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Abstract

The choice of the sampling locations in a spatial network is often guided by practical de-
mands. In particular, many locations are preferentially chosen to capture high values of a
response, for example, air pollution levels in environmental monitoring. Then, model estima-
tion and prediction of the exposure surface become biased due to the selective sampling. Since
prediction is often the main utility of the modeling, we suggest that the effect of preferential
sampling lies more importantly in the resulting predictive surface than in parameter estimation.
We take demonstration of this effect as our focus.

In particular, our contribution is to offer a direct simulation-based approach to assessing the
effects of preferential sampling. We compare two predictive surfaces over the study region, one
originating from the notion of an ‘operating’ intensity driving the selection of monitoring sites,
the other under complete spatial randomness. We can consider a range of response models.
They may reflect the operating intensity, introduce alternative informative covariates, or just
propose a flexible spatial model. Then, we can generate data under the given model. Upon
fitting the model and interpolating (kriging), we will obtain two predictive surfaces to compare
with the known truth. It is important to note that we need suitable metrics to compare the
surfaces and that the predictive surfaces are random, so we need to make expected comparisons.
We also present an examination of real data using ozone exposures. Here, what we can show
is that, within a given network, there can be substantial differences in the spatial prediction
using preferentially chosen locations vs. roughly randomly selected locations and that the latter
provide much improved predictive validation.

Keywords: fitting model; hierarchical model; informative covariate; intensity; sampling
model; spatial point pattern.

1 Introduction

The choice of the sampling locations in a spatial network is often guided by practical demands
such as the need to monitor air pollution levels near their most likely sources and in areas of
high population density. Air pollution surfaces constructed solely on the basis of data obtained
from these networks are likely to be biased if they are not adjusted for the effects of the choice
of the monitoring sites. For example, if, due to locations, monitors tend to record high levels
of exposure, interpolation of levels for low population density areas or locations away from
sources such as power stations may be upwardly biased. That is, if the sampling locations are
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preferentially chosen to capture high (or low) values of a response, for example, air pollution
levels, then subsequent model estimation and prediction of the exposure surface can become
biased due to the selective sampling. In the sequel, we use the term “bias” informally but
with the intention of capturing departure from what the exposure surface would look like if we
interpolated given that the locations were selected under complete spatial randomness, see e.g.
Diggle (2003).

Since prediction is often the main utility of the modeling, we suggest that the effect of
preferential sampling lies more importantly in the resulting predictive surface than in parameter
estimation. We adopt this as our focus, taking a direct simulation approach to assess the effect.
Our basic idea is to compare two predictive surfaces. One originates from the notion of an
‘operating’ intensity driving the selection of monitoring sites. The other considers what would
have been predicted had the sampling intensity been uniform, i.e., complete spatial randomness,
over the study region. Given a set of monitoring stations, we can consider a range of response
models. They may reflect the operating intensity, introduce alternative informative covariates,
or just propose a flexible spatial model. In particular, we use three stylized but representative
versions of these scenarios. Regardless, we can generate data under the given model. Then,
upon fitting the model and interpolating (kriging), we will obtain two predictive surfaces to
compare. Under this simulation, we will know the “truth” and so, can compare our predictive
surfaces to it. Two remarks here are: (i) we need suitable metrics to compare the surfaces and
(ii) the predictive surfaces are random, so we need to make expected comparisons.

We also include a real data example employing ozone exposures. However, with observational
data, we can not know the truth. So, what we can show is: (i) within a given network, there
can be substantial differences in the spatial prediction using preferentially chosen locations vs.
roughly randomly selected locations and (ii) data from a randomly selected sample of sites from
the network yields much better predictive validation than preferentially sampled data. Here, we
recognize that neither set of sites actually arose from specification of an intensity; the exercise
is only suggestive of what can happen in practice with observational data.

As a convincing, motivating example consider a model where space, denoted by t, is one
dimensional. The model is written as Z(t) = a + b cos(t mod 2π) + ε(t) where a and b are
unknown parameters and ε(t) is a mean zero Gaussian process. Information contained in the
data Z(t) for t = 1, . . . , n, regarding a and b, can vary between two very different functions of
a and b depending on the set of t’s where we observe the Z(t) process. If we only observed the
process at t ≈ 2πk, we would only see observed values near a+ b. On the other hand, if we take
all the observations near t ≈ π(2k + 1), we would only see values near a− b.

Recent discussion on preferential sampling has been sparked by the work of Diggle et al.
(2010) who proposed a joint hierarchical model for the response and the locations. In particular,
they adopt a model for the intensity that drives the locations which is assumed to be a spatial
Gaussian process realization. Then, they employ this same Gaussian process realization to
explain the responses. This may not be a sensible practical specification. Pati et al. (2011)
generalize this approach in a Bayesian hierarchical setting, introducing common covariates into
both the intensity for locations and the mean of the response model with two spatial Gaussian
processes, one for the intensity and one for the response. It is unclear how well the use of
these informative covariates in the regression model corrects for the preferential sampling bias
introduced by these covariates in the location model.

We note that while preferential sampling often operates in practice, it is rare that sampling
sites would be drawn randomly, using an explicit intensity function. In fact, there is a substan-
tial literature on spatial design. See, e.g., Müller et al. (2001) or, from a Bayesian perspective,
Pilz and Spöck (2008). As a result, we doubt that complete spatial randomness ever operates
in practice. Rather, geometric ideas like space filling designs (Nychka and Saltzman, 1998)
or spatially-balanced designs (Theobald et al., 2007) offer non-model based, non-preferential,
deterministic strategies. With regard to preferential sampling, if interest is in levels at certain
locations, then it would be inappropriate to discourage sampling at those locations. Further-
more, if the available data is preferentially sampled but is the only data that can be expected,
then, presumably it would be analyzed. Our point is only that one might not feel comfortable
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with the potential bias in predictions made from it. Again, we employ intensities to provide
stochastic models for preferential and non-preferential sampling.

In this regard, Lee et al. (2011) apply the preferential sampling approach to build rep-
resentative air quality indicators and their associated uncertainty measures from multiple air
pollutants. The general area of environmental exposure modeling given the non-random mon-
itoring sites has seen a lot of activity in the recent literature, see e.g., the very recent work of
Sheppard et al. (2011). There is also a substantially Bayesian literature, for example, Cocchi
et al. (2007) who developed hierarchical model for daily average PM10 concentration levels and
Sahu et al. (2007) where a hierarchical auto-regressive model was developed for daily maximum
8-hour average ozone concentration levels.

With regard to studying point patterns, there is an enormous literature, summarized in
the books by, e.g., Diggle (2003) and Illian et al. (2008). In studying species abundance
over large spatial regions, Chakraborty et al. (2010) use point pattern analysis to address
preferential sampling in the context of sampling effort. Incorporating land transformation, they
distinguish an operating intensity from a potential intensity. See also earlier environmental
settings employing point pattern data modeling, such as Hooten et al. (2003) and Latimer et
al. (2006).

As we detail in Section 2, we conduct 12 experiments arising from two choices for the sampling
model by three choices for the fitting model by two choices for the intensity under a given sample
size. Again, comparison between the intensities is in the predictive space. Specifically, predictive
surfaces are compared under the same response (or first stage data model) but with different
intensities for the point pattern of sites (or second stage specification). We note that we are not
interested in testing whether complete spatial randomness is an acceptable hypothesis for the
sites. Rather, we are assuming that preferential sampling implies this is not the case and that
we are trying to reveal its impact.

The format of the paper is as follows. Section 2 details the broad technical issues in modeling,
distinguishing our approach from the method proposed by Diggle et al. (2010). The specific
details of our approach are provided in Section 3. Section 4 takes up general simulation issues
for us while Section 5 considers metrics for comparing surfaces. Section 6 lays out the specific
simulation design that we use to compare different sampling schemes. Section 7 describes the
results from the simulation study while Section 8 provides a preferential sampling assessment
for ozone data. Summary remarks and directions for future work are given in Section 9.

2 Technical issues in modeling

As noted in the Introduction, we take a direct approach to investigate the effects of preferential
sampling. In this regard, we treat the sampling locations as random, rather than fixed as
is often done in spatial and spatio-temporal data modeling, see e.g. Banerjee et al. (2004)
and also Cressie and Wikle (2011). Hence, we have a multilevel specification where we model
intensity, then locations given intensity, then process given locations and finally, observations
given process. Here, process is the spatial environmental process of interest over the study
region, e.g., a climate process such as temperature or precipitation or a pollutant process such as
ozone or particulate matter. We investigate such hierarchical specifications within the Bayesian
framework, adding priors for the parameters introduced at each modeling stage.

The fundamental approach is to use simulation to reveal what can happen under preferential
sampling and what can happen if informative covariates are introduced to attempt to remedy
bias. The examples we present in Section 4 are simplified, not of necessity but rather to facilitate
illumination of the effects. Within the context of simulation and hierarchical modeling, we need
to specify both the model for the intensity and the model for the process. We will assume that the
data given process are conditionally independent, i.e., that we have a nugget. For the intensity,
we consider two choices. One is a preferential sampling form motivated by “sampling where
people are”, i.e., by a population density surface. The other is complete spatial randomness.

As noted in the Introduction, in practice, we do not fit an intensity model; we assume the
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locations are fixed and we focus on describing the process that is used to explain the response.
This leads to envisioning a true response surface (which, again, is assumed to be observed up
to white noise) along with a fitting surface which, in practice, is never true but supplies a
process model. We consider two scenarios for the true surface. One is that it arises from an
externality, i.e., there is a pollution source at a given location and exposure decays in distance
from the source. The second is a process model that uses an informative covariate; in our case,
we take it to be population density. The notion here is that, if sampling locations are drawn as
a reflection of population density, then we should use population density in the response model
to “correct” the preferential sampling bias. We consider three scenarios for the fitting surface,
the two foregoing choices for the sampling surface along with, arguably, the most common
choice, introduction of spatial random effects through a Gaussian process (GP). So, altogether,
we have 2 point pattern models×2 sampling models×3 fitting models = 12 simulation
cases. Each one will be replicated 100 times to enable suitable averaging to learn about expected
performance and expected differences between each of these surfaces under preferential sampling
vs. complete spatial randomness. Thus, the proposed method is quite different from the work
of Diggle et al. (2010) and Pati et al. (2011) and is very computationally demanding as is
elaborated in Section 3.

We note that the goal of working with these various simulation cases is to be able to distin-
guish between the effect of preferential sampling and the effect of using the “wrong” model. But
then, this takes us to the remaining ingredient, the selection of suitable metrics to make desired
comparisons; we take this up in Section 5. As noted in the Introduction, our approach seems
novel in the context of preferential sampling. Moreover, it is attractive in explicitly revealing the
impact of preferential sampling on prediction. Though it is offered in a fairly simple setting, it
can serve as a suggestive template for further investigations. Suitably modified, it enables us to
work with real data, as in Section 8. With real data, we do not have the true response surface.
But, we can use the above ideas to approximate a predictive comparison between preferential
and non-preferential sampling.

An obvious but worthwhile remark here is that preferential sampling affects the choice of
locations but the true response surface is not affected by the choice of sampling locations.
Typically, this is manifested in practice such that the choice of response model has nothing to
do with the choice of the sampling locations. Nonetheless, what we infer about the response
surface is affected by the choice of sampling locations. Our circumstance is akin to familiar
regression settings where inference regarding a nonlinear (even a linear) relationship between
response Y and covariate X can be affected by what levels we have drawn for X. Reiterating,
we do allow the possibility of the response surface and the point process surface being similar
as both can share a set of common covariates. Any such covariate, e.g., population density with
an environmental monitoring network, is referred to as an ‘informative covariate’ for both the
response and the intensity process. Again, the point is that a common covariate can influence
both the response and the locations but the sampling locations cannot influence the response
surface. The foregoing simulation design will enable us to assess how successful, in terms of
correcting bias in the response model, the introduction of an informative covariate is.

Throughout the paper we consider the number of sampling locations, n, to be fixed. That
is, to envision practical use of our approach, we would imagine having in place an existing
monitoring network of a given size. With a non-homogeneous Poisson process (NHPP) model
(see, e.g. Diggle, 2003) we have conditional independence of the locations given the intensity.
More general models for the intensity, e.g., incorporating clustering or inhibition (e.g., Illian et
al., 2008), are not considered here.

3 Our approach

3.1 Point process models

Suppose that the network consists of n fixed monitoring sites s1, . . . , sn within a study domain
D. In practice, these sites may have been chosen without carrying out any formal sampling
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design but according to considerations such as population density and proximity to air pollution
sources. Let x(s) denote the vector of levels of these covariates at location s. Then, under a
NHPP model for the sites, the underlying sampling intensity might take the form:

λ1(s;α1) = exp (x(s)′α1)

where α1 denotes the unknown parameters.
We seek to compare the implications of the operating intensity λ1(s;α1) with any other

intensity of interest λ2(s;α2) on the predictive surfaces. To make a meaningful comparison, we
assume that the two intensities are matched in scale, i.e., that we have∫

D

λ1(u;α1)du =
∫

D

λ2(u;α2)du. (1)

The second intensity λ2(s;α2) can be specified similarly to the first one, but possibly with
different covariates arising from different considerations. The default alternative which we focus
on is the homogeneous Poisson process (HPP) yielding λ2(s;α2) = λ2, s ∈ D. The constraint (1)
implies that, in this case, ∫

D
λ1(u;α1)du =

∫
D

λ2(u;α2)du
= λ2

∫
D

du
= λ2|D|

where |D| =
∫

D
du denotes the area of the region D. Thus we take λ2 =

R
D

λ1(u;α1)du

|D| . In fact,
since we condition on a fixed n, in the HPP case, the resulting conditional density is 1/|D| over
s ∈ D, regardless of λ2.

In general the network of sites s1, . . . , sn is thus assumed to be a realization of a point process
having the density function

f(s|α) =
λ(s;α)∫

D
λ(u;α)du

, s ∈ D

where the intensity function λ(s;α) is either of the two intensities λ1 or λ2. The Bayesian
model for this stage of specification is completed by assuming a suitable prior π(α) for α. The
resulting posterior distribution is π(α|s1, . . . , sn) ∝

∏n
i=1 f(si|α)π(α) and the prior predictive

distribution for n locations becomes

π(s1, . . . , sn) =
∫ n∏

i=1

f(si|α)π(α)dα.

In the simulations below, for convenience, we assume that the λ’s are known and hence
no MCMC model fitting is necessary. However, in practical situations, a proposed parametric
intensity surface λ1(s) would be unknown and would have to be estimated from the observed
realization of the sampling locations s1, . . . , sn. Several methods exist for this task, see e.g.,
Diggle (2003), Illian et al. (2008) and, from a Bayesian perspective, Chakraborty et al. (2010).
This estimation can be performed independently of the fitting of the response model, i.e., of the
estimation for the response model parameters.

In particular, the covariate surfaces will typically be tiled to some spatial resolution so
fitting and sampling requires working only with {xj} indexing the resulting grid cells. That
is, x(s) = xj if s ∈ Aj . So, once fitted, to generate a point pattern under a given λ(s;α),
we only need to take a maximum over a finite number of cells in order to use a standard
rejection/thinning algorithm, see e.g. Lewis and Shedler (1979).

In some cases, to achieve more flexibility, we introduce a Gaussian process (GP) into the
model for the intensity surface, yielding a so-called Cox process. (See, Illian et al., 2008 or Diggle
et al., 2010, in this regard.) We might even introduce heterogeneity in the uncertainty associated
with the surface, uncertainty which depends upon covariate levels. In light of the above, we
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sample point patterns from an intensity given the tiling associated with the covariates x(s)’s.
Hence, we can use the same discretization to accommodate the GP, resulting in a finite set of
spatial random effects with a joint multivariate normal distribution, following, e.g., Banerjee et
al. (2004). However, with many grid cells, we obtain a high dimensional distribution. Dimension
reduction, perhaps employing predictive processes, see e.g. Banerjee et al. (2008) may be used
to address the computational burden. In the sequel, under our simulation-based perspective, we
omit the GP component in the interest of simplicity as well as reducing noise that may obscure
differences we seek to reveal.

3.2 Response Models

For observed data Z(s) at a location s, we assume the customary hierarchical model:

Z(s) = µ(s) + ε(s), (2)

where ε(s) is assumed to follow the Gaussian error distribution with mean zero and variance
σ2

ε , independent across the locations. The spatial process model for the mean, given a set of
location specific covariates x(s), is given by:

µ(s) = x(s)′β + w(s) (3)

where we assume a Gaussian process prior for w(s) with zero mean and, for convenience, an
isotropic covariance function σ2

wρ(||s − s′||;φ) independently of ε(s), see e.g. Banerjee et al.
(2004). Here, we use x(s) generically, as in Section 3.1, recognizing that different components of
x(s) may be used in the intensity model vs. in the response model. Our simulation adopts, for
illustrative purposes, the exponential correlation function ρ(d;φ) = exp(−φd) (but any choice
can be considered). The specification is completed by assuming a prior distribution, π(θ) for
the unknown parameters θ = (β, φ, σ2

w, σ2
ε ).

Let z = (z(s1), . . . , z(sn)) and µ = (µ(s1), . . . , µ(sn)) denote the data and the mean response
vector at n locations s1, . . . , sn. The joint posterior distribution of θ and w, where w is the vector
of random effects, is given by π(θ,w|z) ∝ f(z|w,θ)π(w|θ)π(θ), and the posterior predictive
distribution of Z(s0) is given by

f(z(s0)|z) =
∫

f(z(s0)|w(s0),θ)π(w(s0)|w,θ, z)π(θ,w|z)dwdθ. (4)

3.3 Joint modeling

We now consider both the locations s1, . . . , sn and the data z(s1), . . . , z(sn) to be random. Evi-
dently, we have to specify this model through a distribution for locations and then a conditional
distribution for the data given the locations. Below, we have two choices for λ, i.e., λk, k = 1, 2
and three choices for θ, i.e., θr, r = 1, 2, 3. Suppressing r and k for the moment, we have the
following Bayesian hierarchical model:

f(z|w,θ, s1, . . . , sn) π(w|θ, s1, . . . , sn) f(s1, . . . , sn|α)

yielding the joint posterior distribution of w, θ and α given by

π(w,θ,α|s1, . . . , sn, z) ∝
n∏

i=1

f(z(si)|w(si),θ, si)π(w|θ, s1, . . . , sn)

· π(θ)
n∏

i=1

f(si|α)π(α).

The factorization shows that θ and α can be estimated separately, given the sampling locations
s1, . . . , sn. This is apart from whether covariate x appears in the distribution for z(si, si, or
both.
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4 Simulation issues

In implementing a simulation study such as we have proposed, we can envision two settings: (i)
the no data case and (ii) the data case. We describe both cases in detail here but, in the sequel,
confine ourselves to the no data case.

For us, the no data setting means no observed s’s and hence, no observed z’s. We undertake
what might be referred to as a preposterior analysis, see e.g., Dawid (1984). That is, for the
purposes of our simulation study, we do not need to condition on a fixed dataset; we are only
interested in comparing the effects of two different intensities. However, in Section 8, we work
with real data and there we do have observed s’s and z’s. As noted above, we consider two
sampling models, each with no spatial random effects. Thus, given θr, r = 1, 2, there is a true
mean surface µr(s) = xr(s)T β, s ∈ D. To study the effect of preferential sampling, we will
compare µr(s) with a collection of simulated posterior predictive surfaces.

In particular, this collection will be created for each of three fitting models (θr) with each of
two intensity models (αk) for a fixed sample size n. In our experiments we have used n = 100,
although we have investigated with n = 50 and n = 300 where the results did not change
substantially at all. That is, we will create b = 1, . . . , B predictive surfaces for 3× 2 = 6 fitting
scenarios. These will be compared with the truth under both r = 1 and r = 2, using the
metrics presented in Section 5 below. The simulation will require two loops, an outer loop over
b = 1, . . . , B to generate the replicates and an inner loop over l = 1, . . . , L, generating posterior
samples associated with that replicate, in order to obtain the posterior mean estimated surface
for that replicate.

Hence, under sampling model given by θr and given by intensity αk, we would draw α∗
k

from πk(α). Alternatively, we could fix αk. Regardless, we draw s∗1, s
∗
2, . . . , s

∗
n from f(s|αk).

Under response model r, given θr, draw w∗ = (w(s∗1), w(s∗2), . . . , w(s∗n)), if needed, and, finally,
z∗ = (z(s∗1), z(s∗2), . . . , z(s∗n)) becomes our data from the sampling model.

Now, given a fitting model, for a grid of s̃j over D, obtain E(Z(s̃j)|z). This requires sampling
from f(z(s̃j)|z). This is standard MCMC based model fitting, see e.g. Banerjee et al. (2004).

We repeat the simulation B times. Hence, up to discretization, these become the set of
B mean surfaces to compare with the µr(s) surface. Note that we could introduce further
randomness by randomly drawing θr. In this case, each simulated posterior mean surface
replicate has its own “true” mean surface, µr,b(s) = xr(s)T βr,b.

Returning to the data setting, with an observed set of z(si) at locations si, i = 1, . . . , n, we
would avoid specifying α’s and θ’s, rather obtaining posterior distributions for them. So, given
k, fit f(s1, . . . , sn|αk)π(αk) to obtain π(αk|s1, . . . , sn). Given r, fit f(z|wr,θr)π(wr|θr)π(θr)
to obtain π(θr|z). Then, under λk, draw α∗

k from π(αk|{si, i = 1, . . . , n}), then draw {s∗i , i =
1, . . . , n} given α∗

k, then draw θ∗
r from π(θr|z). If needed, draw {w(s∗i )} given θ∗

r and finally,
z∗. Again, z∗ is viewed as data from the sampling model. As in the no data case, given z∗

and a fitting model, we can now obtain a set of posterior mean surfaces. Since now there is no
overall truth, we would define the “true” sampling model as the mean surface associated with
θ∗

r . That is, because θr is random, as above, each posterior mean surface replicate has its own
true mean surface.

It may be useful to present the above scheme in algorithmic format. It takes the following
form:
No Data Case

1. Specify a fixed sample size n, a sampling model θr and an intensity sampling model αk.
Assume that either θr and αk are fixed and known or, if not, draw these from their
respective prior distributions.

2. Obtain the true surface µr(s̃j) = xr(s̃j)T β for a grid of s̃j over D.

3. Start simulation replicate b. (This is the outer loop in the above discussion.)

4. Draw a set of n locations s∗1, s
∗
2, . . . , s

∗
n from f(s|αk).

5. If the sampling model, θr is spatial, draw w∗ = (w(s∗1), w(s∗2), . . . , w(s∗n)), from the Gaus-
sian process model, see immediately below (3).
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6. Draw z∗ = (z(s∗1), z(s∗2), . . . , z(s∗n)) from the response model (2).

7. Choose a fitting model, say θj , and fit it to the data z∗ using standard MCMC methods.

8. From the MCMC model fitting, for a grid of s̃j over D, obtain µ̂(b)(s̃j) = E(Z(s̃j)|z)
where the expectation is over the posterior predictive distribution f(z(s̃j)|z), see (4). This
is achieved by L posterior predictive draws z(l)(s̃j), l = 1, . . . , L, which is the inner loop
in the above discussion.

9. End simulation replicate b.

10. At the end of the simulation replicate compare the true surface obtained in step 2 with
the fitted surface in step 8.

The above algorithm is run for two point pattern models, αk, k = 1, 2, and two sampling
models θr, r = 1, 2 in step 1 with 3 fitting models θj , j = 1, 2, 3, see details in Section 6, giving
us the 12 possibilities mentioned in Section 2.

In the data setting only the steps 1 and 2 of the algorithm are changed as follows. The sample
size of the data is set as n. A point process model is fit independently to the observed locations
s1, . . . , sn to obtain the posterior distribution p(α|s1, . . . , sn). Now a value α is simulated from
this posterior distribution instead of the prior distribution. Similarly, a response model θ is
independently fitted to the data and subsequently θ is drawn from this posterior distribution
instead of the prior distribution. In step 2, the true response surface is obtained as the posterior
predictive surface from the fitted response model.

5 Metrics for comparison of predicted surfaces

Following the previous section, we seek pairwise comparison between a posterior mean surface
and a true surface. Denote the former by µ̂(s), s ∈ D, the latter by µ(s), s ∈ D. (In fact, each
will have a subscript indicating the fitting model for the former, the sampling model for the
latter.) Comparison can be made globally or locally. A local metric at s0 makes comparison
between µ̂(s0) and µ(s0). A global metric will provide an integrated comparison over the s0 ∈ D.

There are many possible candidate metrics that can facilitate comparison. With interest in
bias, we first define the probability of over prediction at s0,

POP (s0) = P (µ̂(s0) > µ(s0)) .

Evidently, POP (s0) = .51 is better than POP (s0) = .52 but also POP (s0) = .49 is bet-
ter than POP (s0) = .48. In other words, POP (s0) + PUP (s0) = 1, where PUP (s0) is the
probability of under prediction at s0, so we need to employ |POP (s0) − .5|. In fact, let’s call
LPB(s0) = |P (µ̂(s0) > µ(s0)) − .5| = |POP (s0) − .5| the “local probability bias” at s0 and
1

|D|
∫

D
LPB(s)ds the GPB, the ”global probability bias”. LPB and GPB are employed below.

Next, since our simple examples work with Gaussian models, let us use squared error for
prediction error, and define the local prediction error at s0,

LPE(s0) = E(µ̂(s0)− µ(s0))2

and, thus, the global prediction error, GPE = 1
|D|

∫
D

LPE(s)ds. In fact, we can partition the
local and global prediction errors into Bias2 plus variance to clarify better where differences
are.

The expectation and the probability calculations are performed with respect to the distri-
bution of µ̂(s0). From Section 4, under a fixed θr, we can use the replicates over B to obtain
Monte Carlo approximations. That is,

ˆPOP (s0) =
1
B

B∑
b=1

1
(
µ̂(b)(s0)− µ(s0) > 0

)
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where 1(A) = 1 if A is true and zero otherwise. Thus, we obtain an estimator, ˆLPB(s0) of
LPB(s0). Similarly, we can use a Monte Carlo approximation to obtain ˆLPE(s0), an estimator
of LPE(s0); we omit details.

We can also develop local “two-sample t-tests” at each interpolated location s0, using the
µ̂(b)(s0) as the random samples. We can also record the number of significant positive differences,
negative differences, and non-significances over the set of interpolated locations in the study
region D. We do not pursue this path further here.

We can use the estimators, ˆLPB(s0), ˆLPE(s0), to compare the two sampling intensities, λ1

and λ2. These local metrics can also be plotted over the study region to further illuminate the
effect of sampling locations on the predictive surfaces.

To obtain the global measures, GPB and GPE (in terms of Bias2 and variance), we integrate
the local measures over D using discretization. These global measures are also employed in the
simulation study presented in Section 6.

As a last comment here, we may also be interested in the effect of preferential sampling on
the regression model. Evidently, we can compare regression coefficients with the truth, assuming
that the fitting model is the same as the true model. Moreover, as long as the fitting model
is the same, we can compare coefficients arising from the different intensities. With the simple
simulation models in Section 6, Regression comparison will not be very interesting. However,
as a general remark, suppose we consider a single covariate. Then, the effect would depend
heavily on how strong the relationship is between the response and covariate. If the relationship
is strong, then what we might expect is what happens in standard regression settings. We will
be observing a biased set of covariate levels rather than the full support for the covariate, which
can lead to bias in the resulting estimation of the relationship.

6 Specifics of the simulation design

We present a stylized illustration using three simple models to articulate differences and effects
in the clearest way, attempting to avoid confounding due to sources such as identifiability,
approximation, nonlinearity, heterogeneous variances, etc. We consider the study domain, D,
to be the unit square where both coordinates take values in the interval [0, 1]. We suppose that
there is a single pollution source at a point Q with coordinates q (Figure 1). We also suppose
that there are three cities with center locations, c1, c2 and c3 where the c’s are distinct and
different from q. That is, we have multiple population centers within the study region D where
the population centers are not connected with the pollution source.

With this source, the exposure surface at any location s in D, denoted by x(s), is given by
x(s) = exp(−φq||s− q||) where || · || denotes the Euclidean distance and φq is assumed to be a
known positive constant. That is, exposure decays inversely to distance, with φq dictating the
rate of decay. This naive exposure specification can be relaxed, but, again, we are only offering
an illustrative setting.

We also define what could be viewed as an informative covariate through a population density
surface given by p(s) = exp(−φcds) where ds is the minimum distance between s and the three
city center locations c1, c2 and c3. The parameter φc, assumed to be a known positive constant,
determines the population intensity. Decreasing population density away from the city center is
a customary specification though, again, our isotropic choice is naive and only illustrative. We
can choose the c’s and φ’s to obtain very different x(s) and p(s) surfaces. This specification will
allow us to consider pollution levels for three cities having similar population density but with
varying distances from the pollution source, Q. We note that, in practice, p(s) is often obtained
from census data and is available as a tiled surface at some census unit scale.

Returning to Section 3.2, with x(s) and p(s) as above, we work with the following three
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models:

M1: µ(s) = γ0 + γ1x(s). (5)
M2: µ(s) = β0 + β1p(s). (6)
M3: µ(s) = µ + w(s). (7)

Intentionally, models M1 and M2 do not include the spatial random effects w(s). They play
the role of true process models and, as noted above, are used as sampling as well as fitting
models. Model M3 includes spatial random effects, modeled using a mean 0 Gaussian process,
as is usually done in spatial settings. As seems natural, we assume x(s) and p(s) are positively
associated with the true surface Y (s), i.e. γ1 > 0 and β1 > 0 in the above models.

Model M1 asserts that there is a single pollution source, Q, providing the exposure which
is away from all three cities at a various distances (see Figure 1). Model M2 describes the case
that the pollution levels are only attributable to high population density areas. Again, these
two models will be used to simulate data and to fit. Model M3 offers no covariates and provides
a customary model fitting situation, a model which is wrong but may be useful.

Hence, we obtain six possible combinations arising from two simulation models and three
fitting models. Each of these six modeling combinations are fitted under each of two intensities
for the locations. The intensity for preferential sampling (PS) would be given by λ1(s,α) ∝ p(s),
i.e. log(λ1(s,α)) = α0 +α1 log(p(s)). In fact, we discretize the study domain D using a regular
rectangular grid of 100× 100 = 10, 000 points and, from the p(s) surface, calculate p(s) at each
of these points. The n locations under PS are randomly drawn without replacement from these
10,000 points where the probability of selection for s is proportional to the population density
p(s). Under CSR, we draw a simple random sample of size n from the 10,000 grid points covering
the unit square.

We now discuss the results that we can expect from each of the six modeling combinations.
We use the label MrMk (r=1, 2, k=1, 2, 3) to denote the case when the simulation model is Mr
and the fitting model is Mk.

1. M1M1. Under PS there will be very few sampling locations near the pollution source,
unlike under CSR. Hence high pollution levels will not be sampled under PS. As a result,
the posterior mean of γ1 will over estimate the true simulation value to compensate for the
low observed values of the regressor x(s) at locations away from the pollution source, Q.
Hence, the predictions under the PS for locations near the point Q will be higher because of
the high x(s) values together with an upwardly biased estimate of γ1. These high predicted
values near Q will lead to both LPB and LPE being high near Q. However, these over
prediction will not occur under the CSR and prediction surfaces constructed under CSR
will be more accurate. See Figure 2 for a practical illustration of this result.

2. M1M2. Here the incorrect model, β0 + β1p(s), is fitted to observations from the sampling
model γ0 + γ1x(s). Under PS, the response at the observed sampling locations, will be
essentially uncorrelated with the associated values of the fitting regressor p(s), so β1 will
be estimated to be near zero. Again, this would appear to be the case under CSR since
p(s) does not explain the response regardless of which s’s we draw. It seems that fitting
with an informative covariate should be of no benefit in this case and there should not be
much story for us here.

3. M1M3. Here the fitted spatial model will attempt to make use of the spatial random
effects as a surrogate for the true x(s). In this regard, the random effects surface, due
to its flexibility, should be able to capture the true simple linear relationship. However,
it will do so through the smoothness implicit in the GP. So, information from a more
representative set of sampling locations under the CSR will provide a better surface to
interpolate than that obtained under PS. In other words, since we usually use random
effects models when kriging, we expect to do better under CSR than under PS.

4. M2M1. Under PS, as in the M1M2 case, the γ1 will be estimated to be near zero. Again,
it would appear to be the case that, under PS or under CSR, x(s) does not explain the
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response regardless of which s’s we draw. It seems that there should not be much story
for us here.

5. M2M2. Both under the PS and CSR there will be sampling locations which have both high
(at the center locations) and low (locations away from the centers) p(s) values. Hence,
we expect both PS and CSR to be indistinguishable here. That is, this case is different
from the M1M1 case and is not of much interest in this study. And, again, fitting with an
informative covariate would not seem to offer any benefit. Again, CSR may do better than
PS with regard to prediction because of the more representative set of locations, hence
covariate levels.

6. M2M3. As in the M1M3 case, better spatial interpolation under CSR will compensate
for the absent covariate p(s) and as a result, we expect to predict better under CSR than
under PS.

7 Findings for a specific simulation illustration

In our illustration we continue to use the hypothetical configuration of three cities and a single
pollution source as discussed above, see Figure 1. Specifically, we take φc = 5 and φq = 1.8 so
that the two cities C1 and C2 are affected similarly by the pollution levels, and about half of
the area in the city C3 is affected – providing two different regions of equal area within this city.

To simulate from the models M1 and M2, in (5) and (6) above, we need to fix values of the
slope and the intercept parameter as well as the error variance σ2

ε . We choose the intercept to
be zero and take the slope parameter equal to 2. We also take σ2

ε = 1 and consider n = 100 for
our illustration. A brief sensitivity study is added below. In all our implementations we take
B = 100 simulation replications in the outer loop and L = 5000 posterior samples in the inner
loop after discarding first 1000 iterations, see Section 4.

The values of the two measures, GPB and GPE with Bias2 and variance, are provided in
Table 1. First consider the M1M1 case. Figure 2 shows that CSR is especially better near the
pollution source, as expected. Overall, the CSR improves on GPB. Also,the improvement in
GPE is primarily reflected in reduced variance. Turning to the M1M2 case, we find a similar
story for GPB with a smaller gain for GPE but, perhaps more than anticipated. In any event,
the informative covariate has not remedied the bias introduced by PS. For the M1M3 case, we
see little difference in GPB with gain in GPE attributable to the better spatial coverage resulting
from CSR, hence better kriging, as suggested above. Analogues of Figure 2 are available for the
second and third cases but are omitted in the interest of space.

Turning to the M2M1 case, the illustrative Figure 3 summarizes the local behavior. In
particular, we see the reduction in LPB(s) and variance at s around the pollution source.
Returning to Table 1, the benefit for GPB and GPE is better than anticipated. For the M2M2
case, we see the ineffectiveness of using the informative covariate. It does not seem to remedy
the GPB and, though it appears to mitigate GPE by helping with Bias2, it still suffers increased
variance relative to CSR. For the M2M3 case, again, we see little difference in GPB with benefit
to GPE. Again, we suppress analogues of Figure 3 for these last two cases.

In summary, we conclude that the better spatial coverage associated with CSR compared
with PS benefits the performance of the former in all of the cases. Particularly, for prediction,
we see advantage to CSR, again, not surprising since the former provides better location of the
sites leading to better kriging, averaged over the region.

7.1 Sensitivity Study

We offer a brief sensitivity study, summarized in Tables 2 and 3. Again, we take the intercept
parameter to be equal to zero and run the experiment for two values of the slope parameter,
3, 6, and two values of σ2

ε , 0.1 and 1. Also, though we have experimented with three different
values of the sample size n: 50, 100 and 300, the results are quite similar and so, we report the
findings only for n = 100. For each of these 4 combinations of the slope, error variance we have
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calculated the overall measures GPB and GPE, with Bias2 and variance, for each of six MiMj,
i=1, 2, j=1, 2, 3 modeling combinations, each under two different sampling situations, PS and
CSR.

The sensitivity analysis reveals that our findings above are not sensitive to the parameter
choices we adopted. In Table 2(a), when M1 is true, we see the benefit of CSR over PS with
regard to GPB except in the M1M3 comparison where they are, essentially, indistinguishable.
Table 2(b) shows that the consequential benefit of CSR over PS again lies in improved variance,
leading to improved GPE. Reversing the roles, in Table 3(a), when M2 is true, with regard to
GPB, we find gains for CSR relative to PS in all cases. Finally, Table 3(b) provides the same
conclusion as Table 2(b); the improvement in CSR over PS emerges primarily through reduction
in variance.

8 Illustration with a real data example

Given a real dataset, it is not possible to investigate differences between two different intensities,
each providing a set of sites; we can only work with the dataset we have. Instead, we attempt to
choose two subsets of monitoring locations from the real dataset such that they are of equal size
but one tends to sample high values while the other tends to sample low values. In this way, we
can demonstrate the magnitude of difference in the model based predictive maps when different
sets of non-random sampling sites are used. In addition, we also consider the effect on prediction
by reserving data from a portion of the sites for validation and comparing predictive mean square
error performance for the preferential datasets compared with a dataset from roughly randomly
sampled sites.

We consider a network of 175 ozone monitoring sites in California where we have observed
the annual 4th highest daily maximum 8-hour average ozone concentration levels in the year
2008. The annual 4th highest daily maximum is employed since the federal standard for ozone
levels is specified in terms of these values.
(http://www.epa.gov/ttn/naaqs/standards/ozone/s o3 index.html) We reserve data from 51
randomly chosen sites for validation and consider the data from the remaining 124 sites for
modeling. These 124 sites are partitioned into two data sets: one containing the data for the
sites for which the observed ozone level was greater than the overall median ozone level from all
the 175 sites and the other containing the remaining data. There were 56 sites in the data set
with higher ozone levels and the other data set contained data from the remaining 68 sites. To
have equal sample sizes this last dataset was randomly thinned to have 56 sites. A third data
set was formed by randomly sampling data from 56 sites from the 124 modeling sites. Finally,
as a fourth data set we consider the entire collection of 124 sites. Thus, the first data set is
preferentially chosen to have sites with high ozone levels, the second data set to contain only
sites with low values. The third data set has the same sample size as the first two but attempts
to approximate spatial randomness.

For all four data sets we consider the simple GP model with a constant mean surface, i.e.
the model (3) with x(s) = 1 for all s. After fitting all four datsets, we validate each of them
with the set-aside data set from the 51 randomly chosen sites. The root mean square validation
prediction errors for the four modeling scenarios are 22.7, 23.9, 18.0 and 18.0. respectively.
This shows, as expected, that the first two preferentially chosen datasets exhibit much worse
out-of-sample prediction and that there is not much difference in the predictive performances
between the last two data sets. Figure 4 provides the four corresponding predictive surfaces
and elaborates that the predictive surfaces arising from preferential sampling are quite different
from those arising under approximate CSR sampling. This illustrates our main contention –
that preferential sampling can have dramatic effect on predictions.
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9 Summary and future work

This paper has developed a novel general way of comparing the effects of different intensity
surfaces for sampling locations with regard to explaining response in a spatial data modeling
problem. In particular, working with preferential sampling and complete spatial randomness,
we have shown that predictions under the former can be much worse (particularly with regard
to predictive variance) than the latter. We accomplished this by providing a simulation study
that illuminates the situations in which this is expected to occur.

The proposed method can accommodate intensity comparisons under both the “with data”
and “no data” cases as discussed in Section 3. The method thus can compare the predictive
surfaces based on real data from a current network against data that would be obtained from a
network of randomly sampled locations.

Extension to spatial sampling in a dynamic environment may be of interest. Future research
can try to estimate the effect of preferential sampling under various common spatio-temporal
models, see e.g. Sahu et al. (2010). The pertinent research question in this context is the effect
of temporally varying networks on the dynamic predictive surfaces as well as their aggregates. A
different extension would add a data assimilation wrinkle. Suppose we have a computer model
providing exposures on the scale of grid cells. If we develop a fusion model for this output along
with the monitoring station data, how will that affect the bias in prediction under preferential
sampling?

A by-product of the proposed methods is the possible development of a Bayesian spatial
network design selection criterion based on a bias reduction objective function together with an
associated computational method for constructing the optimal design. This provides a novel
method for spatial network design rather than the customary conditional variances and entropy
approaches. See, e.g., Xia et al. (2006) and references therein. Discretization of the region D is
necessary to implement any design strategy over a continuous domain. Then, the value of the
design criterion can then be computed for each point in order to determine the point that gives,
say the smallest criterion value, i.e., the optimal one to add. This clarifies the consequential
computational burden to implement our simulation-based approach: a full simulation is needed
for each candidate point.
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Table 1: Values of GPB, Bias2, Variance and GPE under PS and CSR.
Simulation Model M1

GPB Bias2 Variance GPE
Fitting Model PS CSR PS CSR PS CSR PS CSR

M1 0.041 0.020 0.239 0.222 0.079 0.036 0.318 0.258
M2 0.037 0.022 0.375 0.390 0.230 0.141 0.605 0.531
M3 0.095 0.089 0.238 0.206 0.185 0.140 0.423 0.346

Simulation Model M2
GPB Bias2 Variance GPE

Fitting Model PS CSR PS CSR PS CSR PS CSR
M1 0.047 0.023 0.414 0.385 0.388 0.185 0.802 0.570
M2 0.035 0.020 0.244 0.236 0.065 0.038 0.309 0.274
M3 0.109 0.104 0.331 0.272 0.371 0.240 0.702 0.512

Table 2: Sensitivity analysis; results when the simulation model is M1 (see Section 7).
(a) Values of GPB under PS and CSR

Fitting Model M1
γ1 = 3 γ1 = 6

σ2 PS CSR PS CSR
0.1 0.005 0.002 0.005 0.002
1.0 0.042 0.020 0.041 0.020

Fitting Model M2
0.1 0.008 0.007 0.021 0.021
1.0 0.040 0.025 0.052 0.038

Fitting Model M3
0.1 0.044 0.040 0.086 0.079
1.0 0.114 0.117 0.222 0.239

(b) Values of Bias2 (B), Variance (V) and their sum (GPE) under PS and CSR

Fitting Model M1
γ1 = 3 γ1 = 6

PS CSR PS CSR
σ2 B V B+V B V B+V B V B+V B V B+V
0.1 0.225 0.009 0.234 0.209 0.004 0.213 0.255 0.010 0.264 0.239 0.004 0.244
1.0 0.259 0.085 0.344 0.251 0.040 0.291 0.258 0.078 0.337 0.245 0.039 0.284

Fitting Model M2
0.1 0.466 0.370 0.835 0.454 0.237 0.691 0.474 1.437 1.911 0.460 0.938 1.398
1.0 0.413 0.439 0.852 0.418 0.273 0.691 0.456 1.474 1.930 0.447 0.961 1.408

Fitting Model M3
0.1 0.221 0.112 0.333 0.172 0.057 0.229 0.218 0.276 0.494 0.162 0.108 0.270
1.0 0.263 0.290 0.553 0.216 0.194 0.410 0.251 0.610 0.861 0.195 0.361 0.556
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Table 3: Sensitivity analysis; results when the simulation model is M2 (see Section 7).
(a) Values of GPB under PS and CSR.

Fitting Model M1
β1 = 3 β1 = 6

σ2 PS CSR PS CSR
0.1 0.016 0.009 0.050 0.029
1.0 0.052 0.027 0.084 0.047

Fitting Model M2
0.1 0.004 0.002 0.004 0.002
1.0 0.036 0.021 0.035 0.020

Fitting Model M3
0.1 0.161 0.107 0.432 0.298
1.0 0.163 0.168 0.878 0.620

(b) Bias2 (B), Variance (V) and their sum (GPE) under PS and CSR.

Fitting Model M1
β1 = 3 β1 = 6

PS CSR PS CSR
σ2 B V B+V B V B+V B V B+V B V B+V
0.1 0.472 0.692 1.164 0.452 0.339 0.791 0.476 2.741 3.216 0.457 1.347 1.804
1.0 0.442 0.745 1.186 0.414 0.373 0.787 0.467 2.815 3.282 0.445 1.370 1.815

Fitting Model M2
0.1 0.230 0.007 0.237 0.223 0.004 0.227 0.248 0.008 0.256 0.245 0.005 0.250
1.0 0.266 0.080 0.346 0.250 0.041 0.290 0.258 0.070 0.328 0.239 0.038 0.278

Fitting Model M3
0.1 0.232 0.341 0.573 0.203 0.187 0.39 0.220 1.016 1.237 0.182 0.508 0.690
1.0 0.351 0.685 1.036 0.277 0.413 0.69 0.254 1.860 2.113 0.212 1.056 1.268
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Figure 1: A simulated pollution map of the study region. It also shows the location of the point
pollution source, Q, and the three city centers, C1-C3. The contours represent levels of the scaled
population density.
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Figure 2: GPB, Bias2 and Variance surfaces for the case M1M1. Panel (a) is the GPB surface
under PS while Panel (b) is the same under CSR. Panel (c) is the Bias2 surface under PS and
Panel (d) is the same under the CSR. Panel (e) is the Variance surface under PS and Panel (f) is
the same under the CSR.
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Figure 3: GPB, Bias2 and Variance surfaces for the case M2M1. Panel (a) is the GPB surface
under PS while Panel (b) is the same under CSR. Panel (c) is the Bias2 surface under PS and
Panel (d) is the same under the CSR. Panel (e) is the Variance surface under PS and Panel (f) is
the same under the CSR.
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Figure 4: For the real data (Section 8), predictive maps of the annual 4th highest daily maximum
8-hour average ozone levels based on data from: (a) sites (denoted by h) with high ozone values,
(b) sites with low values, (c) 56 randomly chosen sites, and (d) all the 124 modeling sites.
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