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Abstract

The effect of weather on health has been widely researched, and the ability to
forecast meteorological events is able to offer valuable insights into the impact on
public health services. In addition, better predictions of hospital demand that are
more sensitive to fluctuations in weather can allow hospital administrators to optimise
resource allocation and service delivery. Using historical hospital admission data and
several seasonal and meteorological variables for a site near the hospital, this paper
develops a novel Bayesian model for short-term prediction of the numbers of admissions
categorised by several factors such as age-group and sex. The proposed model is
extended by incorporating the inherent uncertainty in the meteorological forecasts
into the predictions for the number of admissions. The methods are illustrated with
admissions data obtained from two moderately large hospital trusts in Cardiff and
Southampton, in the United Kingdom, each admitting about 30-50 thousand non-
elective patients every year. The Bayesian model, computed using Markov chain Monte
Carlo methods, is shown to produce more accurate predictions of the number of hospital
admissions than those obtained using a six-week moving average method similar to that
widely used by the hospital managers. The gains are shown to be substantial during
periods of rapid temperature changes, typically during the onset of cold, and highly
variable winter weather.
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1 Introduction

There has been a long standing recognition of the relationship between weather and health
dating back to the time of Hippocrates, who first discovered that disease was linked to
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changes in weather. In fact, there is a whole scientific discipline, referred to as human
biometeorology, which studies the interrelationship between atmospheric conditions and hu-
man health, see e.g., Sargeant (1964). In addition, there is a growing wealth of research
that suggests that changes in the weather have both direct and indirect influence on human
health and/or behaviour. One area of research that has been increasingly investigated is
that of excess seasonal mortality and morbidity, in particular during the winter, see, e.g.
Curwen (1991), Clinch and Healy (2000), Donaldson and Keatinge (2002), Hajat and Haines
(2002), and Healy (2003). Although it is rare for cold weather to kill people directly, cold
is indirectly responsible for increased mortality and morbidity through respiratory ailments,
notably bronchitis and pneumonia, and through cardiovascular ailments such as coronary
heart disease and strokes. This leads to an increase in the demand for hospital services dur-
ing periods of protracted cold weather. However, various disease conditions have sometimes
conflicting relationships with weather. For example, studies have shown that the incidence
of coronary heart disease is related to periods of both hot and cold weather (Hajat et al.,
2007; Bhaskaran et al., 2010) but the effect of weather on strokes is not clear (Cowperthwaite
and Burnett, 2011).

Severe air pollution, in addition to weather, leads to short-term increase in hospital admission
rates. In particular, high levels of particulate matter air pollution leads to higher number of
admissions of people suffering from chronic obstructive pulmonary disease (COPD), see, e.g.
Dominici et al (2006) and high levels of atmospheric ozone concentration leads to incresed
number of hospital admissions of pediatric asthma patients, see, e.g. Zhu et al. (2003). As
a result, while developing a forecasting model for the number of hospital admissions we also
include air pollution as explanatory variables.

The number of hospital admissions naturally varies with many seasonal variables, such as
the day of the week and school holidays. For example, typically more people are admitted
on a Monday than a Sunday during normal times (i.e. without an on-going epidemic or
major events such as closure of a nearby hospital). These seasonal effects along with many
characteristics of weather and their interactions are natural strong contenders for explaining
the variability of number of hospital admissions throughout the year. However, these rela-
tionships contain many confounders, for example, month and the daily average temperature
are highly associated and any analysis using both as explanatory factors will be problematic
to fit and interpret.

Accurate forecasting of hospital demand along with their uncertainties offers an indispensable
source of information on the demand for public health services. Large National Health
Service (NHS) hospitals often have long non-emergency demand for their services, and these
will be managed much more efficiently if accurate forecasts for the emergency demand for
short-term planning horizons, e.g. up to a week, are available. Even a small improvement
in the forecasting method has the ability to save millions of pounds annually because of the
huge size of their annual spend on these services. This is likely to reduce the, often, long
wait-list for hospital services demanded by non-emergency patients, thereby, improving their
experience and long-term survival rates.

Given so much importance and so many potential uses for accurate forecasting, it is only
natural to expect the hospitals to have access to a system of robust and well calibrated



forecasting method for their short term planning purposes. However, our experience in
working with the two large participating hospitals (Southampton and Cardiff) did not find
any mathematical or statistical model whatsoever. The operations departments in these
hospitals primarily use expert managerial judgments assisted by simple moving averages
that are adjusted, often, using the ad-hoc discretion of the managers, for seasonality. Due
to the link between influenza outbreak patterns and hospital admissions (see, e.g. Glezen
et al., 1982; O’Brien et al., 2000) a six week moving average is preferred to other short and
long-term moving averages. The averages are calculated separately for each day of the week
and are sometimes found to work reasonably well. However, the six week moving averages
(or in fact any other moving average), as forecasts, are not able to take into account variation
in number of admissions due to important covariates such as weather. For example, a sudden
cold-spell may only lead to a higher number of admissions next week and the moving average
cannot predict this sudden surge in demand because it has not yet seen one. Moreover,
as in any non-deterministic forecasting method, it is not possible to assess the associated
uncertainties of these forecasts. Without these uncertainties to hand, the managers are not
able to discover the true extent of the demand.

The main contribution of this paper is the development of an empirical model for short-term
forecasting of hospital demand based on the most important meteorological and seasonal
variables. The model, required to be simple to implement and interpret, provides accu-
rate forecasts under normal conditions, i.e., without any natural and human catastrophes,
throughout the year. Moreover, the model for admissions makes forecasts for number of ad-
missions categorised by sex and age-group of patients, so informing hospitals how better to
use resources. For example, current UK government regulations require that adult patients
must be admitted in single-sex wards; our model is able to provide forecasts categorised by
both sex and age group which will allow the hospitals to plan for their bed capacity much
better in line with the requirement. Furthermore, the daily total number of admissions and
their uncertainties are automatically obtained as a by-product of the fine level modelling
methods proposed here.

Forecasting using the daily demand model that includes past and current weather naturally
requires the future values of weather which are not yet observed. An easy solution here
is to pretend the forecasts as the observed values. However, this approach will naturally
underestimate the uncertainty in the demand forecasts. Our modelling innovation in this
paper takes care of this problem by developing a model linking the observed and forecasted
meteorological variables. This model, set in a hierarchical Bayesian framework, permits us to
propagate and assess the uncertainties in the forecasts for meteorological variables that are
being used to forecast the hospital demand. These methods are illustrated and the models
are validated using a running window of validation data spanning over the year 2010 from
the Southampton General Hospital in the United Kingdom. A smaller data set is also used
to confirm the substantive results from a moderately large hospital in Cardiff.

There has been some limited effort in the literature in developing a model for hospital
demand. Congdon (2000) develops a geographic model for patient flow by taking care of
patient demand, hospital supply and distance effects. Lowthian et al. (2012) study 10 year
trends in demands at an emergency department. Jones et al. (2002) consider forecasting the



daily number of occupied beds due to emergency admissions and finds that it is related to
air temperature data. However, none of these papers develop a detailed descriptive model
for daily number of admissions as is done in this paper.

The outline of the remainder of this paper is as follows. Section 2 provides a brief descrip-
tion of the data. In the modelling Section 3, a large number of explanatory variables are
considered to find the best model for hospital demand. Methods for forecasting using the
best model are discussed in Section 4. Section 5 develops the unified Bayesian hierarchical
model linking demand and meteorological forecasts. Section 6 validates the proposed meth-
ods using past hospital admission and meteorological data. Finally, Section 7 provides some
concluding remarks.

2 Data description

2.1 Admission Data and Demographic Variables

Individual hospital admission records, anonymised for confidentiality reasons, have been
obtained from two participating hospitals in this research project - Southampton University
Hospital Trust (SUHT) and Cardiff and Vale University Health Board (CVUHB). SUHT
serves a population of around 1.3 million people living in the Southampton and Hampshire
area in the south east of England. Owing to its size, it also provides specialist services (such
as cardiology and neurosciences) to more than three million people resident in the south
of England and the Channel Islands. CVUHB provides health services to a population of
around half a million in Cardiff and the Vale of Glamorgan in South Wales. In addition,
it provides specialist services (for instance paediatrics care and medical genetics) to the
wider population encompassing mid and South Wales, with a population of roughly one
million. The analysis is undertaken for both hospitals, but the main results are presented
for Southampton and similar results for Cardiff are omitted for brevity.

During the years 2008 and 2009, there have been approximately 94,000 non-elective admis-
sions to the Southampton hospital. Thus there are 127 daily admissions on average that vary
considerably by sex and age. It was found that there are more males than females admitted,
with there being 65 males and 62 females on average. The average age at admissions is
48 years, in comparison the average age of the UK population is 37 years (Office for Na-
tional Statistics, 2004). This is consistent with an ageing population since older people are
more likely to be hospitalised from age-related conditions such as cancer and cardiovascular
diseases.

The hospital operational management does not require the individual ages; instead they
work with age split into three groups: paediatrics (0-17 year olds), adults (18-74 year olds),
and elderly (aged 75 and above). Therefore, we shall also use these groupings throughout
the paper, although it is possible to change the age-groupings according to the needs of
individual hospitals. Figure 1 provides the boxplots of the number of admissions for the three
age groups further categorised by the day of the week. All three age groups show similar



patterns: the number of admissions is much higher during the weekdays than weekend with
Mondays receiving the highest numbers of admissions on average.

2.2 Meteorological Data

Daily meteorological data from several sites covering the hospital catchment area have been
obtained from the UK’s national meteorological service, the Met Office. Ideally, the observed
meteorological data where the patients live should only be meaningful for explaining weather
related illnesses. However, both the participating hospitals (Southampton and Cardiff) draw
in patients from surrounding counties, and even across the country, as they are specialist
treatment centres. Moreover, the individual hospital records did not include the postcodes of
many patients as many of those were unknown and/or many patients were homeless. That is
why we assign the meteorological data for the site covering the actual location of the hospital
for all the admissions. This simplification can somewhat degrade the effect of weather vari-
ables on hospitalisation, but, bearing in mind that our interest is in developing an aggregated
hospital level model for daily number of admissions, this seems to be the best alternative
compared to other options such as taking a national average of the meteorological variables.
It is also reassuring that more than 80% of the total number of admissions come from a
circular area of radius ten kilometres with the hospital at the centre. The meteorological
data used in modelling will be correct for these patients.

The effect of temperature on the number of daily admissions categorised by the three age
groups is summarised in Figure 2. For all three age groups, on average the number of admis-
sions increases as temperature decreases, although it is worth mentioning that cold weather
is not the only factor for hospital admissions as we consider different seasonal variables in
the next subsection.

Our analysis also examined the effect of other meteorological variables such as average rel-
ative humidity and pressure. However, none of those additional variables explained any
further variability in the admission data and are omitted henceforth. We have also exam-
ined the effect of severe weather events such as floods, snow and gales but none of those
explained any further variability in the data. Lastly, we have considered air pollutants such
as ozone concentration levels, particulate matter, sulphur and nitrogen dioxides on the num-
ber of hospital admissions in addition to temperature. However, many exploratory analyses
conducted to assess their effect on admission did not find any meaningful strong relationships
at this aggregated level and, as a result, those variables are not considered any further in this
paper, although it is clear that these variables will have significant effect on disease specific,
such as COPD and asthma, admission rates as mentioned in the Introduction.

2.3 Seasonal Data

Previous analysis makes it clear that the day of the week influences the number of admissions
very strongly (Figure 1). It also turns out that the number of admissions is also affected by
whether it is a bank holiday. In the UK, there are additional periods when schools are closed,



either due to there being a half or end of term. There are two bank holiday Mondays, at the
beginning and end of May, and one at the end of August. Also, there are public holidays
over Easter (Good Friday and Easter Monday), Christmas (Christmas Day and Boxing Day)
and New Year’s Day. In addition, there are school closures for a week during the half-terms
in February, June and October. Schools are also closed for approximately two weeks around
Easter, five weeks during July and August and another two weeks during the Christmas and
New Year holiday period.

We investigated the effect of holidays on admissions, and found that although there were
slight peaks in admissions during Bank holiday weekends, using school holidays showed the
effect more clearly. The number of daily admissions drops considerably for the paediatrics
and adults but not for the elderly patients during the school holiday periods, see Figure 3.
This could possibly be explained by the fact that during school holidays, families with school-
going children spend vacations often away from their homes.

The numbers of admissions of the paediatrics and elderly age groups, unlike those in the
adult age group, are higher during the winter months of November to March compared to
those during the other months (see Figure 4). As is expected, Figure 4 also reveals that
the average temperature is lower during the winter months than the summer months. That
leads to strong collinearity between the month, treated as a factor, and the continuous
explanatory variable temperature in our model for the number of admissions. However, of
primary interest here is to forecast dis-aggregated daily number of admissions and not overall
monthly totals. Hence, we do not include month as one of the explanatory factors and build
our models with daily temperature instead. Seasonal information, such as public and school
holidays, contained in the variable month, already enters our model explicitly through the
seasonal variables described in this section.

3 Model Building and Selection

The response variable to model is the number of daily admissions classified by three age
categories and sex. Our main aim here is to build a good explanatory and a predictive model
based on the available explanatory variables, i.e. the demographic, meteorological and the
seasonal variables. The total number of such variables, their interactions and their lagged
effects is very large and as a result model building, fitting and selection using multivariate
time series models are computationally prohibitive and are not pursued here. Although
it is certainly possible to experiment with multivariate and independent univariate time
series models with a small number of seemingly important explanatory variables such as
temperature. Instead, we adopt multiple regression models and use model selection criteria
such as the Akaike Information Criteria, AIC (Akaike, 1974) and the Bayesian Information
Criteria, (BIC) (Schwartz, 1978) to select the best model among all the competing models.
In passing, we note that an alternative to the model selection approach here will be Bayesian
model averaging for forecasting (Raftery et al., 2005), which may be investigated in futute.

Often, the first step in regression modelling is selecting the scale of the response variable.
Here the response variable, the daily number of hospital admissions, categorised by age and
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sex, is a discrete count variable and can theoretically take the zero value — a reason why
we avoid the log transformation. The square-root transformation stabilises the variance for
count data for which the Poisson distribution is appropriate, see e.g. Box and Cox (1964).
Hence, we adopt this transformation that also encourages symmetry and normality of the
residuals. Indeed, the residuals under the square-root transformation were much better
behaved than those when data were modelled on the original scale. However, we report all
the predictions and their uncertainties on the original scale for ease of use and interpretation
by the hospital managers. This allows us to avoid implementing a Poisson generalised linear
model that only complicates model fitting but does not provide improved fit and forecasting
as evidenced by our analyses, which have been omitted for brevity.

The models are developed using the preceding one year of daily data to capture the effects
of seasonality in temperature, school holidays and other variables. Of course, accuracy can
be increased by modelling data further in the past. However, one of our main task here
is to minimise the amount of data needed to train the models without sacrificing forecast
accuracy. Modelling using one year of past data was found to be the best option under these
considerations. In Section 6 we provide evidence of accurate forecasting based on several
data sets each for a running window of one year.

We define the model as follows. Let Y;;; denote the number of admissions on the square root
scale for the ith sex (i = 1 for female and 2 for male), jth age group (j = 1,2, 3 respectively
for paediatrics, adult and elderly) and ¢th day where ¢t = 1,...,365(= T') corresponding
to one year’s data for modelling. We also introduce the matrices Xy;, Xo; and Xs;, each
of appropriate order, that collect the demographic, meteorological and seasonal variables,
respectively. In our modelling X;; contains the age and sex information. The meteorolog-
ical variables, Xy, contain a large number of variables pertaining to the weather (such as
temperature, humidity, rainfall and wind speed) and air quality (such as the levels of carbon
monoxide, ozone and particulate matter in the atmosphere). Since there is often a lag be-
tween weather conditions and mortality /morbidity we also looked at the lagged daily values
up to three weeks. The seasonal data, Xg;, consist of temporal information including the
day of the week and month, and other seasonal information such as the season and whether
or not it was a school holiday or bank holiday.

The most general form of our regression model is:
Yije = 9(Xae, Xog, Xat) + €5t (1)

fori=1,2and j=1,2,3and t =1,...,T, where g(-) is a general regression function that
may include all the variables, Xy;, Xo;, X3; and their first and second order interactions, and
€ij¢ is the error term. The general model (1) constitutes a huge number of possible regression
models including all the demographic, meteorological, and seasonal variables. We assume
that these variables are able to take care of the temporal dependence in the daily data and
hence we assume the errors, €;;; to be independently and identically distributed as Gaussian
random variables with mean 0 and unknown variance 2. This independence assumption
will be diagnosed by performing appropriate residual analyses, see below.

These multiple regression models, being non-Bayesian, facilitate faster computation so that
the initial screening can be performed within a reasonable amount of computing effort and
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time. Bayesian modelling of the data, especially for inference and forecasting purposes, pro-
ceeds with the chosen explanatory variables as is a common practice in the literature, see e.g.
Sahu et al. (2007) for an ozone concentration modelling problem with many meteorological
variables as the explanatory variables.

An extensive model search was performed using many step-wise model selection procedures
using the BIC criterion for the initial screening of the explanatory variables. In all investiga-
tions, the age-group turns out to be the most important explanatory factor, followed by sex,
day of week, the minimum temperature last week and mean daily temperature. In addition,
the model with the interaction terms age-sex and age-minimum temperature last week was
found to be the best according to the BIC criterion. The interaction terms improved the
descriptive capability of the model significantly and the multiple R? increased from 76.50%
for the main effects only model to 80% for the interaction model fitted to the Southampton
data. For the Cardiff data set the multiple R? improved from 85.35% to 90% showing a very
good model fit.

As in any regression modelling, an investigation was taken into the behaviour of the residuals
using diagnostics plots. Two most important diagnostic plots, viz. the Anscombe residual
plot and the normal probability plot did not show any unusual patterns that could suggest
any substantial departure from the model assumptions. This was to be expected since the
data had already been transformed to stabilise the variance and to encourage symmetry.

A further important issue in the residual analysis here is to check for serial correlation since
the modelled data are temporally correlated as mentioned above. Toward this end we have
obtained the lagged residual plots (shown in Figure 5), plotting 7;; against r;;;_; for each
of six combinations of ¢ and j corresponding to two levels of sex and three levels of age
where r;;; denotes the residual corresponding to €;;;. None of these plots showed any trend
or pattern and all of them showed a random scatter. Thus the independence assumption in
the model is deemed to be justified and henceforth we proceed with this model.

The best fitted regression model is given by
Yije ~ N(Mijta 02)7 (2)
where
fige = Bo + i + 5 + h(t) +w(t) + Ay + Aang + (a0 7)ij + (7 1)

Here 3y is the intercept term; «; is the additional intercept for sex and it is zero for females;
7; is the effect of the jth age group and it is zero for paediatrics; h(t) is the school holiday
effect and it is zero for non-school holidays, w(t) is the day of the week effect and it is zero
for Sundays; A, is the coefficient of mean temperature m; on day t; A\, is the coefficient of
minimum temperature n; on day ¢ — 7 i.e. a week before; (« : 7);; is the age-sex interaction
term; and (v : ng); is the age and minimum temperature last week interaction term. In
the two interaction terms, the parameter value is constrained to be zero when any of the
factors is at their first level, e.g. (v : n;); = 0. Thus, the model is described by 18 regression
parameters [y, aa, Y2, V3, one parameter h(t) when the day ¢ is not a school holiday, six w(t)
for the six days of the week (Monday-Saturday) w(t) = 0 when ¢ corresponds to a Sunday;
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(v y)ag,(a s 7y)as, (7 :my)2 and (7 : ny)s. Collectively we denote these 18 parameters by 3
and denote the regression model (2) by the notation

Y=X3+¢e€

by stacking the individual Y;;;’s and the €;;’s in any suitable order. Here X denotes the
resulting design matrix.

Table 1 provides the parameter estimates of the best model fitted separately to the Southamp-
ton and Cardiff data. The main effects, due to sex, day of the week, and holiday, are broadly
similar for the models fitted to data from two hospitals, pointing to perhaps a broad socio-
economic phenomenon. However, the Cardiff hospital admits a significantly smaller propor-
tion of elderly than paediatric patients. Daily mean temperature and minimum temperature
last week are both significant for the Southampton data, but they are not significant for the
Cardiff data. Nevertheless, the interaction effect of age group and temperature last week is
significant for both the data sets. Hence, we keep this effect and the corresponding main
effects in the model. We keep the daily mean temperature in the model for Cardiff data for
the sake of convenience in having to fit and forecast one model for both the hospitals.

4 Forecasting

Recall that our main objective is to provide forecasts of number of admissions up to seven
days in advance. According to the best model (2), the forecast distribution of the number of
admissions, looking ahead at day T', for k days in advance, k = 1,...,7 has the mean given
by

pijrer = Bo+ai+7+ (T + k) +w(T + k) + Anmpr+ Anggr+ (o0 )i+ (7 - nran);- (3)

The plug-in approach, under classical inference methods, simply replaces the parameters by
their estimates in the above forecasting mean and reports the forecast by the corresponding
estimate fi;;71,. The forecast standard error can also be calculated using standard methods.

There is a problem, however, when forecasting in a typical real time situation, exactly where
we envision the primary use of these models. Calculation of the forecasts will require us to
know the observed mean temperatures for the future days, T+k, for k = 1,...,7. Obviously,
this is impossible. Note that this problem does not arise for the minimum temperature last
week, npyp, since npyg is the minimum temperature on day 7'+ k& — 7 which has been
observed already, for all k =1,...,7 at day T. Returning to the problem, a straightforward
solution is to replace the mp; by the k-day ahead forecasted temperature, f}k) say, provided
by the Met Office on current day 7. However, as can be expected there will be differences
between the observed and the forecasted temperatures, and, usually, uncertainty in the
forecasted temperatures f}k) will increase for increasing values of k. These uncertainties
in the forecasted temperatures must be propagated into the forecasts for the number of
admissions using sound methodologies.



The estimation of the uncertainties in the forecasted temperatures and their refinements is
possible with the help of past observed data for a number of days and the forecasts that were
made for them. Suppose that we have the observed mean temperatures, m; and its k-day
ahead forecast ft@c made at day t —k foreach k =1,...,7and t = 1,..., L days. The dates
for these data do not have to coincide with the dates for the admission data, and as a result
L does not have to be equal to T'. This is an auxiliary data set that will be used to refine
the forecasts and to propagate the uncertainty in these forecasts into the admissions model.
In fact, in our hierarchical modelling we will assume that these data are independent of the
admissions data and the meteorological data used in the model (2).

The forecasts of the temperature, being output of numerical computer simulation model, are
sometimes biased and a simple bias correction model is given by:

me = a, + b S+t t=1,.. L, (4)

for each of £k = 1,...,7, where we assume that the errors ngk) ~ N(0,7?) independently.
The parameters a; and b, measure the additive and the multiplicative biases in the forecast

t(ﬁ)k for the observation my, see e.g. Fuentes and Raftery (2005) regarding the biases in a
computer model. The parameter 72 corresponds to the uncertainty in the residuals and may
increase with k.

Our proposal here is to fit model (4) for each k separately, possibly with available independent
past data, and thereby to estimate a; and by along with their uncertainties. Once this
modelling has been performed, we can replace the unobserved mr.; by the refined forecasts

mT+k:&k+ka¥€)> k=1,...,7 (5)

in the admission forecasting model (3), where a; and I;k denote the estimates of a; and by.
This method, however, will not incorporate the uncertainties in the parameter estimates ay
and by into the forecasts for the number of admissions. In fact, it is not straightforward
to propagate these uncertainties in a coherent manner using classical inference methods.
Instead, we propose to perform this task using a Bayesian hierarchical model in the next
section.

5 Hierarchical Bayesian Modelling

5.1 Model Specification

At the top level of the Bayesian hierarchy, we continue to assume the admission model (2),
and in the following discussion use the simplified notation Y ~ N(Xg3,02I) where [ is
the identity matrix of appropriate order. This Bayesian model is completed by assuming
suitable prior distributions for 3 and 2. For 3 we assume the default vague prior where each
component is assumed to be independently normally distributed with mean 0 and a large
variance 10%. We assume that the precision parameter 1/0? follows the gamma distribution
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with parameters v > 0 and ¢ > 0 where the gamma distribution has mean v/£. In our
implementation, we choose v = 2 and £ = 1 to have a proper prior specification that avoids
the pitfalls of improper prior distributions, see e.g. Sahu et al. (2007). This prior distribution
will be assumed for all variance parameters in the modelling development below.

Independently of the admissions model we assume model (4) for the observed temperatures
based on the forecasts. As in the above paragraph, we assign independent normal prior
distribution with mean 0 and variance 10* for each of the parameters a; and by, for k =
1,...,7. The parameters 1/77 are given independent gamma prior distributions each with
hyper-parameter v and &.

The joint posterior distribution of all the parameters 3,02, ax, by, and 72 for k = 1,...,7,
denoted by 0 is obtained from the above specifications using standard methods, the details
are omitted. It is important to note that there is no possibility of feedback from the tem-
perature observation and forecast model (4) to the admission model (2) since the posterior
distributions of the parameters under each model are calculated independently.

Table 2 provides the Bayes estimates of ay, by and 77, for k = 1,...,7 fitted to the observed
temperature and forecasts data for Southampton for the 365 days in the year 2010. The
estimates show that the 1-3 days ahead forecasted temperatures are significantly upwardly
biased, perhaps due to the small data set from a single site that has been used for this model
fitting. The bias is not significant for the 4-7 days ahead forecasts. Moreover, as expected
there is no significant multiplicative bias since the 95% credible intervals for b, all include
the value 1. The estimates of the variances, 72,k = 1,...,7 are expected to increase with
k, but, on the contrary, a dip is observed for the 3-day ahead forecasts. This is explained as
follows. The forecasts for days 1 and 2 come from the Met Office’s Global Unified Model and
are deterministic forecasts. The forecasts for days 4 and beyond come from the European
Community’s model ensemble mean. The forecast for day 3 is a mixture (blend) of the two
sources of forecasts. It has been found that the blending of models provide much better
forecasts, see e.g. Evans et al. (2000) and Bowler et al. (2008).

5.2 Forecasting

The adopted Bayesian paradigm is particularly attractive for the task of forecasting the
number of admissions. Here each forecast will have a posterior predictive distribution that
is derived as follows. First, note that the forecast distribution for Y;;;, conditional on the
parameters, will be N (p;j74k, 02) where ;7 is given by (3). The mean p;jr4x depends on
the future temperature observation mp, which is specified, according to (4), to be:

mpsn ~ Nlag + b fP 72), k=1,...,7 (6)

conditional on the parameters ay, by, and 77.

Second, the posterior estimates of ag, by and 77 along with the Met Office provided f}k)
will enable computation of the posterior predictive distribution of mr,; given the past
temperature and forecast data. This posterior predictive distribution of my will then need
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to be combined with the posterior distribution of 3 and o2 to obtain the posterior predictive
distribution of Y;;r4 given all the past admission, meteorological and seasonal data.

A quick plug-in approach, that has an obvious analogue in classical inference methods, is to
use the posterior means of a5 and b, say a, and by respectively, in (5), and then proceed
with the admission forecasting model (3) replacing my,x by Mmry,. This method, however,
will not be able to assess the uncertainties in the forecasts and that is why we adopt the
following Monte Carlo simulation method.

The posterior predictive distribution of the forecast Y;;r is obtained by composition sam-
pling based on Markov Chain Monte Carlo (MCMC) methods as follows. We first obtain
the samples 0(5), s=1,...,5 for a large value of S from the joint posterior distribution of
given all the data. Then for each s we obtain

mgf—)kk ~ N (agts) + bl(:)ft(k)a le(S)> 7k = 17 s 77-
At the next step we obtain
s) (s)
Yig‘TJrk ~ N (Mz’jT+k=‘72(s)> k=1,...,7

(s)

where p;.7, ;. is obtained from (3) after replacing the parameters by their simulated values

in 0(5), and mypy. by mgi)rk Once, we have the samples Y;;S}Jrk, s =1,...,5 we transform
these back to the original scale (here by simply squaring each value). The MCMC samples
on the original scale are averaged to estimate the forecast mean of Y;;r.x. The samples are
also used appropriately to obtain the standard errors of the averages and the 95% forecast
intervals. In our implementation we take S = 5000 after discarding the first 1000 iterates,
although MCMC convergence is not an issue at all. Moreover, the computations are fast

because of conjugacy.

6 Analysis and Forecast Validation

The success of the proposed methodology is to be judged wholly by the performance of the
validation forecasts for hold-out data spread over an entire year — so that the model can be
trusted for a whole calendar year that includes all the seasons. However, it is also clear that
the considered year may miss severe weather, by chance, and additional experimentation
may be necessary. In fact, this is recommended in the discussion Section 7 where it is also
emphasised that the model be re-calibrated with most recent data as much as possible.

Our validation method with one year’s data requires us to use a moving window of one
year’s data for modelling and then comparing the forecasted number of admissions with the
observed ones, categorised by the six age-group and sex combinations, for the next seven
days. At each day, the previous year’s data are used to fit the model, and then we predict
ahead for the next seven days. Thus, when the moving window advances by just a day,
ideally, we need to compare the 15,330 (= 365 x 6 x 7) forecasts with the 2,190 (= 365 x 6)
observed values.
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However, for the Southampton hospital we only have the full meteorological data, i.e. both
the observed and forecasted temperatures, for the year 2010. Hence, the last day we stop
data collection is 24th of December, so that we have all the comparison data available for
seven days ahead until December 31. As a result, our validation comparisons are based on
actual data from 359 days.

For the Cardiff data set, we do not have the forecasted meteorological data but have the
observed temperature data and the admissions data from 25th April 2010 to January 31,
2012. Hence, for forecast validation purposes, the first forecasting window starts on April
25, 2011 (allowing for previous one year’s data for modelling), and as a result we compare
forecasts for 278 days (from April 25, 2011 to January 31, 2012) with the corresponding
observed ones.

For both hospitals, we compare the following three forecasting methods. The first one is
the persistence forecast, which is simply the most recent observation, and in our application
refers to the number of admissions a week ago. The persistence forecasts, simplest to obtain,
present a baseline method of forecasting and facilitate comparison. The second method uses
a six-week moving average method, similar to that currently used by the hospital operations
departments. The third forecasting method treats the observed temperatures as the forecasts
temperature, and thus ignores the inherent uncertainty associated with the forecasts.

We compare the above three methods with the the proposed full Bayesian method that takes
care of the uncertainties in the forecasts. However, the temperature forecasts for the Cardiff
hospital are not available for the entire period, and hence we do not consider the last method
for the Cardiff data set.

In this paper, to compare the above forecasting methods, we use four key summary criteria:
the root mean square error (RMSE), the mean absolute error (MAE), the relative bias (RB),
and the nominal coverage. A good forecasting method should have low RMSE and MAE
values, which are on the original unit of the data. The RB should be close to zero for
forecast unbiasedness. Lastly, the achieved coverage should be close to its true value. This
last criterion is very stringent as it not only requires the central tendency of the Bayesian
forecast distribution to be correct, but also demands their correct uncertainty assessment,
see e.g. Gneiting et al. (2007).

We now consider validation of the model using data for the whole year, for both the hospitals.
We compare the predictive performance of the forecasted number of admissions for our
proposed method against the six week moving average and the persistence. Tables 3 and 4
provide the RMSE, MAE and RB for all three methods of forecasting. In addition, the
nominal coverages of the 95% forecast intervals for the proposed Bayesian model are shown;
such coverages are not meaningful for the persistence forecasts and six-week moving averages.
As expected, the persistence method fares worst in terms of the RMSE, MAE and RB. This
is not surprising since it is a fairly naive forecasting approach and fails to account for any
trends in admissions, unlike the moving average and the proposed Bayesian model. Further,
the first three criteria show that, overall, the Bayesian methods are uniformly better than the
six-week moving average method. In particular, the relative biases of the proposed methods
are almost half of that for the six-week moving averages. Typically, there is almost 3-6%
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reduction in the RMSE and MAE as well. This reduction in RMSE and MAE is similar for
both Southampton and Cardiff hospitals.

Note that the RMSE for the Bayesian method when observed temperatures are plugged-in
does not increase with the forecasting step (number of days). This is expected since the
model (2) is not a time-series model, as mentioned in Section 3. However, as expected both
the RMSE and MAE increase when the forecasted temperatures are used instead of the
observed temperature. The RMSEs and the MAEs for the forecasted temperature method
are close to those for the observed temperature method which shows that the forecasts and
the observed temperatures are also close.

Figure 6 provides a plot of the RMSE for each day during the entire validation period for
each of the two hospitals. As expected, both the six-week moving average forecasts and the
model based forecasts, using observed temperature data, outperform the persistence method.
According to the RMSE, the model-based method outperforms the six-week moving average
method on the vast majority of days. Remarkably, the top panel of this figure, for the
Southampton data, also reveals that a dip in the temperature graph is followed by a dip in
the RMSE for the model based method and the dipped RMSE values are smaller than the
same for the six week moving average method. The same phenomenon is also seen in the plot
for Cardiff data (bottom panel) except for the first half of the month of November, which is
perhaps due to the effect of some unusual events, e.g. closure of a nearby hospital, during
the time at Cardiff. This analysis demonstrates that the proposed model based method is
likely to be more accurate during rapid temperature changes, typically during the onset of
cold, and highly variable winter weather.

The nominal coverages, both overall and the ones broken down by the number of forecasting
days ahead, of both the methods are very near to the true value of 95%. This shows that the
forecasts using the proposed methods have the correct amount of uncertainties associated
with them. It is also remarkable that these measures are based on validation data spanning
over a year, hence the proposed model and the forecasting methods are likely to hold true
throughout the year.

The lengths of the 50% and 90% forecast intervals are shown as boxplots in Figure 7 for both
of the proposed methods. As expected, the forecasted temperature method has slightly more
variability in length than the observed temperature method, thus some intervals under the
forecasted temperature method will be wider than the ones under the observed temperature
method.

The above overall analyses are followed up by more detailed analysis where the forecasts
are broken down by the day of the week and whether it is a school holiday or not, see
Figures 8 and 9. As in the previous overall case, the two figures show that the RMSE
and MAE are higher for the forecasted temperature method than the observed temperature
method. More importantly, as can be expected, the models find it easier to forecast for
Saturday and Sunday than for the weekdays. However, there seems to be no large differences
in all four criteria values for the weekdays and also for weekends. There is no pattern either
in the nominal coverages or the relative biases for the seven days further classified by school
holiday. These results show the overall stability of the forecasts.
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7 Discussion

This paper shows that forecasting of number of hospital admissions is significantly improved
by incorporating meteorological information. A parsimonious model for number of daily
admissions is obtained by including the mean temperature of the day and the minimum
observed temperature last week at a site near the hospital. The model is thus able to adjust
to both immediate and past changes in temperature, and has been shown to perform par-
ticularly well when there are sudden changes in temperature which may occur, for example,
during the onset of cold weather during the autumn. The model also includes two most
important demographic variables: age-group of patients and their gender and thus is able
to produce forecasts of number of admissions for each of the sex and age group categories.
The two most important seasonal variables, day of the week and whether it is a school
holiday, are also seen to be significant in the final model that includes interaction between
minimum temperature last week and age-group. This is intuitively justified by the fact that
the minimum temperature has a different effect on different age groups.

A unified Bayesian hierarchical model has been developed for the short-term forecasting
purposes. The hierarchical feature of the model enables us to propagate the uncertainties
in the meteorological forecasts into the overall uncertainties in the forecasts for number of
admissions. An extensive investigation using several forecast validation criteria shows the
superiority of the methods over the simple moving average method of forecasting often used
by the hospital managers. These results have been observed for admissions data for both
the participating hospitals.

The Bayesian model can be extended to provide estimates of daily admissions by specific
ailments as well. This has been investigated, but results are not reported because of the
presence of a large number of zero counts in the data finely categorised by age-group, sex
and ailments. A possible extension is to pool the data from different hospitals thereby
avoiding the overwhelming number of zero counts. A hospital specific random effect can
be included to account for differences between hospitals. Another possibility is to model
aggregated data at a lower level temporal resolution, e.g. the weekly counts instead of the
dailies.

Returning to the cost-saving point made in the Introduction, it is anticipated that the
improved forecasts will enable hospitals to react to predicted changes in emergency demand
and then to adjust their elective schedules more efficiently. Indeed, anecdotal evidence
suggests this to be the case for the two participating hospitals. We expect to more formally
capture cost-benefits savings through further planned pilots with an increased number of
hospitals over the winter 2012/13.

The proposed method is only designed to work under normal operating circumstances. It will
not be able to cope with catastrophes caused either by nature or human. The model is also
not likely to work unchecked and automatically for long periods of time. It is recommended
that the model is re-calibrated with most-recent data as frequently as possible, e.g. monthly,
so that recent changes in admission practices and any systematic errors are dealt with in a
regular time interval. The auxiliary observed temperature and forecast data are also need
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to be updated so that any improvement in weather forecasting is fed to the demand forecast
model. Although the model has been shown to produce good forecasting results for the two
participating hospitals, it is recommended that a fresh model search, as done in Section 3, is
performed for each hospital so that any local effect is taken into account in the best possible
way.
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Table 1: Parameter estimates for the best fitting model for the Southampton and Cardiff hospital data.
The model R-squared values are 0.806 for Southampton and 0.910 for Cardiff, with residual standard
errors of 0 .5313 and 0.5477, respectively. For Southampton, the AIC=3464.11 and BIC=3566.56; while
for Cardiff, the AIC=3603.77 and BIC=3706.22.

Southampton Cardiff

Parameter Estimate 95% CI Estimate 95% CI

Intercept 3.293 (3.189, 3.398) 4.389 (4.196, 4.439)
Male () 0.576 (0.499, 0.653) 0.359 (0.279, 0.439)
Adult (72) 2.380 (2.260, 2.501) 3.169 (3.175, 3.435)
Elderly (v3) 0.903 (0.782, 1.023) ~-1.676 (-1.726, —1.466)
Monday 0.446 (0.362, 0.529) 0.664 (0.578, 0.751)
Tuesday 0.316 (0.233, 0.400) 0.740 (0.653, 0.836)
Wednesday 0.377 (0.293, 0.460) 0.703 (0.617, 0.789)
Thursday 0.302 (0.219, 0.385) 0.763 (0.677, 0.849)
Friday 0.348 (0.265, 0.432) 0.806 (0.719, 0.892)
Saturday -0.042  (-0.125, 0.042) 0.170 (0.084, 0.256)
Holiday —-0.012 (-0.169, —0.066) —-0.095 (-0.148, —0.042)
Daily Temperature (\,,) —0.011 (-0.018, —0.005) 0.014  (-0.033, 0.000)
Temperature Last Week (\,) -0.015 (-0.024, —0.006) -0.034  (-0.022, 0.016)
Male:Adult ((a: 7)a2) -0.331 (-0.440, —0.222) -3.749 (-3.861, —3.636)
Male:Elderly ((cv : 7y)23) -1.149 (-1.258, —1.040) —-0.680 (-0.793, —0.568)
Adult:Temp. Last Week ((7y : ny)2) 0.015 (0.004, 0.026) 0.032 (0.014, 0.041)
Elderly:Temp. Last Week ((7y : n;)3) 0.004  (-0.007, 0.015) 0.023 (0.008, 0.035)
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Table 2: The Bayes estimates of parameters in the temperature forecast model, ay, by and 7‘3, for

k=1,...,7, with 95% credible intervals.

2

day Qe bk Ty,
Estimate 95% CI Estimate 95% CI Estimate 95% CI

1 110 (-1.48, 0.91) 101 (0.98, 1.04) 2.7 (1.95, 2.65)
2 -1.16 (—1.46, —0.86) 1.01  (0.98, 1.04) 241 (2.07, 2.81)
3 057 (-0.82, 0.33) 103 (1.00, 1.05) 179 (1.53, 2.09)
4 0.11  (-0.16, 0.57) .02 (0.99, 1.05) 232 (1.99, 2.71)
5 0.18  (-0.12, 0.47) 1.0 (0.98, 1.05) 2.82 (2.43, 3.31)
6 0.19 (-0.18, 0.55) 1.02  (0.98, 1.06) 4.16 (3.57, 4.86)
7 0.04  (-0.40, 0.46) 1.03  (0.98, 1.08) 5.48 (4.70, 6.41)

Table 3: The RMSE, MAE, and RB of the forecasts made by the four methods, for the Southampton
data. The nominal coverages of the 95% forecast intervals are also provided for the proposed model

using observed and forecasted temperatures.

1day\ 2day\ 3day\4day\ 5day\ 6day\ 7day\ Overall
Root Mean Squared Error (RMSE)
Persistence | 6.453 | 6.450 | 6.452 | 6.456 | 6.463 | 6.462 | 6.461 6.457
Six Week Moving Average | 5.094 | 5.094 | 5.095 | 5.091 | 5.096 | 5.098 | 5.108 5.097
Observed Temperatures | 4.827 | 4.830 | 4.838 | 4.821 | 4.840 | 4.854 | 4.859 4.838
Forecasted Temperatures | 4.832 | 4.841 | 4.923 | 4.994 | 5.034 | 5.221 | 5.268 5.019
Mean Absolute Error (MAE)
Persistence | 5.023 | 5.026 | 5.029 | 5.033 | 5.038 | 5.035 | 5.038 5.033
Six Week Moving Average | 3.961 | 3.961 | 3.960 | 3.958 | 3.962 | 3.965 | 3.972 3.963
Observed Temperatures | 3.785 | 3.790 | 3.800 | 3.782 | 3.795 | 3.805 | 3.805 3.795
Forecasted Temperatures | 3.780 | 3.797 | 3.845 | 3.915 | 3.949 | 4.056 | 4.117 3.923
Relative Bias (RB)
Persistence | 0.075 | 0.075 | 0.076 | 0.077 | 0.077 | 0.076 | 0.077 0.076
Six Week Moving Average | 0.079 | 0.078 | 0.079 | 0.080 | 0.079 | 0.0793 | 0.080 0.079
Observed Temperatures | 0.042 | 0.042 | 0.043 | 0.043 | 0.044 | 0.044 | 0.045 0.043
Forecasted Temperatures | 0.044 | 0.047 | 0.037 | 0.041 | 0.038 | 0.049 | 0.043 0.042
Nominal Coverage (95%)
Observed Temperatures | 96.24 | 96.05 | 96.10 | 96.19 | 96.15 | 96.24 | 96.15 96.16
Forecasted Temperatures | 96.05 | 96.43 | 96.06 | 95.58 | 95.36 | 94.94 | 94.48 95.57
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Table 4: The RMSE, MAE, and RB of the forecasts made by the four methods, for the Cardiff data.
The nominal coverages of the 95% forecast intervals are also provided for the proposed model using

observed temperatures.

1day\ 2day\ Sday\ 4day\5day\ 6day\ 7day\Overall

Root Mean Squared Error (RMSE)

Persistence | 7.299 | 7.529 | 7.247 | 7.515 | 7.595 | 7.583 | 7.369 7.449

Six Week Moving Average | 5.722 | 5934 | 5.858 | 5.989 | 5.827 | 5.986 | 5.715 5.863
Observed Temperatures | 5.782 | 5.844 | 5.865 | 6.134 | 5.772 | 5.672 | 5.580 5.809

Mean Absolute Error (MAE)

Persistence | 5.505 | 5.600 | 5.460 | 5.610 | 5.660 | 5.691 | 5.526 5.579

Six Week Moving Average | 4.205 | 4.350 | 4.373 | 4.429 | 4.410 | 4.486 | 4.231 4.355
Observed Temperatures | 4.268 | 4.350 | 4.379 | 4.488 | 4.318 | 4.255 | 4.169 4.318

Relative Bias (RB)

Persistence | 0.051 | 0.077 | 0.074 | 0.075| 0.105 | 0.085 | 0.059 0.075

Six Week Moving Average | 0.065 | 0.082 | 0.077 | 0.067 | 0.098 | 0.088 | 0.058 0.077
Observed Temperatures | —0.028 | —0.015 | -0.013 | -0.023 | 0.002 | -0.008 | —-0.030 | — 0.017

Nominal Coverage (95%)
Observed Temperatures | 95.26 | 94.66 | 95.38 | 95.72 [ 9544 | 95.74] 9592 | 95.31
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Figure 1: Boxplots showing the number of admissions by day of the week, left panel is for paediatrics,
the middle panel is for adults and the right panel is for the elderly age group.
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Figure 2: Multiple time series plots of number of admissions (axis on the left hand side) and temperature
(axis on the right hand side) during the two years 2008-9. The left panel is for paediatrics, the middle
panel is for adults and the right panel is for the elderly age group.
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Figure 3: Boxplots contrasting the number of admissions over school holiday and non-holiday periods
during 2008-9, left panel is for paediatrics, the middle panel is for adults and the right panel is for the
elderly age group.
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Figure 4: Boxplots showing the number of admissions by month, left panel is for paediatrics, the middle
panel is for adults and the right panel is for the elderly age group. The monthly average temperatures
are also plotted as solid lines in each of the plots. The axis for the temperature is on the right hand

side.
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Figure 5: Plots of the residuals 7;;; against the lagged residuals r;;;—1, for i = {Female, Male} and
j = {Paediatric, Adult, Elderly} admissions. The top panel is for females and the bottom panel is

for males.
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Figure 6: RMSE of three forecasting methods over the entire validation periods for the two hospitals,

with mean temperature superimposed.
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Number of Admissions

Figure 7: Boxplots of the lengths of the 50% and 90% forecast intervals.
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Figure 8: Lineplots showing the RMSE and the nominal coverage of the 95% forecast intervals cate-
gorised by the day of the week; the left panel is for days that fall during the school holiday periods and the
right panel is for the other days. The symbol ‘o’ represents the forecasts using observed temperatures,
and '+’ represents the forecasts using the forecasted temperatures.
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Figure 9: Lineplots showing the MAEs and the RBs categorised by the day of the week; the left panel
is for days that fall during the school holiday periods and the right panel is for the other days. The
symbol ‘0’ represents the forecasts using observed temperatures, and ‘+' represents the forecasts using

the forecasted temperatures.
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