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SUMMARY

Statistical methods are now an essential part of the archaeological inference making
process. Nowhere is this more important than in the analysis and interpretation of
chronological data, especially when information from several sources must be drawn
together. Different statistical models may, however, provide widely different interpreta-
tions of the same data. Thus it is often possible to make conflicting re-constructions of
archaeological past using different models.

Bayesian predictive model choice criteria can be used as possible solutions to this
problem. A particular advantage of Bayesian techniques lies in their ability to compare
widely different models based on different assumptions and prior information. In this
paper, we discuss recent developments in applying formal model choice techniques in
archaeological chronology building. We illustrate the methods with two examples one
each from the absolute and the relative chronology building problems.

KeEy WORDS: BAYESIAN METHODS, BAYES FACTOR, CORRESPONDENCE ANALY-
sis, DATING METHODS, MCMC, PREDICTIVE INFERENCE, RADIOCARBON DATING,
SERIATION.

1 Introduction

Statistical methods are now an essential part of the archaeological inference making
process as illustrated in the books by Shennan (1988), Baxter (1994) and Buck et al.
(1996). The statistical techniques we discuss here are based on the Bayesian paradigm
which provides a natural and convenient way to incorporate prior information in practical
problems. Although some authors criticize the Bayesian view (see for example Reece,
1994), it is regarded as the most general and coherent statistical inference procedure
capable of solving practical problems. Bayesian methods have many advantages, see e.g.



the book by Buck et al. (1996). One particular advantage lies in their ability to compare
widely different models based on different assumptions and prior information.

Prior information, although quite valuable, cannot build chronologies for sure. Often
such information comes from expert archaeologists working on particular problems of
interpretation of archaeological data. However, experts often disagree and they may
provide different archaeological dates or explanations of the data. Moreover, the adopted
statistical models are also liable to be uncertain. An evaluation of model uncertainties
is required before making final inference. Thus in practical problems both the prior
information and the assumed statistical models need to be thoroughly examined as
part of the model evaluation process. The Bayesian methods that we are going to
describe allow us to address and measure the uncertainties arising due to the possible
mis-specification of the statistical model for the data and the assumed prior distribution
for the parameters.

Archaeologists often seek two types of chronological evidence: absolute and relative.
Absolute techniques provide estimates of the true calendar date of archaeological events.
Relative techniques, on the other hand, simply allow estimates of the chronological order
in which events took place. Of course, if absolute dates were available for all events of
interest, relative dating would not be needed. Typically, however, this is not the case
and ways are sought to combine both relative and absolute chronological information in
order to enhance temporal understanding.

Nicholls and Jones (2001) consider two alternative prior distributions for the bound-
ary parameters dividing the excavated layers for the purposes of absolute dating. Using
one set of prior assumptions they obtain a much tighter posterior distribution for the
span of the absolute dates. The span is the difference in age between the most recent
layer and the deepest layer containing the oldest material. The Bayesian model choice
methods help decide between the two prior models giving rise to two completely different
posterior distributions. The interpretations obtained from two different posterior distri-
butions are quite different and hence one must choose a model from the two alternatives
considered.

On some archaeological excavations there are no reliable relationships between verti-
cal location in the ground and relative date of deposition of the artefacts found. In some
others, as in the following example, it is not possible to link excavated layers in one area
with those in another. Statistical methodologies based upon the artefacts excavated are
sometimes employed in an attempt to derive relative chronological information. Such
methodologies, which identify temporal sequence on the basis of the number of different
types of artefacts, are commonly referred to as seriation techniques.

Buck and Sahu (2000) consider seriation of a data set relating to the numbers of seven
types of mesolithic flint tools (known as microliths) from six different sites, numbered
1,...,6, in southern England. The objective is to identify the relative chronological
order of the sites by studying the changes in the numbers of the seven types of microliths
found at them. Two widely used competing methodologies suggest completely different
orders for the sites: 2, 5, 3, 6, 1, 4 and 3, 6, 5, 2, 1, 4. Clearly these are likely to give
rise to quite different archaeological conclusions. The problem in focus here is to choose
between the two using model choice methods.



The remainder of this article is organized as follows. Section 2 provides the model
choice framework within which statistical solutions are proposed. The model choice
criteria are illustrated using a simple theoretical example in Section 3. Further, a radio-
carbon dating example is provided in Section 4 and a well known example on relative
chronology building is discussed in Section 5. Finally, few summary remarks are made
in Section 6.

2 Bayesian methods

2.1 MCMC model fitting

Currently Markov chain Monte Carlo (MCMC) simulation techniques are used in a wide
variety of statistical problems with relative ease and great success. These methods allow
critical re-examination of existing model based approaches and are flexible enough to
posit and develop more realistic models.

Let y denote the observed data to be modeled and let { denote the unknown pa-
rameters in the model. Let w({|y) denote the posterior distribution of the parameters ¢
under the assumed Bayesian model. In order to implement the MCMC method known
as Gibbs sampler (Gelfand and Smith, 1990) one writes down the complete conditional
posterior distribution of all the parameters. These distributions have densities which are
all proportional to the joint posterior density m({|y). The Gibbs sampler then simulates
from each conditional distribution in turn for a large number of times, B say, starting
from an arbitrary point. For large values of B, the effect of the starting point is for-
gotten and one obtains random samples from the joint posterior distribution. Features
of the posterior distribution are then estimated accurately using appropriate averages
of samples so obtained. For a general introduction to MCMC methods see the book by
Gilks et al. (1996).

Due to the complexity of archaeological problems, however, many authors have shown
that some ingenuity is needed in devising sampling schemes. Buck and Sahu (2000), for
example, document several different attempts at implementation before a successful
sampling scheme was devised. Once efficient algorithms for fitting statistical models for
large and complex archaeological data sets have been implemented, we move to check
the validity and adequacy of the fitted models. We propose to use predictive Bayesian
model choice techniques both to facilitate model comparison and assess goodness-of-fit.
Bayesian model checking serves the latter purpose and is important because in model
selection we run the risk of selecting from a set of badly fitting alternatives.

2.2 Predictive Distributions

Bayesian model choice methods are based on Bayesian predictive distributions. In simple
terms, these are distributions of future replicate data sets obtained by eliminating the
parameter uncertainties. Different types of predictive distributions arise by considering
different methods of eliminating the uncertain parameters. We list a few predictive



densities below. Let yops denote the observed data with individual data points ¥, ops, 7 =
1,...,n, and Yy, with components ¥y, e, (abbreviation for replicate) denote a future set
of observables under the assumed model.

The prior predictive density of a set of observations at the actual observed point y,ps
is given by
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In the Bayesian inference setup the actual observations y.,s is fixed, the above is inter-
preted as the density of a set of observables evaluated at the observed point yous. This
is also known as the marginal likelihood of the data. The prior predictive density is only
meaningful if the prior distribution 7(¢) is a proper distribution (i.e, [ 7(¢)d¢ = 1), due
to its involvement in the definition (1).

Let y(;)obs denote the set of observations yons with rth component deleted. The
cross-validation predictive density is defined by:
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In the case of conditionally independent observations given ¢,

T(QT‘Ca Y(r),obs) = 7T(?Jr|<)-
The predictive density (2) then simplifies to

7 (e ¥y obe) = / 7 (5r1€) T(C1Y (ry008) . 3)

This density is also known as the conditional predictive ordinate (CPO). These densities
are meaningful even when improper prior distributions for { are considered as long as
the posterior distribution m(¢|y(r),0bs) is proper for each r.

The posterior predictive density of yrep, given by

7 (FeeplYous) = / 7 (Yrep|€) 7(C[Yabn) dC, (4)

is the predictive density of a new independent set of observables, y.e, under the model,
given the actual data y.ps. The posterior predictive density is easier to work with than
the previous two densities, because features of y,e, having density (4) can be estimated
easily when MCMC samples from the posterior 7({|yons) are available. A new set of
observations drawn from 7(yep|C), the likelihood model conditional on ¢, is a sample
from the predictive density (4).

2.3 The Bayes factor

A pure Bayesian approach to model selection is to report posterior probabilities of each
model by comparing Bayes factors, see for example DiCiccio et al. (1997) and Kass and
Raftery (1995). The Bayes factor for comparing two given models M; and M, is

— W(yobs‘Ml)
7T(yobsuWQ) ’
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where 7(yobs|M;) is the density (1) when M; is the assumed model, i = 1, 2.

The BF gives a summary of the evidence for M; against M, provided by the data.
Calibration tables for the BF are available for deciding how strong is the evidence, see
e.g. Kass and Raftery (1995). Recall that 7(y.bs|M;) is the marginal likelihood of the
data under model M;. Hence the BF chooses a model for which the marginal likelihood
of the data is maximum.

For improper priors the Bayes factor is not meaningful since it cannot be calibrated.
This is because the predictive density (1) is improper when 7(¢) is. To overcome this
problem of interpretation O’Hagan (1995) proposed the fractional Bayes factor by con-
sidering training samples. This idea has been investigated further, see for example the
article by Key et al. (1999).

The cross-validation predictive densities are used to form a variant of the Bayes factor
called the pseudo-Bayes factor (PsBF) (Geisser and Eddy, 1979). For comparing two
models M; and M, the PsBF is defined as,

PsBF = f[ W(yr,obsb’(r),obs; Ml) '

r—1 7-‘-(yr,obsb’(r),obs; M2)

This is a surrogate for the Bayes factor and its interpretations are similar, see e.g.
Gelfand (1996). The CPOs are also useful for checking model adequacy. Instead of
using a single summary measure alone, e.g. the PsBF, the individual CPOs can also be
compared under any two models. This is to guard against any single highly influential
observation concealing a general trend. One observation, y, ons, prefers model M; to M,
if the rth CPO is higher under M;. The CPOs are not illustrated in this paper since
the primary issue here is model choice and not model checking.

2.4 A decision theoretic approach

Gelfand and Ghosh (1998) and Laud and Ibrahim (1995) propose model selection cri-
teria based on the posterior predictive densities. The current model is a ‘good’ fit to
the observed data, yobs, if yrep is able to replicate the data well. Hence, many model
choice criteria can be developed by considering different loss functions for measuring the
divergence between y,us and yrep (see for example Rubin, 1984). If the data are assumed
to be symmetrically distributed with a common variance then it is natural to adopt a
squared error loss function

L(Yrep: YObs) - Z(yr,rep - yr,obs)Q- (5)

T

In the unequal variance cases one may weight the individual terms in the loss function
by the inverse variance of y, s if it is known. Other loss functions are also possible, for
example Buck and Sahu (2000) use the following deviance loss function

Yr,obs
L(yrepa YObs) =2 (Z Yr,obs log —b) (6)

r,rep



where the data are assumed to follow the multinomial distribution. The best model
among a given set of models is the model for which the expected value of the adopted
loss function is the minimum, where the expectation is to be taken with respect to the
posterior predictive distribution (4).

2.5 The DIC

There are many other Bayesian methods available for model comparison. These methods
use the posterior distribution of the likelihood to arrive at suitable model choice criteria.
For example, Aitkin (1997) interprets the p-values by using the posterior distribution of
the likelihood function.

Recently, Spiegelhalter et al. (2002) propose a model selection criterion for arbitrarily
complex models called the deviance information criterion (DIC). They first define the
deviance function as follows:

D(¢) = =2 log{m(y[¢)} + 2 log{m(y)}

where 7(y|{) is the likelihood function, and 7(y) = 7(y|u(¢) = y). Here () is defined
as the mean of the data, that is u(¢) = E(Y|).

They define the penalty factor as

pp = E{D({)ly} — D{E(Cly)}-

Thus pp is the expected deviance minus the deviance evaluated at the posterior ex-
pectations. The pp is called the effective number of parameters in a complex model.
Subsequently, they define the model choice criterion

DIC = D{E(Cly)} + 2pp-

The model with the smallest DIC'is chosen to be the best model for data.

3 A simple example

We first consider a simple example which reveals the Bayesian model choice criteria
in closed form analytic expressions. Suppose that ¥, ... ,%, are observations from the
N(#,1) population and the prior for 6 is N(0,7%) where 72 is known and finite. In this
example we have § = ¢. Consider the following two models.

My :0=0, vs My:6+#0.
This is perhaps over-simplification, but the setup will aid understanding of the Bayesian
model choice criteria.
The posterior distribution of 6 is given by

7r(0|y):N( ny ! )

n+1/72" n+1/72
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Thus the observations y, ... ,y, enter into the posterior distribution through % and the
model assumption for data is equivalent to

_ 1 1
Y == Yi~NL{0, —|.
v (o)
This is also due to the fact that Y is the sufficient statistic for 6.

Suppose that Z is a future observation for which we wish to calculate the predictive
distribution. To have simpler notation we use the notation Z = ye, and yobs = . If 0
is known we have, m(Z|0) = N (6, 1). The predictive distributions (prior or posterior)
of Z has two different forms under the two models, M; and M,. Under model M; there
are no unknown parameters and both the prior and posterior predictive distributions
are given by N (0, %)

The prior predictive distribution (1) of Z under model M, is given by,
1
w(z) =N (0, = +7'2> :
n

As expected, if 72 = 0 this distribution reduces to the prior predictive under M;. The
posterior predictive distribution is calculated as,
2 2
nrT 1 T
w(zly) = N|——7, —+ )
(217) <n7'2+1y’ n m’2+1)
As expected this posterior predictive distribution has less variability than the prior
predictive distribution for non-zero vales of 72. This fact will be further discussed in
Section 4. Moreover, the center of the distribution is located near the center of the data
y, unlike the prior predictive distribution which is centered at zero. We do not consider
the cross-validation predictive densities because effectively there is only one data point

Y.

Assume the loss function to be
L(z9) = (- 9)* (7)
Now we derive the following decision rules based on the three predictive model selection

criteria. Select model M if

log(14+n72)
nt?

ny®> < (1+nt?) , using the Bayes factor,
< (1 +n7?%) 5=, using the squared error loss function,(7)

24n72?
< (1+n7%) 372, using the DIC.

It is straightforward to see that

log(1 + n7?) S 2 250,

nr? ~ 2+ nr?’ -
We interpret the above results as follows. If the loss function based approach selects
model M; then the Bayes factor will select the same as well. The loss function based
approach is likely to reject the simpler model M; more often than the Bayes factor based
approach. The last two predictive criteria criticize the simpler model too much. They
require the models to both fit and predict the data well. Thus the Bayes factor is seen to
be less stringent regarding the choice of the simpler model than the remaining two model
choice criteria. We shall extrapolate this theoretical result for the practical example in
Section 5.




Layer Sample CRA labsd Sample ID
1 580 47 NZ 7758
600 50 NZ 7761
537 44 NZ 7757
670 47 NZ 7756
646 47 NZ 7755
630 35 WK 2589
660 46 NZ 7771
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4 Example: absolute chronology building

Often absolute chronologies are built using what is called the radiocarbon dating method.
The radiocarbon dating laboratories provide the CRA (Conventional Radiocarbon Age)
and an estimate of the associated error for a given sample from a dead organism. Sta-
tistical methods together with internationally agreed high precision calibration data are
then used to convert the CRA to usable calendar dates. A full set of calibration data is
available from http://depts.washington.edu/qil/ (see also Stuiver et al., 1998).

By way of an example, consider a set of seven CRA determinations which is a subset
of a large set of dates gathered at the mouth of the Shag river, in southern New Zeland.
The data set, given in Table 1, consists of all charcoal dates from a single series of six
layers. Interest here focuses on the actual dates of deposition of the samples and the
length of time for which the site was occupied.

We now discuss statistical formulation of the above problem as described by Nicholls
and Jones (2001). Here the problem is to simultaneously calibrate several radiocarbon
determinations found in a vertical series of a number of abutting layers of earth, I say.
Suppose n; radiocarbon age determinations are made in layer ¢, making n = Zle n;
dates in all. Let Y;; denote the value of the jth CRA measured in the 7th layer and
let 0,; denote the corresponding true calendar date. Associated with 6;; is a unique
radiocarbon age, 1(6;;), which relates to the amount of *C present in the sample when
it is measured. It is often assumed that:

Yij = pl0) + ¢} + €l (8)
¥
ij
variance of eg) be 05?2 and the variance of €;;
variance of Y is ag;-/)z + 0’ (8;;). The quantities p(6;;) and o™ (8;;) are obtained using
piecewise linear functions of calibration data. There are other methods of determining
the calibration functions p(6) and o(*) (6) using Gaussian process prior models, see for
example Gomez-Portugal-Aguilar et al. (2002).

where ¢}) and 61(;‘ ) are independent normal random variables with zero means. Let the

) given 6;; be o’ (6,;). Thus, given ;;, the

In our setup vertical mixing of earth is assumed to occur within layers, but not
between layers. Let 1); denote the calendar date associated with the boundary between
layers 2 and ¢+ 1,7 =0,1,...,I. Moreover, assume that layer 7 = 1 is the topmost and
most recent layer, while layer ¢ = I is the deepest layer containing the oldest material.
Let P and A (P < A) denote the lower and upper bounds on the unknown parameters
®. In any layer i, the n; calendar dates, 8; = (0;1,. .. ,0;,,) are all assumed to be in the
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interval (¢;,¢;—1). No other constraints are put on the calendar dates within a layer.
Thus the model parameters satisfy the stratigraphic constraints:

P<yr<O0; <91 <01 <--- <y <A,

where the inequalities hold elementwise. Based on the constraints, and without any
other more specific prior information, it is reasonable to assume independent uniform
prior distributions for each component of 8; in the interval (1;,;—1). Thus the prior
distribution for @ conditional on % is

0|'¢ HH /I/)Z 1 _wz) 11(% < 01_7 <¢Z 1)

=1 j=1

where I(-) is the indicator function. To complete the prior specification it remains to
consider suitable prior distributions for the boundary parameters ).

A much used prior distribution is the prior distribution which comes from ignorance
on the relative positions of individual ;. Thus one may assume that the unordered s
follow the uniform distribution in the interval (P, A). The ordered samples in increasing
order will then be taken as the v parameters. Suppose that Uy, Uy, ..., U is a random
sample from the uniform distribution in the interval (P, A), then we set v; = U;) where
Uiy < Ur-1y < U(g). The associated prior distribution for 7 has the prior density:

(I+1)!
RI+L

7 (yp) = P<yr<--- < <A

Nichols and Jones (2001) suggest an alternative prior distribution which they call
the reference prior distribution. They assume that the span § = vy — 7 follows the
uniform distribution in the interval (0, R) where R = A— P. Given 6, ¢; ~ U(P, A—).
This defines a joint prior distribution for the two endpoints, ¥; and ¥,. Given the
two endpoints, the remaining (I — 1) unordered boundary parameters are assumed to
follow the uniform distribution in the interval (¢r,) independently. Suppose that
Ui, ... ,Ur_1 is a random sample from the uniform distribution in the interval (7, ),
then we set, v; = Uyy,i = 1,... ,1 —1 where U1y < --- < Uyy. The prior density of
Y is
(I -1)! 1

2 —
T ) = = e TR G + )’

P <y <--- <y <A

There are fundamental differences between the two prior distributions 7 and 7(?).
Under 7" the distribution of the span § is the distribution of Uy — Uy where Uy,
Ui, ... ,Ur are random samples from the uniform distribution in the interval (P, A). As
a result the density of ¢ is the density of the sample range where the sample is obtained
from the uniform distribution. The density of § is given by

I(I+1)
RI+1

That is, * = 0 /R follows the standard beta distribution with parameters I and 2.
However, under (%), § follows the uniform distribution in (0, R), consequently §* follows

W (6) = L5 (R—-6), 0<JI<R.

9
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Figure 1: Prior densities for 6*. Solid line is the density under 7(?) and dotted line is
the density under 7(V).

the uniform distribution in (0, 1). Nicholls and Jones (2001) point out that 7(1) is more
informative about ¢ and 7(? is not, see Figure 1.

The above authors formulate this problem as a Bayesian model choice problem and
use the Bayes factor to decide between the prior distributions. Here we shall compare
the two prior models using the predictive Bayesian methods discussed earlier.

4.1 Example 2: Model choice for absolute chronology

The Bayes factor for comparing the model 2 with prior 7 against model 1 with prior
71 has been reported to be 26 by Nicholls and Jones (2001). However, it is interesting
to see what would have happened had we used the other model choice criteria described
earlier.

In Table 1 we report all three model choice criteria for the two models. Both the
expected loss criterion and the DIC criterion choose model 2 as well. For the non-linear
models considered here we observed negative values of the penalty parameter pp. The
discussion paper by Spiegelhalter et al. (2002) explains why this can happen and it
also suggests some possible remedies which we do not consider primarily because of the
non-linear nature of the models. We choose to work with the overall DIC which is often
used in comparing complex Bayesian models.

The differences between the two prior distributions are very strongly pronounced
under the Bayes factor but not so strongly using either the expected loss or the DIC.
Below we discuss the possible reasons for this.

The above phenomenon is explained by the fact that the Bayes factor uses the prior
predictive distributions while the other two criteria use the posterior predictive distribu-
tion. The two different prior distributions induce different prior predictive distributions,
hence the Bayes factor is large. However, the posterior predictive distributions under
the two prior distributions are similar due to the fact that those have been smoothed by
the knowledge of the data. Thus there are no big difference between the two posterior
predictive distributions and as a result the difference between the expected losses is not

10



Expected loss DIC BF
Model 1 13.97 451 1
Model 2 12.51 1.17 26

Table 1: Model choice for the Shag river data.

large. This is also confirmed by the insights gained in the simple theoretical example
in Section 3. There it is seen that the posterior predictive distribution is smoother (i.e.
has less variability) than the prior predictive distribution.

5 Example: relative chronology building

We return to the relative chronology building example mentioned in the introduction.
Buck and Sahu (2000) have developed the loss function based model choice method for
this example. Here we experiment with the other criteria as well.

5.1 The Robinson-Kendall model

Consider the following extension of the model originally proposed by Kendall (1971).
Let y;; denote the observed number of artefacts (for example, pottery or tools types) of
type j (j = 1,...,J) found in archaeological site, feature or context ¢ (i = 1,...,1).
Let N =}, y;; denote the total number of artefacts. Also, let 6;; denote the underlying
proportion of artefact j available for deposition at ¢ and let © denote the matrix with
elements ¢;;. Let @ denote the vector representation of ©. Since 6;;s are proportions
it is assumed that 6;; > 0 and ), >, 0;; = 1. The problem then, is to estimate the
true temporal order of the I rows which is a permutation of the indices 1,...,1. We
represent this true permutation using p(1), p(2), ..., p(I).

We assume that y has a multinomial distribution with parameters N and 6, that is,
the probability of obtaining the observed configuration, y;;, is given by

N6 fuis (9)
]
A suitable way to represent prior information about 6;; is to use the Dirichlet distribu-
tion, thus
7(0) x H@fjij_l,
(4]

where a;; > 0 for all 7 and j. Note that we can use this to incorporate both informative
and non-informative prior information quite successfully. For example, setting a;; = 5
can be thought of as having 4 artefacts of type 1 in row 1. To specify non-informative
prior information we simply set c;; = 0.5 for all 2 and j. The posterior distribution of 8
is given by

7(0) o< Hﬁffﬁa”_l. (10)
tj

11



We shall use this posterior distribution to make inference about the orders.

Suppose that the true chronological order is the given natural order, i.e. p(1) =
1, p(2) =2, ..., p(I) = I. Then, for each j, the Robinson-Kendall (R-K) model
assumes that there exist integers 1 < a; < I such that:

Hijgﬁiﬂj fOI‘i:L...,CLj—l,
0i+1j§0i]‘ forizaj,...,l—l.

(11)

Note that when a; is either 1 or I only one set of inequalities in the above equations
are required and the other set is redundant. A matrix O satisfying (11) is called a
@—matrix (for theoretical work on such matrices see for example, Kendall, 1971 and
Laxton, 1976). In practice the true chronological order is unknown and one attempts to
find an order p(1), p(2), ... ,p(I) such that © is a Q—matrix for a set of unknown integers

aj,j = 1,...,J, where the matrix © is random and follows the posterior distribution
(10).

The model in equation (11) is overly prescriptive for most real archaeological data
since the strict, temporal, unimodal sequence assumed in the R-K model may be violated
because of the nature of use and discard of objects in the past. To account for this type
of violation consider the following extension. Suppose that the matrix ® is a ()—matrix

in the natural order and let ||- || denote a suitable distance measure between two matrices
© and ®. For example, we may consider the Kullback-Leibler distance
16— ®[| = b5 log(8s;/ is) (12)
ij

or the Euclidean distance
10 = @[ =/ (0 — ¢3)™
ij

We adopt (12) in the following discussion, although it should be clear that any suitable
measure can be used. The extended model is then that, for pre-specified € > 0, we have
a matrix © which also satisfies the extended Robinson-Kendall model in the natural
order if

16— 2] <e

It is clear that when € is chosen to be zero the extended model reduces to the model
in equation (11). In this sense the parameter e dictates how much relaxation we want
to allow our models to have over the strict and deterministic Robinson-Kendall model.
A large value of € will produce all possible permutations for plausible seriation of the
data. On the other hand smaller values will typically produce only a few of the possible
permutations of the rows for seriation.

5.2 Models for correspondence analysis

Correspondence analysis is viewed as an alternative to adopting the Robinson-Kendall
model for seriation, see e.g. Baxter (1994, chap. 5) and Goodman (1986), but it has

12



usually been used only in an exploratory fashion in archaeology. Following Buck and
Sahu (2000) we adopt a model-based approach using hierarchical Bayesian models.

In the first stage of model building we assume that y has a multinomial distribution
with parameters N and 6 as previously, see equation (9). We then assume that,

0,~j = 0,'4_ 0—|—j (1 + AU»L Uj) . (13)

where 0 < A < 1 and u; and v; are unknown row and column scores satisfying the

constraints
I J I J
Z Z Z 2 Z 2
U; 02’—1— = Vj 0+j = 0, U, 01'4_ = ’Uj 0+j = 1,
i=1 j=1 i=1 j=1

where 0;, = ijl 0;; and 0,; = Zle 0;;. The above constraints orthogonalize and
normalize the row and column scores, u; and v;. The parameter A is called the canonical
correlation and it is the principal eigenvalue (with the row score vector as the eigenvec-
tor) for the x? distance matrix between the observed and the fitted cell counts in the
contingency table. The chronological order produced by the CA is taken as the ordering
of the score vector uy,ug,...,u;. Buck and Sahu (2000) detail how to specify prior

distribution for the unknown parameters, A, u;, v;, ;4 and 6, ;.

5.3 Model choice for relative chronology

We return to the stone tools data example described in the introduction. The extended
R-K model chooses the relative order (2,5, 3, 6, 1,4) overwhelmingly while the CA model
chooses the order (3,6,5,2,1,4). We can choose between the two models, hence the
orders, using the Bayesian model choice methods.

We use the decision theoretic approach of model selection to choose between the two
models. The expected values of the loss function under different models are presented in
Table 2. The extended R-K model with any value of € has substantially lower expected
loss values than the model for CA. Hence the extended R-K model is quite emphatically
selected using this criterion.

The DIC values for the R-K model with € = 1072 and the model for correspondence
analysis are 51.2 and 395.5 respectively. Thus the DIC also selects the extended R-K
model which is simpler than the model used for correspondence analysis. By extrap-
olating the theoretical results obtained in Section 3 we can intuitively conclude that
the Bayes factor will also select the simpler R-K model. Although such extrapolation
may not always hold, we do not recommend the calculation of the Bayes factor. The
calculation is much more involved and can be numerically unstable because of the con-
strained nature of the parameter space under the above models. See Chapter 6 of Chen
et al. (2000) for similar examples on calculation of the Bayes factor for models with
constrained parameters.
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Expected Loss
R-K (e = 107?) 59.5
R-K (e =1073) 57.0
R-K (e=107%) 55.2
CA 427.1

Table 2: Model choice for the stone tools data.

6 Discussion

In this paper we have discussed and illustrated Bayesian model choice methods both
for relative and absolute chronology building problems. Three different model choice
methods have been compared and illustrated with practical examples. The paper also
points out the pressing need for adopting formal model choice methods for more complex
future models which seem appropriate for archaeological data interpretation. For many
purists the Bayes factor is the most appropriate tool that conveys the inferential content
of the data. In this paper, however, we have not taken such a strong view. Instead, we
have presented three different competitive criteria for model choice.

There are other Bayesian model choice methods which can also be used for model
comparison. For example, a Bayesian computation method known as the reversible jump
MCMC (Green, 1995) can be used to obtain the posterior probabilities of a number of
competing models belonging to a certain structured class of models. This method is
not considered because the models compared here, e.g. the extended R-K model and
the model for correspondence analysis, do not belong to any class of structured nested
models. Also the two models compared in Section 4 corresponding two different prior
distributions cannot be written as subsets of a super structured nested model.

Some remarks on the use of the Bayesian model averaging methods for prediction
are also appropriate. These methods are perhaps ideal if the sole purpose is to predict
using the models without selecting an intermediate model. In this article our primary
focus is to discuss model choice methods for comparing arbitrary models. Prediction is
not the focus of the current article and this eliminates the need for model averaging.

The proposed Bayesian model fitting and model choice methods are attractive be-
cause these do not rely on asymptotic arguments unlike many classical methods of sta-
tistical inference, e.g. the likelihood ratio test. Asymptotic arguments are often invalid
for the archaeological inference problems since the associated data sets are often small.

The article illustrates the potential of the Bayesian model choice methods for sta-
tistical inference. The different Bayesian models (and prior distributions) may lead to
different sets of conclusions which can be contradictory. The proposed model choice
methods provide the justification for choosing one set of inferential conclusions over the
others.
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