where

λ2
f = 1

.n=σ2 +1=τ 2
f /

:

We now derive kπ
.f/

.n/. The Bayes rule chooses action a0 if

L0

∫ ∞

θ0

π.f/.θ|x̄n/ dθ<L1

∫ θ0

−∞
π.f/.θ|x̄n/ dθ,

i.e.

L0.1−p/<L1p, say,

implies that

p>
L0

L0 +L1
≡η,

where

p=
∫ θ0

−∞
π.f/.θ|x̄/ dθ=Φ

{
θ0 −λ2

f .nx̄n=σ2 +µf =τ
2
f /

λf

}
,

and Φ.·/ is the cumulative distribution function of the standard normal distribution. Let Φ−1 denote the
inverse of Φ and q=Φ−1 .η/. Now it is clear that p>η if
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x̄n <kπ
.f/

.n/

= σ2

n

(
θ0 −qλf

λ2
f

− µf

τ 2
f

)
: .7/

We now have

P{X̄n <kπ
.f/

.n/|θ}=Φ
{

kπ
.f/

.n/−θ

σ=
√

n

}
:

Let φ.·/ be the density function of the standard normal random variable. The following calculations
reduce the risk function to an analytic form. The risk is given by

r.π.s/, δπ
.f/

n /=L0

∫ ∞

θ0

Φ
{

kπ
.f/

.n/−θ

σ=
√

n

}
1

τs

√
.2π/

exp
{

− 1
2τ 2

s

.θ−µs/
2

}
dθ

+L1

∫ θ0

−∞

[
1−Φ

{
kπ

.f/
.n/−θ

σ=
√

n

}]
1

τs
√

.2π/
exp

{
− 1

2τ 2
s

.θ−µs/
2

}
dθ,

=L0

∞∫
.θ0−µs/=τs

Φ
{

kπ
.f/

.n/−µs − τsu

σ=
√

n

}
φ.u/ du

+L1

.θ0−µs/=τs∫
−∞

[
1−Φ

{
kπ

.f/
.n/−µs − τsu

σ=
√

n

}]
φ.u/ du

=L0 P.UÅ <−a, VÅ <b/+L1 P.UÅ <a, VÅ <−b/

where

a= .θ0 −µs/=τs,
b=d=

√
.1+ c2/,

c=−τs

√
n=σ,

d ={kπ
.f/

.n/−µs}√
n=σ

and UÅ and VÅ jointly follow the bivariate normal distribution with zero means, unit variances and
correlation ρÅ = c=

√
.1+ c2/. We have used the following two identities:

∫ ∞

a

φ.z/ Φ.cz+d/ dz=P.UÅ <−a, VÅ <b/,
∫ a

−∞
φ.z/{1−Φ.cz+d/} dz=P.UÅ <a, VÅ <−b/:

.8/

These two results are proved similarly; the proof of the first identity (8) is given below.
We have

∫ ∞

a

φ.z/ Φ.cz+d/ dz=
∫ ∞

a

φ.z/

∫ cz+d

−∞
φ.y/ dy dz

=
∫ −a

−∞
φ.z/

∫ −cz+d

−∞
φ.y/ dy dz:

Now we work with the right-hand side as follows:
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P

{
UÅ <−a, VÅ <

d√
.1+ c2/

}
=

∫ −a

−∞

d=
√

.1+c2/∫
−∞

1
2π

√
.1−ρÅ2/

exp
{
− 1

2.1−ρÅ2/

}
.u2 −2ρÅuv+v2/ du dv

=
∫ −a

−∞

{1=
√

.1−ρÅ2/}{d=
√

.1+c2/−ρÅz}∫
−∞

φ.y/φ.z/ dy dz,

=
∫ −a

−∞
φ.z/

∫ −cz+d

−∞
φ.y/ dy dz,

by using the transformation z=u and y ={1=
√

.1−ρÅ2/}.v−ρÅu/, and then by substituting the value of
ρÅ. This completes the proof.

By applying a further transformation we rewrite the risk function as

r.π.s/, δπ
.f/

n /=L0 P.U>a, V<b/+L1 P.U<a, V>b/, .9/

where U and V jointly follow the bivariate normal distribution with zero means, unit variances and cor-
relation

ρ=
(

1+ σ2

nτ 2
s

)−1=2

,

and
a= .θ0 −µs/=τs,

b=ρ{kπ
.f/

.n/−µs}=τs:

Thus we have an analytic expression for the risk function which can be evaluated for different values of
the sample size n and the optimum can be found.

Appendix B: Calculations for the mixture model in Section 4.1

The Bayes rule chooses action a0 if ∫ θ0

0
π.θ|x.n// dθ>

L0

L0 +L1
≡η,

as before. This holds if
θ0

c{π.θ|x.n//} �q.m, a, b, η/, .10/

where q.m, a, b, η/ satisfies

P{F2.m+a/,2.m+b/ <q.m, a, b, η/}=η:

For inequality (10), two cases arise depending on the value of m. If m > 0, then the Bayes rule chooses
action a0 if

m∑
i=1

zi <θ0
m+b

m+a

n+a=ψ0

q.m, a, b, η/
− .b−1/µ0: .11/

However, if m=0 then the Bayes rule chooses action a0 if

θ0
b

a

n+a=ψ0

q.0, a, b, η/
>.b−1/µ0: .12/

Consequently, depending on the value of m the probability P{g.X.n// < k.n/|θ} will have two different
forms. When m = 0, the probability is 1 if inequality (12) is satisfied and 0 otherwise. If, however, m is
non-zero then the probability is given by
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P

{
Y<

θ0

µ

m+b

m+a

n+a=ψ0

q.m, a, b, η/
− .b−1/

µ0

µ

}

where Y follows the gamma distribution G.m, 1/. This probability will be 0 when the right-hand side of
inequality (11) is negative.

We now introduce the fitting and the sampling priors for calculating the risk function (3). Assume that
the forms of the fitting and sampling prior distributions are the same. Let af , bf ,ψ

.f/
0 and µ.f/

0 be the param-
eters under the fitting prior and as, bs,ψ

.s/
0 and µ.s/

0 be the parameters under the sampling prior. Now the
probabilities P{g.X.n// < k.n/|θ} and P{g.X.n// � k.n/|θ} are to be calculated using the parameter val-
ues af , bf ,ψ

.f/
0 and µ.f/

0 for the fitting prior.
The risk function (3) is now calculated by using Monte Carlo sampling from the sampling prior dis-

tribution as follows. We first simulate ψ and µ from their sampling prior distributions which have hyper-
parameters as, bs,ψ

.s/
0 and µ.s/

0 . The product θ=ψµ is taken as a draw from the sampling prior distribution.
Conditional on the draws from the prior distribution we simulate m for a given sample size n, using the
fact that m|n,ψ follows the Poisson distribution with parameter nψ.

The probabilities of choosing actions a0 and a1 are evaluated under the fitting prior distributions
which have hyperparameters af , bf ,ψ

.f/
0 and µ.f/

0 , i.e. we set

P{g.X.n//<kπ
.f/

.n/|θ}=




I

{
θ0

bf

af

n+af =ψ
.f/
0

q.0, af , bf , η/
>.bf −1/µ.f/

0

}
, if m=0,

Gm

{
θ0

µ

m+bf

m+af

n+af =ψ
.f/
0

q.m, af , bf , η/
− .bf −1/

µ.f/
0

µ

}
, otherwise,

where I.·/ denotes the indicator function. Subsequently the average risk over 2000 simulation replica-
tions produces accurate estimates of the risk r.π.s/, δπ

.f/

n /.

References

Adcock, C. J. (1997) Sample size determination: a review. Statistician, 46, 261–283.
Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. New York: Springer.
Clarke, B. S. and Yuan, A. (2002) A closed form expression for Bayesian sample sizes. Technical Report. Depart-

ment of Statistics, University of British Columbia, Vancouver.
Cox, D. R. and Snell, E. J. (1979) On sampling and the estimation of rare errors. Biometrika, 66, 125–132.
Fayers, P. M., Cushieri, A., Fielding, J., Uscinska, B. and Freedman, L. S. (2000) Sample size calculation for

clinical trials: the impact of clinician beliefs. Br. J. Cancer, 82, 213–219.
Heiner, K. W. and Whitby, O. (1980) Maximizing restitution for erroneous medical payments when auditing

samples. Interfaces, 10, 46–54.
Joseph, L., Wolfson, D. B. and du Berger, R. (1995) Sample size determination for binomial proportions via

highest posterior density intervals. Statistician, 44, 143–154.
Laws, D. J. and O’Hagan, A. (2000) Bayesian inference for rare errors in populations with unequal unit sizes.

Appl. Statist., 49, 577–590.
Laws, D. J. and O’Hagan, A. (2002) A hierarchical Bayesian model for multilocation auditing. Statistician, 51,

431–450.
Lindley, D. V. (1997) The choice of sample size. Statistician, 46, 129–138.
Patterson, E. R. (1993) Strategic sample-size choice in auditing. J. Accountng Res., 31, 272–293.
Raiffa, H. and Schlaifer, R. (2000) Applied Statistical Decision Theory. Chichester: Wiley.
Shrivastava, R. P. and Shafer, G. R. (1994) Integrating statistical and non-statistical audit evidence using belief

functions—a case of variable sampling. Int. J. Intell. Syst., 9, 519–539.
Smith, T. M. F. (1976) Statistical Sampling for Accountants: Accountancy Age Books. London: Haymarket.
Smith, T. M. F. (1979) Statistical sampling in auditing: a statistician’s viewpoint. Statistician, 28, 267–280.
Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004) Bayesian Approaches to Clinical Trials and Health-care

Evaluation. Chichester: Wiley.
Spiegelhalter, D. J. and Freedman, L. S. (1986) A predictive approach to selecting the size of a clinical trial, based

on subjective clinical opinion. Statist. Med., 5, 1–13.
Spiegelhalter, D. J., Freedman, L. S. and Parmar, M. K. B. (1994) Bayesian approaches to randomized trials (with

discussion). J. R. Statist. Soc. A, 157, 357–416.
Walker, S. G. (2003) How many samples?: a Bayesian nonparametric approach. Statistician, 52, 475–482.
Wang, F. and Gelfand, A. E. (2002) A simulation-based approach to Bayesian sample size determination for

performance under a given model and for separating models. Statist. Sci., 17, 193–208.


