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Chapter 1

Estimating the health impact of
environmental pollution fields

Duncan Lee and Sujit K Sahu

1.1 Introduction

The health impact of many facets of the natural and built environment have been well stud-
ied in recent years, including air pollution ([24]), green space ([37]) and water quality ([50]).
This chapter focuses on quantifying the health impact of air pollution, although the envi-
ronmental, epidemiological and statistical challenges discussed are applicable in the wider
environmental context. Quantifying the impact of air pollution is an inherently spatial as
well as a temporal problem, because air pollution concentrations vary at fine spatio-temporal
scales. Furthermore, individuals move through this spatio-temporal pollution field, which
makes quantifying both their exposure to air pollution and its resulting health impact a
difficult modelling challenge. Nevertheless, this has been an active research topic since the
1990s, with one of the first studies quantifying the effect of short-term increases in exposure
in London ([45]). Since then a truly voluminous literature has developed, which has collec-
tively quantified the health effects resulting from exposure to air pollution in both the short
and the long term. This literature has included both single site studies and large multi-city
studies, the latter being advantageous because of the comparability of the results across mul-
tiple locations due to unified data and analysis protocols. Collectively, these studies have
helped to drive and shape legislation limiting pollution concentrations around the world,
with examples being the 1990 Clean Air Act in the USA, the 2007 Air Quality Strategy for
England, Scotland, Wales and Northern Ireland, and the 2008 European Parliament direc-
tive on ambient air quality and cleaner air for Europe.

Three main study designs have been used to estimate the health impact of air pollution,
namely time series studies, cohort studies and areal unit studies. Time series studies are
used to estimate the health impact of short-term exposure to pollution, that is a few days of
elevated concentrations, often termed an air pollution episode. The disease data used in such
studies are population level summaries rather than individual disease cases, meaning that
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this is an ecological association study and cannot be used to determine individual level cause
and effect. However, due to the routine availability of population level disease summaries,
time series studies are inexpensive, quick to implement and are the most common study
design. Prominent examples include the large multi-city studies entitled Air Pollution and
Health: A European Approach (APHEA-2, [43]) and the National Morbidity, Mortality and
Air Pollution Study (NMMAPS, [10]). In contrast, cohort studies quantify the health effects
resulting from long-term exposure to pollution, that is prolonged exposure over months or
years. They utilise individual-level data, and as a result individual level cause and effect
can be established. However they are costly to implement, due to the large amount of data
collection required and the length of time required to conduct the study due to the need
for a follow up period. Examples of cohort studies include the Six Cities Study ([9]), the
Multi-Ethnic Study of Atherosclerosis (MESA, [22]) and the European Study of Cohorts for
Air Pollution Effects (ESCAPE, [5]).

As a result of the high cost of cohort studies, areal unit study designs have also been
used to quantify the long-term health impact of air pollution. These studies are the spatial
analogue of time series studies, and estimate the effects of air pollution based on spatial con-
trasts in disease risk and pollution concentrations across a set of contiguous areal units. Like
time series studies they utilise population-level rather than individual-level disease data, and
cannot be used to quantify individual level cause and effect. However, the areal unit data re-
quired to implement such studies has become widely available in recent times, with examples
being the Health and Social Care Information Centre (https://indicators.ic.nhs.uk/ ) in the
UK and the Surveillance, Epidemiology and End Results Program (http://seer.cancer.gov/ )
in the USA. Therefore, areal unit studies are quick and inexpensive to implement, which
means that they can contribute to and independently corroborate the evidence from cohort
studies. These studies have been implemented using both spatial ([21] and [27]) and spatio-
temporal ([16] and [25]) designs, and the latter has also been used to estimate the short-term
impact of pollution (see e.g., [53], [13] and [7]).

This chapter provides a critique of the statistical and epidemiological challenges faced
by researchers conducting areal unit studies, reviews the literature in this area to date, and
provides a fully worked example to illustrate how to conduct such a study. We focus on
the spatial modelling challenges that arise when conducting an areal unit study, although
there are similar challenges to be encountered when conducting time series or cohort studies.
For simplicity, we discuss these challenges in the context of a spatial rather than a spatio-
temporal study, but we note that similar challenges exist in the latter design. The layout
of the remainder of the chapter is as follows. The next two sections describe the study
design and data used in areal unit studies, as well as the statistical models commonly used
in the literature to analyse these data. This review is followed by three sections highlighting
the main statistical challenges facing researchers in this area, focusing on modelling spatial
autocorrelation, spatial misalignment of the data, and allowing for within area variability
in pollution concentrations. These discussions are followed by an example that illustrates
the issues discussed so far, and then the chapter ends with a section providing the main
conclusions and a discussion of future work needed in this area.
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1.2 Areal unit studies

The study region A is a large geographical region such as a city, state or country, and is par-
titioned into n areal units A = {A1, . . . ,An} such as local authorities or census tracts. The
areal units are typically defined by administrative boundaries, and the populations living in
each one will be of different sizes and demographic structures. The disease data are denoted
by y = (y1, . . . , yn), and are counts of the total numbers of disease cases observed for each
areal unit during an extended period of time such as a year. Hospitalisations and mortalities
due to numerous causes have been associated with air pollution by existing studies, includ-
ing cardiovascular disease ([51]), cerebrovascular disease ([35]) and respiratory disease ([27]).
The differences in the population sizes and demographics between areal units are accounted
for by computing the expected numbers of disease cases based on national disease rates,
which are denoted here by e = (e1, . . . , en). For this calculation the population in each areal
unit are split into a total of R strata based on their age, sex and possibly ethnicity, so let
Nik denote the number of people from areal unit i in strata k. Letting rk denote the strata
specific disease risk for the entire population, then ei is computed as ei =

∑R
k=1Nikrk. Based

on the pair (y, e), we define the Standardised Morbidity/Mortality Ratio (SMR) as the ratio

θ̂i = yi/ei, which is a simple estimate of disease risk in areal unit i. A SMR value of one
represents an average risk, while a SMR value of 1.2 means an area has a 20% increased risk
of disease.

A vector of representative pollution concentrations for the n areal units is denoted by
x = (x1, . . . , xn), and is typically measured in micrograms per cubic metre (µgm−3). For
simplicity of exposition, we work with one particular pollutant, which can also be taken as
a continuous index of air quality, but the methodology can be easily extended to include
multiple pollutants in which case each xi will be a vector of pollution concentrations. The
health impact of numerous different pollutants have been investigated in areal unit studies,
including carbon monoxide ([35]), nitrogen dioxide ([18]), ozone ([51]), particulate matter
([21]) and sulphur dioxide ([12]). The most common of these associations is with airborne
particulate matter, which are small solid and/or liquid particles in the air. Particulate mat-
ter is classified by the maximum size of these particles, and particles having diameters less
than 10 microns (PM10, see [26]) and 2.5 microns (PM2.5, see [20]) have been associated with
ill health. However, estimating x is a challenging task, and two different data types can be
used. The first of these are data from a pollution monitoring network, with examples being
the State and Local Air Monitoring Stations (SLAMS) network run by the United States
Environmental Protection Agency (USEPA), and the Automatic Urban and Rural Network
(AURN) maintained by the Department for Environment, Food and Rural Affairs (DEFRA)
of the UK government (http://www.gov.uk/defra). The second type of data are modelled
concentrations from an air pollution dispersion model, with examples being the Community
Multi-scale Air Quality Model (CMAQ), and the Air Quality in the Unified Model (AQUM,
see [44]) developed by the UK Met Office. Monitoring networks measure air pollution con-
centrations with little error, but they do not have good spatial coverage and in particular
some the n areal units may not have any air pollution monitoring site at all. In contrast,
computer dispersion models estimate pollution concentrations on a regular grid, and give
complete spatial coverage of the study region without any missing observation. However,
modelled concentrations are known to contain errors and biases, and are less accurate than
the monitored values.
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There are a number of confounding factors that must be adjusted for when estimating the
health impact of air pollution using a population level spatial design, the most prominent
of which is the differential rates of smoking across the n areal units. However, reliable
smoking data can be hard to obtain, so many studies have used measures of socio-economic
deprivation as a proxy for smoking, due to the likely high correlation between smoking and
deprivation ([23]). Socio-economic deprivation is multi-dimensional, and variables that have
been used to account for it include individual measures of income ([25]), unemployment
([28]) and house price ([21]), as well as the Carstairs ([12]) and Townsend ([18]) deprivation
indices. Let U = (uT

1 , . . . ,u
T

n) denote the matrix of p confounders, where the values relating
to areal unit Ai are denoted by uT

i = (ui1, . . . , uip).

1.3 Modelling

Poisson log-linear models are typically used to estimate the health impact of air pollution,
and both classical (e.g., [21] and [16]) and Bayesian approaches have been used for inference
(e.g., [13] and [27]). For the latter, Markov Chain Monte Carlo (MCMC, for details see [39])
simulation and Integrated Nested Laplace Approximations (INLA, for details see [40]) have
both been used, although the latter is rare with one of the few example studies being [28].
A Bayesian approach is the most popular inferential framework in these studies, because
the models used are typically hierarchical in nature and include spatial autocorrelation and
different levels of variation. The first stage of a general Bayesian hierarchical model for these
data is given by

yi ∼ Poisson(eiθi) for i = 1, . . . , n, (1.1)

ln(θi) = β0 + xiβx + uT
i βu + φi,

β = (β0, βx,βu) ∼ N(µβ,Σβ).

Here the expected value of the disease count yi is the product eiθi, where θi is the risk of
disease in areal unit i. Here a value of θi greater (less) than one indicates that areal unit Ai
has a higher (lower) than average disease risk, and θi = 1.15 corresponds to a 15% increased
risk of disease. The log risk is modelled as a linear combination of an overall intercept term
β0, air pollution concentrations (xiβx), confounding factors (uT

i βu) and a vector of random
effects φ = (φ1, . . . , φn). The latter accounts for the spatial autocorrelation remaining in the
data after the covariate effects have been removed, as well as any overdispersion resulting
from the restrictive Poisson assumption that Var[yi] = E[yi]. One possible cause of this
is unmeasured confounding, which occurs when an important spatially correlated covariate
is either unmeasured or unknown. The spatial structure in this covariate induces spatial
autocorrelation into the response, which cannot be accounted for in a regression model.
Other possible causes of residual spatial autocorrelation are neighbourhood effects, where,
in general, a subject’s behaviour is influenced by that of neighbouring subjects, and grouping
effects, where subjects choose to be close to similar subjects.

The regression parameter βx quantifies the relationship between air pollution and disease
risk on the log scale, and is transformed to a relative risk for the purposes of interpreta-
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tion. The relative risk for a ν (say) unit increase in pollution concentrations measures the
proportional increase in risk from increasing pollution by ν, and is calculated as

RR(βx, ν) =
ei exp(β0 + (xi + ν)βx + uT

i βu + φi)

ei exp(β0 + xiβx + uT
i βu + φi)

= exp(νβx). (1.2)

Hence a relative risk of 1.05 means a 5% increase in disease risk when the pollution level
increases by ν µgm−3. The posterior distribution and hence 95% credible intervals for the
relative risk can be computed by applying the transformation given by (1.2) to the posterior
distribution for βx, and there is substantial evidence of a relationship if the 95% credible
interval does not include 1.

A number of approaches have been proposed for modelling the spatial autocorrelation
and overdispersion in the data unaccounted for by the covariates, including geographically
weighted regression ([51]), geostatistical models ([12]) and simultaneous autoregressive mod-
els ([21]). However, the most common approach is to model the vector of random effects
φ with a conditional autoregressive (CAR) prior (see [35], [13], [27], [25] and [29]), which
is a special case of a Gaussian Markov Random Field (GMRF). This prior can be written
as φ ∼ N(0, τ 2Q(W)), where Q(W)n×n is a, potentially singular, precision matrix, τ 2 is a
variance parameter and 0 is an n×1 mean vector of zeros. Spatial autocorrelation is induced
into this joint distribution via a binary n × n neighbourhood matrix W, which determines
the spatial adjacency structure of the n areal units. If element wij = 1 then (Ai,Aj) are
spatial neighbours and share a common border (denoted i ∼ j), while if wij = 0 (denoted
i � j) they do not.

The intrinsic model (ICAR, [3]) is the simplest CAR prior, and has a singular precision
matrix (its row sums equal zero) given by Q(W) = diag(W1)−W, where diag(W1) is an n×
n diagonal matrix containing the row sums of W. The spatial correlation structure implied
by this prior is more easily observed from its full conditional form, that is as f(φi|φ−i) for i =
1, . . . , n, where φ−i = (φ1, . . . , φi−1, φi+1, . . . , φn). The Markov nature of this model means
that the conditioning is in fact only on the random effects in geographically adjacent areal
units, which induces spatial autocorrelation into φ. Using standard multivariate Gaussian
theory the full conditional distribution f(φi|φ−i) is given by

φi|φ−i, τ 2,W ∼ N

(∑n
j=1wijφj∑n
j=1wij

,
τ 2∑n
j=1wij

)
. (1.3)

The Bayesian model specification in (1.3) is completed by assuming τ 2 ∼ inverse gamma(a, b),
where the hyperparameters (a, b) are typically chosen to make the prior proper but weakly
informative such as (a = 2, b = 1) ([15]), to avoid controversy regarding the use of non-
informative priors which may lead to improper posterior distributions. The ICAR prior is a
natural model for strong spatial autocorrelation, because the conditional expectation is the
mean of the random effects in neighbouring areas, while the conditional variance is inversely
proportional to the number of neighbours. The rationale for the latter is that the more
neighbours an area has the more information there is about the value of its random effect,
hence its variance is smaller. However, the ICAR model can only capture strong spatial
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autocorrelation, because it does not have a spatial autocorrelation parameter. Note that, if
φ is multiplied by 10 then the spatial autocorrelation structure will remain unchanged but
τ 2 will increase.

Therefore a number of different approaches have been proposed for allowing for varying
levels of spatial autocorrelation in φ, the most popular of which is the convolution or BYM
model proposed by [3]. This model augments the linear predictor in (1.1) with a second set
of random effects, say γ = (γ1, . . . , γn), which are modelled independently as γi ∼ N(0, σ2).
However, [47] discuss the identifiability problems that arise in this model due to having n
data points and 2n random effects. Therefore [31] proposed a CAR prior with a spatial
autocorrelation parameter ρ, which has full conditional distributions given by

φi|φ−i, τ 2, ρ,W ∼ N

(
ρ
∑n

j=1wijφj

ρ
∑n

j=1wij + 1− ρ
,

τ 2

ρ
∑n

j=1wij + 1− ρ

)
. (1.4)

Here ρ = 1 corresponds to the intrinsic CAR model for strong spatial autocorrelation, while
ρ = 0 corresponds to independent random effects with a constant variance. A uniform prior
on the unit interval is typically specified for ρ, and the joint distribution for φ has a GMRF
form with a precision matrix given by Q(W) = ρ[diag(W1) −W] + (1 − ρ)In, where In is
the n× n identity matrix.

1.4 Controlling for unmeasured residual spatial confounding

Unmeasured spatial autocorrelation is modelled by the random effects φ, which are forced
to be globally spatially smooth by CAR priors such as (1.3) or (1.4). Multivariate Gaussian
theory shows that for model (1.4) the partial correlation between (φi, φj) conditional on the
remaining random effects φ−ij is given by

Corr[φi, φj|φ−ij] =
ρwij√

(ρ
∑n

k=1wik + 1− ρ)(ρ
∑n

l=1wjl + 1− ρ)
. (1.5)

As wij = 1 for all pairs of adjacent areal units, then if ρ is close to one then all pairs of
adjacent random effects are spatially autocorrelated, leading to a globally smooth surface.
Conversely, if ρ is close to zero then all pairs of adjacent random effects are close to being
conditionally independent given all other random effects, leading to no spatial smoothing
anywhere in the random effects surface. In either case the random effects exhibit a single
global level of spatial smoothness throughout the study region, which is likely to be inap-
propriate for two reasons. First, the residual spatial structure in the data after removing the
covariate effects is unlikely to be globally spatially smooth, and is instead likely to exhibit lo-
calised smoothness, with strong spatial autocorrelation between some pairs of adjacent areal
units whilst others exhibit abrupt step changes. The first reason for this is that the SMR
is not globally smooth, as is evidenced empirically by the left panel of Figure 1.1. In that
figure some pairs of adjacent local authorities exhibit similar disease risks, while between
others there are large step changes. Second, the air pollution covariate is spatially smooth
(see the left panel of Figure 1.2 for an example), so after removing its effect on disease risk
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the residual variation is unlikely to be globally smooth.

The second reason for the inappropriateness of (1.4), existing research ([8]) has shown
the potential for collinearity between these random effects and any covariate in the model
that is also spatially smooth. This potential collinearity can lead to variance inflation and
instability in the estimation of the air pollution effect, and the simple solution of omitting
the random effects from (1.1) is not appropriate as ignoring residual spatial autocorrelation
can lead to similar problems. Therefore two main approaches to solving these problems have
been proposed in the literature to-date, creating random effects that are orthogonal to the
covariates, such as [36] and [19], or relaxing the global smoothing restrictions of the CAR
prior to allow for localised spatial smoothness such as [33] and [29].

1.4.1 Orthogonal smoothing

Orthogonal smoothing approaches replace φ with a set of random effects that are orthogonal
to the covariates. The first approach in this vein ([36]) does not enforce this new set of random
effects to be spatially autocorrelated where as more recent work does ([19]), so we describe
the latter here. Their model is based on the residual projection matrix from a normal linear
model, which given the extended covariate matrix Ũ = (x,U) containing both pollution and
the other confounding factors is given by

P = In − Ũ(ŨTŨ)−1ŨT.

The proposed approach is based on the matrix product PWP, where W is the binary neigh-
bourhood matrix determining the spatial adjacency structure of the areal units. Thus this
matrix product combines spatial information via W with covariate orthogonality via P. It is
shown ([19]) that the eigenvectors of PWP correspond to all possible mutually distinct pat-

terns of spatial clustering orthogonal to the covariates Ũ accounting for the spatial structure
in the data via W. Furthermore, the eigenvectors for all positive eigenvalues correspond to
positive spatial correlation, while those eigenvectors relating to negative eigenvalues capture
negative spatial dependence. Additionally, the magnitude of the jth eigenvalue λj also de-
termines the relative importance of the spatial pattern in the jth eigenvector, so [19] suggest
choosing the first q << n eigenvectors corresponding to positive and decreasing eigenvalues.
Denote this n × q matrix of eigenvectors by M, where mT

i = (mi1, . . . ,miq) is the ith row.
Here q is a tuning parameter in the model, with larger values leading to less dimension
reduction. The model proposed by [19] is given by

yi ∼ Poisson(eiθi) for i = 1, . . . , n, (1.6)

ln(θi) = β0 + xiβx + uT
i βu + mT

i δ,
β = (β0, βx,βu) ∼ N(µβ,Σβ),

δ ∼ N(0, τ 2Q(W)−1s ),

where the new random effects δ have a precision matrix given by Q(W)s = MTQ(W)M
and Q(W) is as defined for the intrinsic CAR prior. As before, an inverse gamma prior
can be specified for τ 2. This model can be implemented in the ngspatial package for the
statistical software R, and further details can be found in [19].
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1.4.2 Localised smoothing

Localised smoothing approaches retain the class of CAR priors but allow for localised smooth-
ing by modelling W = {wjk|j ∼ k}, the elements of the neighbourhood matrix W corre-
sponding to geographically adjacent areal units, as binary random quantities rather than
keeping those fixed at the value 1. From (1.5) it is clear that if wij ∈ W equals one then
(φi, φj) are spatially autocorrelated and are smoothed over in the modelling process, while
if wij ∈ W is estimated as zero then they are conditionally independent and no such spatial
smoothing is enforced. Thus estimating the elements inW allows the random effects surface
to exhibit localised smoothness between some pairs of adjacent random effects but not be-
tween others. A number of approaches have been proposed for estimating W (See [4], [33],
[34], [32], [28] and [29]), and here we discuss the approach proposed by [29] because [33], [34]
and [32] are set in a disease mapping rather than regression context, while [4] and [28] are
in the spatio-temporal rather than spatial domain.

The approach taken by [29] is to specify a joint prior distribution for (φ̃,W), an extended
vector of random effects and the neighbourhood adjacency elementsW . They decompose the
joint prior distribution as f(φ̃,W) = f(φ̃|W)f(W), and term their approach a Localised

Conditional Autoregressive (LCAR) model. The first of these distributions is f(φ̃|W), a
random effects model given a fixed neighbourhood structure W . The intrinsic model (1.3)
is not appropriate in this context of allowing W to be estimated, because

∑n
j=1wij could be

estimated as zero for some areal unit i leading to an infinite mean and variance. Therefore an
augmented random effects vector φ̃ = (φ, φ∗) is specified, where φ∗ is a global random effect
that is potentially common to all areal units and prevents the infinite mean and variance
problem described above. An extended (n+1)× (n+1) neighbourhood matrix W̃ is created

for this augmented vector φ̃, where there is a one-to-one relationship between a particular
set of values inW and its matrix representation W̃. The adjacency relation between (φi, φ∗)
is denoted by wi∗, and is equal to zero if all of the adjacency elements in W relating to Ai
equal one. Otherwise wi∗ = 1.

Based on W̃ an intrinsic CAR prior is specified for φ̃, whose precision matrix is given by
Q(W̃, ε) = diag(W̃1) − W̃ + εI. Here εI, with ε = 0.001, is added to make the precision

matrix diagonally dominant and hence invertible. The full conditional distribution f(φi|φ̃−i)
corresponding to this joint distribution is given by

φi|φ̃−i, τ 2,W̃ ∼ N

(∑n
j=1wijφj + wi∗φ∗∑n
j=1wij + wi∗ + ε

,
τ 2∑n

j=1wij + wi∗ + ε

)
. (1.7)

This shows that if
∑n

j=1wij = 0 then wi∗ = 1 and the prior mean and variance simplify

to φ∗/(1 + ε) and τ 2/(1 + ε), which corresponds to φi being independent of its neighbouring
random effects. The next part of the model is the prior distribution f(W), which is specified

via a prior on its neighbourhood representation f(W̃). A discrete uniform prior of the form
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W̃ ∼ Discrete Uniform(W̃(0),W̃(1), . . . ,W̃(NW )), (1.8)

is specified. The set of W̃ contains NW = |W| = 1TW1/2 binary elements, so its sample
space has dimensionality NW and size 2NW . Therefore the discrete uniform prior (1.8) is
specified to vastly simplify the size and structure of the sample space for W , which has
dimension 1 and size NW + 1. This dimension reduction of the W̃ space is undertaken
because the number of elements to estimate NW is much larger than n, and existing research
([32]) has shown that the elements are only weakly identifiable from the data. Element W̃(j)

has j elements in W equal to one and NW − j elements equal to zero, so that W̃(NW ) is the
intrinsic CAR model for strong spatial smoothing while W̃(0) has all elements of W equal
to zero and corresponds to independence. The set of candidate values (W̃(1), . . . ,W̃(NW−1))
are elicited from disease data prior to the study period using a Gaussian approximation, and
further details are given by [29]. The full model proposed is given by

yi|ei, θi ∼ Poisson(ei, θi) for i = 1, . . . , n,

log(θi) = β0 + xiβx + uT
i βu + φi, (1.9)

φ̃ ∼ N(0, τ 2Q(W̃, ε = 0.001)−1),

W̃ ∼ Discrete Uniform(W̃(0),W̃(1), . . . ,W̃(NW )),
β = (β0, βx,βu) ∼ N(µβ,Σβ),

with an inverse gamma prior distribution specified for τ 2. A software package to imple-
ment this model is provided in the supplementary material accompanying [29].

1.5 Estimating representative pollution concentrations

The disease and pollution data are spatially misaligned, because the geographical scales
at which the data are measured are different. The disease data are available as a summary
measure for each areal unit Ai, which are typically defined by administrative boundaries and
are of irregular shapes and sizes. In contrast, monitored and modelled pollution data are
available at point and grid locations within the study region A, and are typically irregularly
spaced (monitored) and on a regular grid (modelled) respectively. This spatial misalignment
has been termed the change of support problem by [14], who argue that the desired pollution
concentration for areal unit Ai is

xi =
1

|Ai|

∫
s∈Ai

x(s)ds, (1.10)

where xi(s) is the true unobserved concentration at location s. Equation (1.10) is the
average concentration across areal unit Ai, and an alternative is the population weighted
average pollution concentration given by
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xi =

∫
s∈Ai

p(s)x(s)ds, (1.11)

where the population density at point s, p(s), is scaled so that
∫
Ai
p(s)ds = 1. This latter

measure attempts to adjust for varying population density within an areal unit, so that the
pollution measure is representative of the average concentration to which the population
might be exposed. However, both (1.10) and (1.11) are unknown quantities, and their es-
timation can be based on either the monitored or modelled data or both. The monitored
data are likely to be measured with little error, but they are spatially sparse and may not be
available in many of the n areal units at which the disease data are recorded. In contrast, the
modelled concentrations have been predicted on a regular grid such as 1 kilometre squares,
and thus have complete spatial coverage of the study region. However, they are known to
contain biases and calibration problems, and are less accurate than the monitoring data.

The simplest approach to estimating (1.10) or (1.11) is to average the modelled concen-
trations within each areal unit, an approach adopted by [27] and [18], the latter using a
population weighted average. An alternative approach has been used by [53], [13], [7] and
[25], who estimate (1.10) using Monte Carlo integration. Following [25], they set up a regular
grid of prediction points s∗i1, . . . , s

∗
iNi

within Ai, and estimate (1.10) by

xi =
1

Ni

Ni∑
j=1

x(s∗ij), (1.12)

where x(s∗ij) is a prediction of the pollution concentration at location s∗ij from a statistical
model. They proposed a spatio-temporal model since their disease data were spatio-temporal
as well. Here we adopt their approach in our spatial only case as follows. Let z(sj) denote
the observed air pollution concentration at point location sj for j = 1, . . . , J . Then we
assume the following hierarchical model.

z(sj) = x(sj) + ε(sj), ε(sj) ∼ N(0, σ2
ε ), (1.13)

x(sj) = v(sj)
Tα+ η(sj),

for j = 1, . . . , J . The true concentration x(sj) is represented by a spatial process η(sj) and
covariates, v(sj), the latter of which include measures of meteorology, spatial trend terms
and any other relevant information including the modelled concentrations in the grid square
containing location sj. The vector representing the spatial process η(sj) at all the J spatial
locations is denoted by η, and is modelled by

η ∼ N(0, σ2
ηSη(ρ)). (1.14)

Here 0 is a vector of zeros, and Sη(ρ) is a spatial correlation matrix which has ele-
ments Sη(ρ)jk = exp(−ρ||sj − sk||), where ||.|| denotes Euclidean distance. From this model
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Bayesian spatial prediction is used to estimate (1.12) for all n areal units, where samples
are drawn from the posterior predictive distribution f(x(s∗ij)|z) for each prediction location,
where z is the vector of all data points z(sj). MCMC simulation is used to sample from
the posterior predictive distribution, and samples can be combined over the Ni prediction
locations to estimate (1.12). This process can be repeated for a number of MCMC samples,
giving a posterior predictive distribution for (1.12) from which a single point estimate could
be computed or the entire posterior distribution could be used. The latter approach would
allow for the inherent variation in the vector of areal unit specific pollution concentrations x,
and approaches to propagate this variation into the health model are discussed in the next
section.

In this chapter we propose to use a recently developed downscaler model ([41], and then
generalised by [2], [1], and [54]). The downscaled method is implemented by assuming the
single covariate v(sj) to be the modelled concentration for the grid cell B that contains the
location sj. The modelled concentrations, we use are those from the AQUM, developed by
the UK Met Office ([44]) on a 12 Kilometre square grid cell. The grid cells are denoted by the
red dots in the right panel of Figure 1.1. The monitoring data we use are obtained from the
publicly available data from the AURN network, for details see http://uk-air.defra.gov.uk/.

1.6 Propagating pollution uncertainty into the health model

The Poisson log-linear model (1.1) treats the vector of estimated pollution concentrations
x = (x1, . . . , xn) as known constants, so that xi is the known and constant pollution con-
centration for areal unit Ai. This assumption ignores two different sources of uncertainty
or variation in x when estimating its health effects. The first source of uncertainty is due
to measurement error, which occurs because the true constant pollution exposure in each
areal unit is unknown and its estimated value is subject to error and uncertainty. The sec-
ond source of variation is that the pollution concentration is not constant across each areal
unit, meaning that there is within-area variability in exposure. This within-area variabil-
ity in exposure means that the population level risk model (1.1) has a different algebraic
form compared to what one would obtain by aggregating an individual level risk model to
the population scale. The bias in the health effect estimate resulting from this is known
as ecological bias, and models to overcome this problem and that of measurement error are
discussed below.

1.6.1 Measurement error models

Measurement error models are yet to be applied in air pollution and health studies with an
areal unit design, but have been extensively investigated in the context of both time series
(see [52] and [6]) and cohort studies (see [17] and [46]). Both Classical and Berkson mea-
surement error models have been applied in the literature, and in some cases in combination
in the same model ([52] and [46]). Measurement error models have been widely applied to
account for many different types of errors, including spatial misalignment as described in
the previous section ([17]), and the difference between outdoor concentrations and personal
exposures ([11]). The simplest measurement error set up is that the true constant pollution
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concentration in areal unit Ai is unknown and denoted by xi, and needs to be estimated by
error-prone measurements xi1, . . . , xigi . Then a simple Classical measurement error model
fitted in a Bayesian setting is given by

xi1, . . . , xigi ∼ N(xi, σ
2) for i = 1, . . . gi, (1.15)

xi ∼ N(µx, σ
2
x),

σ2 ∼ Inverse-Gamma(a, b),

where weakly informative priors are typically specified for (xi, σ
2). This model could be

added as an extra level in a hierarchical health model such as (1.1), (1.6) or (1.9). Thus
x = (x1, . . . , xn) would be treated as a set of parameters to be estimated in the model, and
the uncertainty in its value would be propagated through the health model.

1.6.2 Ecological bias models

A causal relationship between air pollution and health can only be estimated from individual
level disease data such as that modelled in a cohort study, and not from the population level
disease data used in areal unit studies. Naively interpreting the population level association
found in these studies in terms of individual-level cause and effect is incorrect, and is known
as the ecological fallacy. The difference between the estimated individual and population
level relationships is known as ecological bias, and has been the subject of extensive study
([48]). This bias occurs when there is within area variability in the pollution concentrations,
because a non-linear risk model changes its form under aggregation from the individual
to the population level. Consider the ideal situation of having individual level data on
disease presence and pollution exposure for all individuals in the study region. Let yik, for
k = 1, . . . , ni, be the binary observation denoting whether individual k in areal unit Ai has
the disease under study or not, and let xik denote that individuals pollution exposure. Then
a simple individual-level risk model is given by

yik ∼ Bernoulli(pik) for k = 1, . . . ni, i = 1, . . . , n, (1.16)
ln(pik) = β0 + xikβI ,

where a log rather than logit link is used because the likelihood of disease presence in any
single individual is small. However, for areal unit studies the individual yik’s are unknown,
and only the total number of disease cases from the population living in each areal unit
yi =

∑ni

k=1 yik are known. If there is no within area variability in exposure, that is if xik = xk
for k = 1, . . . , ni, then pik = pk and there is no ecological bias as (1.16) aggregates to a
binomial model, or a Poisson approximation to it as in (1.1). However, when there is within
area variability in exposure then computing the expectation of the aggregated yi from the
individual level model gives:

E[yi] = E

[
ni∑
k=1

yik

]
= exp(β0)

ni∑
k=1

exp(βIxik) = exp(β∗0)E[exp(xikβI)]. (1.17)
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Thus, comparing (1.1) and (1.17) shows that ecological bias occurs because E[exp(xikβI)] 6=
exp(E[xikβx]), so that in general βI 6= βx. Two main approaches have been proposed to solve
this problem, the first of which uses a sample of exposures xi1, . . . , xigi for areal unit Ai.
These exposures could be gi data points in the same areal unit, or gi samples from the pos-
terior predictive distribution of (1.10) obtained from a first stage pollution model such as
(1.13). Based on such a sample of exposures [49] propose a Poisson log-linear convolution
model for yi, where the risk model for θi corresponding to (1.1) would be changed to

θi = exp(β∗0 + uT
i βu + φi)

gi∑
k=1

exp(xikβI), (1.18)

which essentially approximates E[exp(xikβI)] by its sample average. The second approach
was first proposed by [38], who suggested representing the within area distribution of expo-
sures by a parametric distribution. Let Xi denote the random variable characterising the
within-area exposure distribution for areal unit Ai. Then the desired quantity from (1.17)
is E[exp(XiβI)], the moment generating function of Xi. Assuming that the within-area
exposure distribution is Xi ∼ N(µi, σ

2
i ) leads to the risk model

θi = exp(β0 + uT
i βu + φi + µiβI + σ2

i β
2
I/2), (1.19)

where (µi, σ
2
i ) can be estimated by their sample equivalents from the gi samples xi1, . . . , xigi .

However, if the within-area exposure distribution is skewed then a normal approximation
may be inappropriate, and a log-normal distribution could be used instead. The moment
generating function of a log-normal distribution does not exist, so [42] propose approximating
it with a three term Taylor expansion leading to the risk model

θi = exp(β0 + uT
i βu + φi + µiβI + σ2

i β
2
I/2 + η3i β

3
I/6), (1.20)

where η3i is the third central moment and is given by η3i = σ2
i /(µi[(σ

2
i /µ

2
i ) + 3]).

1.7 Illustrative example

We illustrate the methods discussed in this chapter by presenting a new study examining
the impact of long-term exposure to PM2.5 on respiratory hospitalisation risk in England
in 2010. For this study England is partitioned into n = 323 local and unitary authorities,
which are typically either individual cities or larger rural areas. The disease data are counts
of the numbers of hospital admissions due to respiratory disease in 2010, and the spatial
pattern in the standardised morbidity ratio (SMRi = yi/ei) is displayed in the left panel of
Figure 1.1. The figure shows that the highest risk areas are cities in the north and central
parts of England, such as Liverpool, Birmingham and Manchester. In contrast, the lowest
risk areas are typically rural, and include Rutland, West Somerset and Richmondshire. The
SMR map shows evidence of localised spatial smoothness, with some pairs of neighbouring
areal units exhibiting similar risks while other pairs have vastly different values.
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Figure 1.1: The left map displays the standardised morbidity ratio (SMR) for hospital
admissions due to respiratory disease in 2010, while the right map shows the locations of
the pollution monitors (blue dots) and the corners of the 12 Kilometre square grid cells (red
dots).
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The pollution metric considered in this study is the annual average PM2.5 concentration
levels for 2009, where the monitoring data come from the AURN network of sites while the
modelled concentrations come from the AQUM model. Their locations are displayed in the
right panel of Figure 1.1, where the blue dots represent the monitor locations while the red
dots are the corners of the 12 kilometre square grid cells for which the modelled data are
available. The figure shows that the monitors are clustered mainly in the cities, while the
rural areas such as the south west of England have very poor spatial coverage. In contrast,
the modelled concentrations are calculated on a regular grid of size 12 kilometres, and thus
provide complete spatial coverage of the study region. Finally, the confounding effects of
socio-economic deprivation on disease risk were accounted for by including the English index
of multiple deprivation into the model.

The modelling of these data was undertaken in two stages. In the first stage, using MCMC
we fitted (1.13) to annual PM2.5 data from J = 166 monitoring sites for the year 2009. At

the tth iteration (t = 1, . . . , 5000) we then obtained x
(t)
i using (1.12), where x(s

∗(t)
ij ) was a

draw from the predictive distribution as mentioned above. Then in stage two the health im-

pact of PM2.5 was estimated, using the posterior distribution of x
(t)
i . Three different health

models were fitted to the data. Model A is given by (1.1) in conjunction with the CAR prior
(1.4), and is routinely used in studies of this type. In this model the pollution concentrations
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are assumed to be fixed, and have been estimated as the mean of the posterior predictive
distribution of (1.12) based on 5000 posterior samples. Model B also assumes the pollution
concentrations are fixed, but extends model A by using a more flexible spatial correlation
model for the random effects, namely the LCAR model given by (1.9). Finally, Model C
also uses the LCAR model (1.9), but extends model B by allowing for within-area variation
in the pollution concentrations via the log-normal model given by (1.20). The first three
moments of this log-normal approximation are computed based on their sample equivalents
from the posterior predictive distribution of (1.12). A log-normal model was used rather than
a normal one as the posterior predictive distributions for (1.12) exhibited small amounts of
right skewness.

The left panel of Figure 1.2 displays the posterior predictive mean average PM2.5 con-
centration for each local or unitary authority obtained from the pollution model in stage
one, and shows that the highest concentrations are observed in the city of London in the
south east of England. The other highly polluted areas are the large cities of Birmingham
and Manchester, while the rural areas have the lowest pollution concentrations, particu-
larly in the far south west and north of England where population density is relatively low.
The estimated PM2.5 concentrations are spatially smooth, which illustrates the potential for
collinearity with spatially smooth random effects highlighted by [8]. The posterior predic-
tive standard deviations in PM2.5 are displayed in the right panel of Figure 1.2, and show
substantial uncertainty in exposure and a clear mean-variance relationship, as the largest
values coincide with higher mean concentrations.

The estimated relative risks and 95% credible intervals corresponding to a 1 µgm−3 in-
crease in PM2.5 concentrations are: Model A - 1.032 (1.001, 1.079); Model B - 1.040 (1.011,
1.067); and Model C - 1.034 (1.011, 1.057). All three models suggest that areal units with
higher concentrations of PM2.5 exhibit higher risks for respiratory disease, with increases
ranging between 3.2% and 4%. The three models exhibit differences in their estimated risks,
as replacing a globally smooth set of random effects (Model A) with a locally smooth set
(Model B) has inflated the risk. In addition, the 95% credible intervals from Model A are
wider than those from Model B, and both these effects may be due to the collinearity be-
tween the globally smooth random effects in Model A and PM2.5. Moving from Model B to
Model C allows for the inherent within-area variation in the average PM2.5 concentrations
in each areal unit, which has led to an attenuation of the risk by 0.6%. Thus the estimated
risks for Models A and C are similar, which may be due to the two biases described above
working in opposite directions. Thus, overall we believe the most reliable estimate comes
from Model C, as it can capture more flexible spatial autocorrelation structures than Model
A, while correctly allowing for the variation in the pollution concentrations when estimating
its health effects unlike Model B.

1.8 Discussion

This chapter has critiqued the statistical challenges involved in estimating the long-term
health impact of air pollution using an ecological areal unit study design, and has provided
a worked example to show the potential impact of an inappropriate model specification.
The modelling approach taken in the latter was implemented in two stages, a first stage
pollution model, whose results were then used in a second stage health model. Two-stage
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Figure 1.2: The maps display the posterior mean (left panel) and standard deviation (right
panel) of the annual average PM2.5 concentrations in 2009 for each local and unitary authority
in England
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approaches such as this are becoming common in the general air pollution and health liter-
ature (see [6] and [25]), but as highlighted by [46] induce their own biases into the health
effects. Therefore future research in this area will need to consider a single integrated model,
that simultaneously estimates the spatio-temporal pattern in air pollution concentrations as
well as its resulting effects on disease. An important issue in an integrated Bayesian model
is that of feedback, namely should information in the disease counts be allowed to effect
the estimated pollution concentrations, when it is the relationship in the opposite direction
that is of primary interest. In time series studies this feedback has been prevented (see [30]),
but an interesting area of work would be to examine the impact of this in an areal unit study.

The other future research direction is to extend the methodology discussed here into
the spatio-temporal domain. The development of locally smooth/orthogonal random effects
models and allowing for within area variation in exposure have mainly been considered in
the purely spatial domain, and a number of studies are now utilising spatio-temporal data
([20], [16] and [25]). In addition to the challenges outlined here for spatial studies, spatio-
temporal studies are likely to throw up a number of additional modelling challenges for
which methodological development is required. The most obvious of these is developing a
model for spatio-temporal autocorrelation, which has to be flexible enough to allow for non-
stationarity, non-separability and allow for varying levels of smoothness in both space and
time. The use of a spatio-temporal study also naturally leads to questions about lag times
of air pollution effects, a subject that has only been investigated in a time series context to
date.
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