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1. Introduction

The overall aim of the project is to create a tool which forecasts admissions

and bed occupancy in hospitals in light of meteorological information. Fore-

casts are for twenty-one days including the day of forecast itself. The tool

is of benefit to managers who can plan services or utilise resources better.

For example, it is more useful to anticipate a surge in geriatric patients two

weeks in advance than recognizing the event only two days ahead. As an-

other example, if the tool predicts a trough in non-elective admissions a week

ahead then managers may consider summoning additional elective patients,

so earning greater revenue. The long-term ambition is to produce a tool
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which is flexible enough to suit a variety of hospitals, but this exploratory

study, entitled “The MetSim Project”, has focused on two hospitals: Cardiff

& Vale Hospital and Southampton University Hospital.

Throughout, our simulation is for non-electives only. Elective patients have

been well-analyzed, mostly by queueing theory; see Utley et al (2003), or

Worthington (1987). Moreover, we are concerned with the main hospital, not

Accident and Emergency which is administratively quite separate. Klein &

Reinhardt (2012) and Rasheed et al (2012) present studies of simulation in an

emergency department. Wiler, Griffey & Olsen (2011) provide an overview of

the literature on emergency departments and also compares methodologies, in

particular regression models, time-series models, models based on queueing

theory and discrete event simulation. Vasilakis and El-Darzi (2001) and

Bowers (2009) give simulations of the main hospital; both papers observe

that seasonal variation occurs, for which holidays are an explanatory factor.

After consultation with hospital managers, we refined the tool so as to reflect

certain logistic fundamentals of hospitals. It is necessary to have forecasts

by age-group, by gender and by broad group of speciality. In particular,

forecasts for paediatrics must be separate from non-paediatrics since the two

groups of patients are legally required to be separate; the MetSim tool does

allow the user to subdivide each of paediatric and non-paediatric into finer

age bands. A further legal requirement is that hospitals segregate patients

by gender, so our tool does this too. Hospitals also classify patients into large

blocks according to medical speciality, but the classification is not completely

standard across hospitals. We term the large speciality blocks supergroups.

The code is flexible here and allows the hospital to specify their own partition,

subject to a maximum of two paediatric supergroups, five non-paediatric su-

pergroups, together with one further supergroup “outliers” of patient-spells

which do not conform to the specified groupings and which are disregarded

from all subsequent modelling and forecasting. We constrain the number of

supergroups since further refinement no longer matches logistics; moreover,

it risks over-granularity of data with consequent low cell counts and uninfor-

matively broad forecasts. The precise choice of categorizations by age-group

and speciality is termed the design of the hospital. In practice, the two partic-

ipating hospitals, Cardiff and Southampton, requested very similar designs:

that paediatrics remain a single block, undivided by age or speciality. Non-
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paediatrics should be partitioned by age-groups into adult and elderly, and

partitioned into supergroups Medicine, Surgery, Trauma and Cardiothoracic,

although there were minor differences in the demarcations. Outliers should

include numerous miscellanea such as audiology, obstetrics and dental.

The MetSim tool to simulate occupancy consists of two steps: admissions and

length of stay. The method of simulating admissions rests on a forecasting

model in Sahu et al (2014): for any age-group and gender of patient, we fore-

cast admissions using Bayesian models to allow for uncertainty in weather

forecasts. Our tool then combines the forecasted admissions with current

(prevalent) patients. For each cohort of patients, by age, gender, supergroup

and time already spent, we simulate flow out of hospital, so producing distri-

butions of occupancy. To simulate departure from hospital, the tool requires

information on how long patients stay.

Two families of distributions are commonly used to model length of stay

in hospital: mixture distributions, especially hyperexponential, and Coxian

phase distributions. Mixture models are appropriate in the following situ-

ation. Patients are all of a limited number of types, and within any type

the lengths of stay are independent and identically distributed. Then the

length of stay of any admitted patient is found by conditioning on the type

of patient. McClean and Millard (1993) employ mixture models for geriatric

patients. By contrast, Coxian distributions are used for an homogeneous

group of patients undergoing various phases, equivalently steps or stages,

within hospital. McClean and Millard (1998) employ a 3-stage model again

for geriatric patients; a patient progresses through acute care, rehabilitation

and long care, in that order. The model implicitly contains a fourth state,

namely discharge or death, and it is possible to progress there directly from

any of the other states. Many further examples appear in Marshall, Vasilakis

& El-Darzi (2005), an account which also discusses the merits and drawbacks

of discrete event simulation.

Fackrell (2009) elegantly describes how hyperexponential models and Coxian

distributions are themselves special instances of a very broad family of distri-

butions: the phase-type distributions. Fackrell lists various algorithms to fit

phase-type distributions, while acknowledging that one must guard against

overparameterization. It may be added that, even if one attains a good, par-

3



simonious fit, such models are not always easy to interpret. In the special

instance of fitting a Coxian distribution, McClean and Millard (1998) use

the Levenburg-Marquart algorithm. McGrory, Pettit & Faddy (2009) take a

Bayesian approach.

Any model of length of stay faces difficulties inherent in the distribution.

Typically, there is a mode near zero, measured in hours, and a protracted

tail of patients who remain months or in extreme cases years after being

admitted. An instance is illustrated in Figure 1 which shows the length of

stay of non-elective patients in Southampton University Hospital, comparing

the figures for 2009 against earlier years. The plot was part of our early

investigations, to see whether length of stay itself evolves in time. At the

broad level of supergroups, no such pattern was found: improved medical

techniques reduce length of stay while aging populations increase it.
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Figure 1. Southampton University Hospital.

Further early investigation showed that, within any supergroup, lengths of

stay are often irregular. Attempts to model length of stay using mixed models

or phase-types have proved unsatisfactory, rarely explaining more than 30%

of the variation, and so instead we have modelled the hazard rates: a patient’s

probability of discharge at any given time, given that the patient has survived

thus far. In this context, “survival” means not leaving hospital by whatever

route, whether by discharge, transfer or death. Empirical observations of

hospital data suggest that the hazard rate depends on age and on factors

such as supergroup and current day of week. Figure 6 illustrates hazard

rates for Cardiff and Southampton Hospitals.
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2. Datasets, timeline and machinery

A participating hospital regularly provides datasets on flows of patients: one,

labelled historic, covers an interval which is at least one year long and which

strictly precedes the date of execution. The second dataset, labelled current,

is simply a census of prevalent patients, namely patients recorded as present

shortly before the start of the forecast. The hospital also states the design of

how patients are to be classified into supergroups. The Met Office provides

datasets on weather, executes the machinery of the code and returns sum-

mary forecasts back to the hospital. Figures 2, 3 and 4 show the machinery

in some detail. A description follows.
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Figure 2. Modelling and simulating admissions.
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Figure 4. Simulating patient flow.
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The historic dataset which the hospital supplies consists of anonymized pa-

tient spells over the course of at least one year. The interval of observation

is open at both ends: we include all spells of patients who were either ad-

mitted or discharged or both. The latest endpoint should ideally be about

six to eight weeks earlier than the date of execution. The current dataset,

or census, should be taken within the last week. For every patient-spell the

following fields should be included. Fields marked ∗ are desirable but not

mandatory.

Table 1. Hospital datasets

Historic Current

Date of query Date of query

Hour of query∗

Spell start date Spell start date

Spell start hour∗ Spell start hour∗

Age at admission Age at admission

Gender Gender

Speciality code Speciality code

Spell end date

Spell end hour∗

The Met Office provides mean and minimum temperatures over a long time

interval, starting from two-and-a-half years before the date d of execution.

In our early analysis we considered several other variables such as rainfall

and humidity and so on, but found that once temperature is included the

others are too highly correlated to be informative. The mean temperatures

up to d are observed; for approximately the next seven days, including the

day of execution itself, we rely on weather forecasts; for the remainder of

the future interval we use climate averages as predictions. The minima also

change qualitatively but are lagged by one week.

The same dataset of temperatures brings another, major benefit. It serves as

a convenient timeline against which other datasets can be aligned for mod-

elling and simulation. The code checks that the historic hospital dataset is

not too recent; if it is, the code first attempts to trim the historic dataset
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or, if that reduces the dataset to less than one year’s duration, halts the

programme. The code likewise checks the date co of observation of the cur-

rent dataset. If that is more than one week old then the programme halts.

The code further edits the current dataset since under-reporting is both a

frequent and an extensive problem: patients who have been admitted imme-

diately before the census was taken are at high risk of not being counted.

To correct for this, the code truncates the current dataset a couple of days

before the date of the census itself, on a day ct we call the “day of last trusted

admissions” and which is derived from the date of census according to some

policy or rule set by the hospital. Details are in Minty et al [9]. Instead of

employing the under-reported numbers, the code simulates admissions over

the untrusted period. Incidentally, the current dataset also carries risk of

over-reporting but that occurs comparitively rarely.

By way of illustration, suppose hypothetically that the day d on which we ex-

ecute the simulation is Wednesday 13th March 2013. The principal weather

dataset consists of observed temperatures extending back several years, to-

gether with weather forecasts which span the interval from 13th March to

19th March inclusively, followed by climate averages until 2nd April. An

historic dataset covers the interval from 1st December 2011 to 22nd January

2013 and so presents no difficulty in this instance. The most recent current

dataset, submitted to the Met Office on 13th March, is for an observation on

12th. We choose Monday 11th March as our last trusted day. Then part of

the timeline in this example looks like the following.

−2 0 7

ct co d = wf wc

9th 11th 13th 15th 17th 19th 21st

Figure 5. Example of a timeline in March 2013.

The first day of forecast is wf and climate average is wc. The current dataset

is observed on day co and our last trusted day is ct. The code starts simulating

admissions from day ct + 1 even though 12th March is a day of observed

weather in this example.

Quite separately from the principal dataset of temperatures, the Met Office
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supplies an auxiliary dataset for a rather subtle reason. When we model

admissions, we use weather as an explanatory variable, using observed tem-

peratures. But in simulating future admissions we rely on weather forecasts

or even climate average. To allow for error in weather forecasts we employ

a dataset which shows a history of forecasts at the given hospital postcode:

for every observed value, there are predictions made 0 ≤ t ≤ 20 days ahead.

Other datasets needed are bank holidays and school holidays in the neigh-

bourhood of the hospital.

3. Modelling

The code, which is held at the Met Office, depends on models of admissions

and length of stay developed at Southampton and Cardiff Universities re-

spectively. For a comprehensive account of modelling admissions, see Sahu

et al (2014). We construct a model of historic admissions in order to forecast

future admissions; the dataset of current occupancy plays no part in this

model. We choose to fit a generalized linear model to the historic hospital

admissions in preference to a time-series model: it seems that any day-to-day

correlation of admissions is explained wholly through weather and day of the

week, both of which are given to us, and a generalized linear model is com-

putationally more tractable. The data are positively skewed and we select a

square-root transformation for the response variable number of admissions.

We denote the rescaled response variable by Yijt, where i is gender, j is age-

group and t time. The model is for 0 ≤ t ≤ 20 days ahead. We assume a

regression model

Yijt ∼ N(µijt, σ
2) , (1)

where

µijt = β0 + αi + γj + h(t) + w(t) + λmm(t) + λn n(t)

+ (α : γ)ij +
(
γ : n(t)

)
j
. (2)

The initial term β0 is an intercept. The factor αi denotes gender; we set

female α1 = 0. The factor γj is the contribution of the jth age-group.

The binary-valued function h(t) is a school holiday effect and is zero for

non-holidays. The effect w(t) is day of the week; it is zero for Sundays.
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On day t, the mean temperature is m(t) and the minimum a week ago is

n(t); the coefficients are λm and λn respectively. We also have interactive

terms, between gender and age-group, and between age-group and lagged

minima. Such a model is very parsimonious and yet is best according to

both R2 and AIC. We do not use supergroups of speciality in modelling

historic admissions. If included, supergroups lead to low cell counts and, out

of all explanatory variables, they contribute least information. The tricky

factor is the age-group γj, for the number of levels occurring depends on the

design of the hospital. Choice of design is important; in a good design, age

alone explains a remarkable 74% of the variation in numbers of admissions.

We allow the number of paediatric age-groups to be 1 or 2 and of non-

paediatric to be 1, 2 or 3. Thus the number of age-groups ranges from 2

to 5, and the number of contrasts in age-groups from 1 to 4. We constrain

γj to be zero for the youngest age-group: paediatrics if they are unsplit or

young paediatrics if they are split. As for the interaction terms, (α : γ)ij and(
γ : n(t)

)
j
, the parameter is set to be zero whenever one of the factors is at its

base level. The factors β0, αi, γj, h(t), w(t) and coefficients λm, λn together

with their interactive terms have the general appellation “parameters”. The

number of parameters, which depends on the number of age-groups, we call

the dimension of the design.

A classical approach gives point estimates of the parameters together with

confidence intervals. But anticipating difficulties with temperature, we prefer

a different approach, one which uses Bayesian MCMC regression to simulate,

say, 10K = 10 000 randomly generated values of the parameters which we

store in a matrix P.

P =


...

...
...

...
...

...
...

β0 α2 γj · · · λm λn · · ·
...

...
...

...
...

...
...

 ↑
10K
↓

The matrix P has 10K rows; the number of columns equals the dimension

of the design. The same MCMC regression simultaneously generates 10K

random values of the variance σ2 in Equation 1. For a suitable choice of

design matrix X, consisting of entries 0’s, 1’s and temperatures m(t) and

n(t), the product

PX (3)
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has entries exactly as in the right-hand side of Equation 2. The columns of X

may be arranged, for convenience, into blocks by age-group and gender, and

within any block by timeline of forecast interval. The product PX has 10K

rows or realizations; the columns occur by age-group j and gender i, and

within any such block are ordered by time. For each of the 10K realizations

of (µijt) and of the variance σ2, it is possible to generate values of (Yijt)

using Expression 1. However, we choose not to use design matrix X directly.

When simulating coefficients in P, we use observed mean temperatures m(t).

During the interval of patient forecasts, we rely on weather forecasts and

climate averages m(d + t), for 0 ≤ t ≤ 20. If we plug λmm(d + t) into our

realization we fail to capture uncertainty in weather predictions. Accordingly,

we distinguish true future mean temperatures m̆(d+ t) from forecast future

mean temperatures m(d+ t).

To simulate m̆, we use the auxiliary weather dataset showing a history of

forecasts against actual observation; this is its sole use in the whole canon

of programmes. For 0 ≤ k ≤ 20 let k denote how far ahead a forecast is.

For a fixed but arbitrary value of k, we assume true means are some linear

function of forecasts

m̆(t+ k) = ak + bkm(t+ k) + εk for all t,

where εk is noise. The values of t span a year. We run a sequence of further

MCMC regressions, one for each value of k, to simulate values of ak and bk
which we stash in a matrix. 

a0 b0
a1 b1
...

...
a20 b20


We duly compute values of m̆(d + t) over our interval of forecast and sub-

stitute these into X. Only now do we carry out our realization PX and so

generate the means in Equation 2 and so simulate streams of admissions.

That completes modelling and simulating admissions as shown in Figure 2.

We regard length of stay as a non-negative integer number of days n ≥ 0. To

model length of stay we use survival analysis, where “survival” is not leaving

the hospital by whatever route. Let h(n) denote the hazard rate. Figure 6
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shows the hazard rates for the hospitals, segregating patients according to

age-group. Broadly, the hazard rates are decreasing: the longer one spends

in hospital, the smaller the probability of leaving. But there are short-term

increases about 7 days, especially for paediatrics, suggesting that patients are

sometimes intentionally held for a week and then discharged. Furthermore,

a length of stay marked 0 has a peculiarity. We round length of stay to the

nearest integer number of days, labelling a stay of 0 to 11 hours as 0 days.

All remaining days cover an interval of 24 hours. Values from 15 to 21 days

should be read with caution since the number of observations declines over

time.
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Figure 6. Hazard rates by age.
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In practice, the hazard rates are mostly quite small and so we take the log-

odds transformation

K(n) := ln
h(n)

1− h(n)
,

numbers which we call K-values, or K(n) if we wish to emphasize the number

of days spent thus far. The transformation is monotonic, so K increases if

and only if h increases. From earlier comments, K is usually decreasing.

Figure 7 shows K-values for the non-paediatric patients; we illustrate the

different speciality supergroups.
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Figure 7. Non-paediatric K-values by speciality supergroups.

We adopt a hybrid strategy for fitting estimatedK-values to the historic data.
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The first few days of length of stay are inherently irregular but the historic

dataset provides an abundance of observations. Accordingly, we model the

K-values for each day separately. For day n the main effects model is

K(n) = αin + γjn + w(n) .

Each of the explanatory variables is factorial. The variable αin denotes gen-

der. Its contribution is marginal; after the first few days, men and women

show little difference in rate of discharge. But we retain it for logistic rea-

sons. The variable w(n) denotes current day of week. Rates of discharge at

weekend differ from during the week; we bin days of week, allowing w to rep-

resent one of three cases: weekend or bank holiday, Monday to Wednesday

and Thursday-Friday. Note that we are looking not at the day of admission

but the day of putative discharge. The variable γjn denotes categorization

by age and speciality supergroup. Since paediatric specialities differ from

non-paediatric specialities we nest supergroups into age. For the very first

few days, n = 0, 1, we also include an interactive term
(
γ, w(n)

)
j
.

Up to a length of stay of about a week, such models perform well: even in

the least favourable cases over 70% of the variation is explained and values

over 90% occur about half the time. Thereafter predictive accuracy steadily

deteriorates due to low cell counts, and so we offer an alternative approach.

For each separate age-speciality category, we fit the K-values to log-time.

K(n) = a+ b ln(n) + w(n) + αi

The term a is an intercept. The factor w is binary and is zero for weekends.

The factor αi denotes gender and is zero for female. Such models usually

explain between 50% to 80% of the variation. However, we cannot guarantee

robustness, especially for elderly trauma patients. The system itself assesses

model performance and automatically decides which of the two models to

use. Incidentally, under the secondary model the hazard rate has the simple

form

h(n) =
1

1 + Cn−b

for some C > 0, a form close to the hazard rate of a Weibull distribution.

That completes the steps in Figure 3.
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4. Simulation

The above Bayesian model of admissions randomly generates streams over the

timeline, starting from immediately after the last trusted day and ending at

twenty days from the day of execution. It distinguishes patients by age-group

and gender but not by the speciality supergroup. So for any age-group i and

gender j the first step is to split streams of admissions, using multinomial

probabilities (pijk) that a patient falls into the respective supergroup. For

each i, j the sum
∑

k pijk = 1, where 1 ≤ k ≤ 2 for paediatrics and 1 ≤ k ≤ 5

for non-paediatrics. To estimate (pijk) we read the observed proportions in

our historic dataset. Now we go through every row of admissions in the

source file for i, j and randomly generate a substream for each supergroup.

We repeat for the same row of our source file to give a second simulated

split. According to the design of the hospital, some probabilities may be

zero, leading to the construction of “empty” streams which consist of zeros,

but that does no harm.

Throughout the main simulation we consider patients at the finest level of

categorization. As indicated in Figure 4, for any age-group, gender and

speciality supergroup we have three large sources of information: models of

hazard rates of leaving hospital, simulated streams of admissions over the

timeline, and a file which contains the distribution of prevalent patients by

length of stay for some recent day. The timeline holds additional information

such as bank holidays. The main aims of the simulation are, of course, to

simulate streams of discharge and occupancy over the timeline. “Discharge”

is a shorthand meaning all forms of exit. A secondary aim is to give a detailed

profile of occupancy for a single future date during the interval of forecast:

not just the total number of occupants forecasted but also how long these

future occupants have themselves stayed.

We partition our chosen category of patient into cohorts by length of stay.

Explicitly, for each day n, let

Sn = (s0, s1, s2, . . . )

denote the counts sk of patients who have already stayed k ≥ 0 days. In

particular, s0 is the number of patients who have been admitted only recently.

The sum ||Sn|| =
∑

k sk gives the total occupancy on day n. The simulation
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constructs Sn recursively along the timeline. Initially, we set S0 to be 0;

that is for the last trusted day, immediately before the start of our simulated

admissions. The general method of constructing Sn+1 from Sn is as follows.

1. Using binomial distributions Bin(sk, pk) where pk is the appropriate
hazard rate, generate a vector

Dn = (d0, d1, d2, . . .)

showing the number of discharges on day n.

2. Take the difference to find the number of remaining patients

Sn −Dn = (s0 − d0, s1 − d1, s2 − d2, . . . ) .

3. Slide one place to the right and insert the admissions; that gives the
occupancy for the next day.

Sn+1 = (a, s0 − d0, s1 − d1, s2 − d2, . . . ) .

There is a complication to the above. When the iteration reaches the day

of observation, we include the prevalent patients. If the prevalents were

observed during the morning then we add the prevalents before randomly

simulating the number of discharges; otherwise, we add the prevalents after

deducting discharges. Only now do we start to record total occupancy ||Sn||,
and we continue recording until the end of the twenty-one days of forecast.

For the day of profile, we record not just the total but the full distribution

of Sn.

In practice, to speed up computations in step 1 of the algorithm, we com-

pute tables (Bk)k≥0 of binomial probabilities before we start the iterations.

That is strongly preferable to recomputing the probabilities as the algorithm

progresses. For k ≥ 0, for 0 ≤ n < N , row n of the N ×N array Bk contains

the cumulative distribution function of the binomial distribution Bin(n, pk).

Note that the first row of the array is regarded as row 0, not 1, and is for the

trivial binomial distribution which takes 0 with probability 1. The size N

of the array, which depends on k, represents a bound on how many patients

of the given category are likely to serve k days. From empirical testing, for

k = 0 we set N = 120 but we reduce N steadily thereafter. To actually com-

pute Bk, we iteratively derive row n + 1 from row n; an alternative method

is given by Loader (2000).
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That completes the simulation. It is possible to plot each of the generated

streams of admissions, discharges and occupancy. We present a plot of fore-

casted adult admissions, taken from subsequent validation. The periodic

effect of a week is stark; there is a gentle trend towards fewer admissions.

The last Friday, 29th March 2013, happens to be Good Friday.

Figure 8. Forecast of admissions from Wed 13th March 2013.

5. Discussion

Prior to this tool, hospitals widely use one of two methods to forecast admis-

sions and occupancy. The simplest model is the Persistence Model where the

hospital looks at the figures for one year ago and adjusts for demographic

trends. The other model is the Six-Week Moving Average. From preliminary

validation and verification, our model seems at least comparable to the Six-

Week Moving Average and both clearly outperform the Persistence Model.

For example, Table 2 shows the relative root mean square error for Cardiff

over a validation interval of 130+ days. We give the figures for Cardiff in

preference to Southampton since we have a longer interval of validation.
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Table 2 Cardiff Adult Admissions.

Days Relative
ahead RMSE

0 0.039 7 −0.019 14 −0.009
1 0.004 8 −0.015 15 0.007
2 −0.014 9 −0.019 16 0.010
3 −0.026 10 −0.033 17 −0.006
4 −0.004 11 −0.005 18 −0.000
5 −0.022 12 0.035 19 −0.014
6 −0.013 13 0.009 20 −0.003

For 0 ≤ k ≤ 20 days ahead, the relative root mean square error is defined to

be

RMSE(yk)

RMSE(zk)
− 1 .

where yk and zk refer respectively to the medians forecasted by our tool

and the medians forecasted by the Six Week MA. On this measure, negative

values are desirable, and that is what happens for 15 out of 21 days of

forecasting. Other measures, such as percentage cover, confirm that the

tool gives satisfactory forecasts for admissions. To date, the forecasts for

discharges and occupancy are less impressive.

The tool seems to perform well under steadily evolving conditions such as

seasonal changes in temperature. Although the tool cannot forecast abrupt

changes, whether unforeseen such as a fire in a neighbouring hospital or

planned such as the opening of a new ward, the tool does incorporate the

changes swiftly once a fresh current dataset has been supplied.

We aim to improve the code at several points. We wish to create an interface

for ease of use. We aim to simulate the admissions in a lower order language

for speed. As for hazard rates, it is worth testing whether it is more robust

to adopt a branching method which models the risks of leaving in week 0, 1, 2

and, conditional upon leaving in a certain week, the risk of leaving on a par-

ticular day. Another point of investigation is the splitting probabilities (pijk).

The code simply reads the proportions in the historical dataset, but recent

current datasets may be more informative. We hope to pilot a revised version

of the tool in several hospitals across the UK, especially diverse hospitals in

a variety of geographical locations.
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