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Abstract

This article presents a new statistical approach to analysing the effects
of everyday physical activity on blood glucose concentration in people
with type 1 diabetes. A physiologically-based model of blood glucose
dynamics is developed to cope with frequently-sampled data on food,
insulin and habitual physical activity; the model is then converted to
a Bayesian network to account for measurement error and variability
in the physiological processes. A simulation study is conducted to
determine the feasibility of using Markov chain Monte Carlo methods
for simultaneous estimation of all model parameters and prediction
of blood glucose concentration. Although there are problems with
parameter identification in a minority of cases, most parameters can
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be estimated without bias. Predictive performance is unaffected by
parameter mis-specification and is insensitive to misleading prior dis-
tributions. This article highlights important practical and theoretical
issues not previously addressed in the quest for an artificial pancreas
as treatment for type 1 diabetes. The proposed methods represent
a new paradigm for analysis of deterministic mathematical models of
blood glucose concentration.

Keywords: Artificial pancreas; Bayesian network; exercise; free-living
data; physical activity energy expenditure; type 1 diabetes.

1 Introduction

Understanding the effect of exercise on blood glucose concentration is crucial
for people with type 1 diabetes, so that they are able to safely incorporate
exercise into daily life. Understanding the effect of any physical activity
experienced in everyday life can help improve treatment regimes, and hence
reduce the risk of short- and long-term complications associated with diabetes
1 (see Section 1.1 for further background information on type 1 diabetes).

The effect of physical activity on internal physiological processes is rarely
measurable, and certainly not in free-living conditions (defined here as with-
out imposing constraints on an individual’s ability to carry out their daily
activities). Instead, mathematical models - i.e., systems of differential equa-
tions based on compartmental models - have been developed to describe
blood glucose dynamics during exercise.2–4 Such models play an important
role in the ongoing development of an artificial pancreas5 (described in the
final paragraph of Section 1.1). However, these models are based on sim-
plified exercise protocols and/or data from healthy volunteers that are not
representative of everyday physical activity nor the diabetes population.

The first aim of this article is to assess the performance of a mathematical
model of blood glucose dynamics: Section 2 describes the nature of free-living
data collected during a Diabetes UK study,6 which is used to assess both the
model’s ability to match profiles of blood glucose concentration and its han-
dling of physical activity. We demonstrate a number of theoretical problems
present in the model due to overlooking important properties of free-living
data, and present a new physiologically-based model that is capable of han-
dling such data.

The second aim of this article is to investigate the use of modern statisti-
cal methods for modelling blood glucose dynamics. We believe a stochastic
model is a more accurate representation of the physiological processes of
interest when compared with deterministic differential equations prevalent
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elsewhere in blood glucose modelling; furthermore, we advocate individual-
level parameter fitting to account for inter-person variability. Hence, Section
3 proposes a new stochastic approach for analysing our model (and therefore
other models of blood glucose in the diabetes literature) where the differ-
ential equations are converted into a Bayesian network; we then propose
Markov chain Monte Carlo (MCMC) methods for parameter estimation and
prediction.

Performance of our new methods are tested using a simulation study, as
presented in Section 4: we show that MCMC is able to estimate the majority
of parameters without bias, and is able to predict blood glucose concentration
under parameter misspecification and misleading prior information. Finally,
Section 5 considers the application of our new model and approach to an
individual from the Diabetes UK study, to test functionality in a real-world
example.

In the wider context of diabetes research, understanding the nature of
free-living data is necessary to understand the conditions in which an artificial
pancreas must operate; thus, the practical and theoretical issues confronted
in this article are vital in the work towards an artificial pancreas. This
article also presents a departure from deterministic analysis of blood glucose,
thereby acknowledging the complexity of glucose metabolism, and proposes
methods applicable to a range of mathematical models of blood glucose.

1.1 Background

This section provides background information on type 1 diabetes and its
treatment; it may be skipped by those familiar with this subject.

Type 1 diabetes (T1D) is a chronic metabolic disorder caused by the de-
struction of β-cells in the pancreas, resulting in the loss of endogenous insulin
production; subsequently, blood glucose metabolism is disrupted, extreme
hyperglycaemia (high blood glucose concentration) ensues, and, if untreated,
coma and death can quickly follow.

Treatment of T1D is aimed at maintaining healthy blood glucose con-
centration (∼75-120 mg/dl) with insulin injections. The common treatment
regime involves a daily dose of long-lasting insulin and doses of rapid-acting
insulin with meals; rapid-acting insulin doses are chosen according to the
amount of carbohydrate consumed and any recent or imminent physical ac-
tivity.

Good control of blood glucose concentration has been observed to slow,
delay or prevent eye, kidney and nerve damage1 and decrease incidence of
cardiovascular events, such as stroke and heart attack,7 by limiting the mi-
crovascular damage casued by hyperglycaemia; however, these benefits are
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counteracted by increased incidence of hypoglycaemia (low blood glucose
concentration), which can rapidly lead to seizures, unconsciousness and, if
untreated, death. Determining the correct insulin dose is difficult, and T1D
is associated with increased morbidity and mortality.8

Attempts to improve treatment regimes focus on optimising insulin deliv-
ery using an automated insulin delivery system (insulin pump); this approach
requires a control algorithm to determine insulin dose based on frequent
blood glucose measurements. Often, control algorithms require a description
of blood glucose metabolism. The combination of blood glucose monitor,
insulin pump and control algorithm is known as an artificial pancreas. De-
velopment of an artificial pancreas is ongoing,9–12 and testing is currently
limited to using simulated blood glucose profiles (from mathematical models
of blood glucose metabolism) or small clinical trials.13

2 Data and methods

2.1 Data collection

Analysing the behaviour of blood glucose concentration (BGC) in free-living
conditions requires frequently-sampled data to capture the rapid changes.14

Capturing free-living data on internal physiological processes that affect BGC
is not generally possible; instead, models of glucose metabolism may be used
as a proxy, using easily-accessible measures, e.g., a model of the digestive
process can use food intake to determine intestinal glucose absorption.

Diabetes UK recently funded a study to collect free-living data from vol-
unteers with type 1 diabetes.6 Volunteers wore two devices: a Guardian Real-
Time Continuous Glucose Monitoring System (Medtronic MiniMed Inc., CA,
USA) to frequently estimate BGC (based on measuring interstitial glucose
concentration), and a SenseWear Pro2/3 armband (BodyMedia Inc., PA,
USA) to estimate METs15 (metabolic equivalent of task, a measure of en-
ergy expenditure). The nature of the devices ensured minimal impact on
the individuals. Volunteers also recorded food intake (time, food type and
estimated quantities) and insulin injections (time of injection, type of insulin
and dose); glucose and insulin absorption profiles were subsequently esti-
mated from these records using models of digestion16 and insulin diffusion.17

The study data therefore captures the major external disturbances to BGC.
During the study, BGC was recorded every five minutes, and physical

activity data was recorded every minute and resampled every five minutes
to correspond with the BGC readings; glucose and insulin absorption were
estimated every five minutes, also to correspond with BGC readings. All
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data was collected under free-living conditions.
An example of the nature of the data collected is given in Figure 1: 24-

hour glucose and insulin absorption profiles from one volunteer (Subject A)
in the study are shown in Figure 1 (i) and (ii), respectively, and Figure
1 (iii) shows Subject A’s estimated METs over 24 hours. These data are
used in the following section to assess the performance of a mathematical
model of blood glucose dynamics, and are chosen as they are seen to reflect
a relatively typical day: three meals (large peaks in glucose absorption) and
snacks (smaller peaks), three injections of rapid-acting insulin (large peaks of
insulin absorption) and one injection of long-lasting insulin, and fluctuating
physical activity during the day.

Figure 1: (i) Estimated glucose and (ii) insulin absorption (from digestion and insulin
absorption models) and (iii) METs over 24 hours for Subject A.

The impact of food, insulin and physical activity on BGC may be assessed
using mathematical models of blood glucose dynamics; in the following sec-
tion we assess the ability of a recently-published mathematical model to
describe the profile of blood glucose concentration using the study data.
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2.2 Modelling blood glucose dynamics and exercise

Blood glucose dynamics are commonly described by compartmental models;
landmark work was undertaken by Bergman and colleagues, who presented a
“minimal model” of glucose-insulin dynamics18,19 based on studies of blood
glucose and insulin concentrations after glucose loads. The minimal model
compartmentalises the body into the liver, periphery and blood according to
their prominent roles in the body’s response to a glucose load, and differential
equations are used to describe blood glucose and insulin concentrations over
time.

A number of extensions of the minimal model have been presented; of in-
terest here is a model presented by Roy and Parker,2 who extend the minimal
model for use in type 1 diabetes. The model primarily focuses on extending
the minimal model to account for exercise (it will be referred to as the ex-
ercise model from here on) and comprises nine differential equations (DEs),
including six accounting for the effects of exercise, which are given in the ap-
pendix; the physiological basis of the equations and notation are summarised
in Table 1.

Parameter estimates in the exercise model are based on data from healthy
subjects performing simplified exercise protocols over short periods of time
(<4 hours). It is not clear how the model would cope with free-living data
such as that collected in the Diabetes UK study: we therefore begin by testing
model performance using Subject A’s data, chosen for the reasons previously
stated in Section 2.1.

2.2.1 Modelling with free-living data

The model fails to accurately reflect BGC profiles, and returns non-viable re-
sults: e.g., Figure 2 shows that model-estimated blood glucose concentration
drops below zero; blood insulin concentration is also found to drop below
zero (not shown). The primary reason for poor model performance is the
handling of physical activity: a key assumption of the exercise model is that
activity returns to basal level after exercise, but data from the Diabetes UK
study shows that physical activity does not return to basal level (1 METs) for
extended periods during the day (as noticeable in Figure 1 (iii)); as a result,
the roles of glycogenolysis and insulin clearance become disproportionately
large.

We further believe that poor model performance is due to using data from
healthy volunteers completing short-term exercise protocols for parameter
estimation. These exercise regimes are unlikely to reflect everyday stimuli,
and the response of BGC in healthy individuals is also unlikely to reflect that
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Table 1: Summary of the differential equations in the exercise model.

Process Physiological description
Blood glucose concentration
(G)

Increased by food intake and hepatic glucose release;
decreased by insulin-dependent and -indepedent hep-
atic and peripheral uptake

Blood insulin concentration
(I)

Increased by insulin absorption after injection;
decreased by insulin movement into active
compartment

Active insulin (X) Insulin active in promoting glucose metabolism; de-
pendent on blood insulin concentration, and propor-
tional to insulin concentration in a “remote” or ac-
tive compartment (mimicking the process of insulin
binding to cells before effecting its action)

Hepatic glucose release due to
activity (H)

Activity stimulates the liver to release glucose from
its stores into the blood

Peripheral glucose uptake due
to activity (U)

Activity stimulates glucose transporters for blood
glucose uptake in exercising muscle(s) to meet en-
ergy demands

Insulin clearance due to activ-
ity (Z)

Activity alters blood flow (increasing flow towards
exercising muscle), increasing availability of insulin

Activity (E) Introduces delay to measured activity to model the
delay in physiological response to activity; measured
by PVOmax

2 , percentage of maximal oxygen uptake

Integrated activity Accumulated activity over time

Decline in rate of glycogenol-
ysis

Liver glucose resources are depleted during pro-
longed activity (as accounted for by integrated ac-
tivity), resulting in attenuated glucose release

seen in people with type 1 diabetes. Due to the practical and theoretical
flaws of the exercise model, a modified version of the model is presented in
the following section.

2.3 Modified exercise model

The exercise model is modified to return physiologically-viable output: the
rate of decline in glycogenolysis is removed (thus the model applies only to
short- or medium-term, mild or moderate physical activity) as the current
handling of activity is unsuitable; insulin clearance due to activity is removed
(thus preventing negative blood insulin concentration), as this process may
be modelling an effect not seen in type 1 diabetes;20,21 and a term for renal
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Figure 2: Estimated blood glucose concentration from the exercise model for Subject A.

clearance of blood glucose, as observed during periods of hyperglycaemia, is
included in the blood glucose concentration DE (discussed below).

The modified physical activity model now comprises six DEs, which are
discussed in the remainder of this section. Model parameters are described
in Table 2 at the end of the section along with the model structure, in Figure
3, which describes the model’s three subsystems (insulin subsystem, insulin-
dependent glucose subsystem and insulin-independent glucose subsystem),
the relationship between compartments and exchange of materials.

The insulin subsystem consists of two DEs. Blood insulin concentration
(I; µU/ml) is modelled by

dI(t)

dt
= İ(t) = −p1I(t) +MI(t)/VI ,

where p1 is insulin clearance, VI is the insulin distribution space, and MI

represents insulin absorption after injection. Active insulin (X; min−1) refers
to plasma insulin that has bound to insulin-sensitive cells, and is able to
effect its action on blood glucose metabolism; this process is modelled by

Ẋ(t) =− p2X(t) + p3I(t),
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where p2 is the rate of insulin degradation and p3 is the rate of appearance
of insulin in the active compartment from plasma.

The role of physical activity is accounted for in the insulin-independent
glucose subsystem. As with the original exercise model, activity (E) is mod-
elled with a delay to represent the delay between activity onset and physio-
logical response:

Ė(t) =− p4E(t) + p5ME(t),

where ME is the intensity of activity above basal level (8% VOmax
2 ≈ 1METs).

Physical activity encourages increased hepatic glucose release (H; mg/kg/min)
and peripheral uptake (U; mg/kg/min); the effect of activity on each process
is modelled by:

Ḣ(t) = p6E(t)− p7H(t),

U̇(t) = p8E(t)− p9U(t).

The blood glucose concentration (G; mg/dl) DE comprises the effect of
basal hepatic balance and peripheral uptake, the roles of H, U , X, renal
clearance (R), and glucose absorption after meals (MG):

Ġ(t) =− p10(G(t)− p11)−X(t)G(t)

+ (W/VG)[H(t)− U(t)−R(t)] +MG(t)/VG,

where p10 is insulin-independent glucose metabolism, p11 is basal BGC, W
is the individual’s weight, and VG is the glucose distribution space. Renal
clearance (R; mg/kg/min) depends on the threshold above which filtration
occurs (r), filtration rate of the kidney (f) and blood glucose concentration:
22

R = MA[max(0, f ·G− r)],

where MA represents a simple moving average of width 126mg/dl, which
smooths the transition from no renal clearance to full clearance.

The modified exercise model represents a model of blood glucose dynam-
ics that is able to handle free-living data. We believe parameter estimates
should be based on free-living data, and fitted according to an individual’s
data rather than grouped data from clinical experiments. We also believe a
stochastic model is a better representation of the physiological processes, as
advocated elsewhere;23 hence, we present a stochastic version of the modified
exercise model in the following section, before considering parameter fitting
methods.
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Figure 3: The new mathematical model of exercise and blood glucose concentration:
ovals represent measured inputs and rectangular boxes represent compartments of the
body; solid lines represent the exchange of insulin (in the insulin subsystem) or glucose;
dashed lines represent where one process affects another; dotted lines represent where data
from the Diabetes UK study is used as an input.

3 Bayesian network of blood glucose and ex-

ercise

The DEs of the modified exercise model are converted from deterministic
form to a Bayesian network; the network is henceforth referred to as the
stochastic exercise (SE) model. Bayesian methods are preferred in order to
incorporate prior information on parameters and continually update belief
as new data become available.

Using the blood glucose concentration DE as an example, the network is

10



Table 2: Parameters, processes and units of the modified exercise model.

Parameter Units Parameter Units
p1 min−1 p9 min−1

p2 min−1 p10 min−1

p3 ml/µU/min2 p11 mg/dl
p4 min−1 VG dl
p5 min−1 VI dl
p6 mg/ml W kg
p7 min−1 r mg/min
p8 mg/ml f dl/min

Process Process
MG mg/min MI µU/min

METs ml/kg/min

constructed as follows:

Assuming the processes are log-normally distributed,23 convert the posi-
tive processes to the log scale with g(t) = ln[G(t)], . . . , x(t) = ln[X(t)], giving

dg

dt
= ġ(t) = Ġ(t)/G(t) = Ġ(t) exp[−g(t)]

= −p10{1− p11 exp[−g(t)]} − exp[x(t)] +MG(t) exp[−g(t)]/VG

+ (W exp[−g(t)]/VG){exp[h(t)]− exp[u(t)]−R(t)}.

The DE is appended with a stochastic term represented by Brownian motion,
wg(t), with associated precision, τg. By convention, such a stochastic DE is
written as:

dg(t) =
{
− p10{1− p11 exp[−g(t)]} − exp[x(t)]

+ (W exp[−g(t)]/VG){exp[h(t)]− exp[u(t)]−R(t)}
+MG(t) exp[−g(t)]/VG

}
dt+ (τ−1/2g )dwg(t).

This is converted to an integral equation by integrating over a small time
frame, t to t+ δ, for small δ > 0, assumed constant here:

g(t+ δ)− g(t) =

∫ t+δ

t

{
− p10{1− p11 exp[−g(t)]} − exp[x(t)]

+ {W exp[−g(t)]/VG}{exp[h(t)]− exp[u(t)]−R(t)}

+MG(t) exp[−g(t)]/VG

}
dt+ εg(t),
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where εg(t) = τ
−1/2
g [wg(t + δ)− wg(t)]. The integral is approximated by the

product of the width and the integrand evaluated at the lower limit. The
model is now concerned with discrete rather than continuous time, hence a
change in notation of the form g(t) = gt and εg(t) = εg,t. The change in
blood glucose concentration over the time span δ is now given by

gt+1 − gt = δ{−p10[1− p11 exp(−gt)]− exp(xt)

+ [W exp(−gt)/VG][exp(ht)− exp(ut)−Rt]

+MG,t exp(−gt)/VG}+ εg,t+1.

Standard results for Brownian motion24 gives εg,t+1 ∼ N(0, δτ−1g ). Setting

fg,t+1 = gt + δ{−p10[1− p11 exp(−gt)]− exp(xt)

+ [W exp(−gt)/VG][exp(ht)− exp(ut) (1)

−Rt] +MG,t exp(−gt)/VG}

gives gt+1 = fg,t+1 + εg,t+1, and hence

(gt+1|gt, xt, ht, ut) ∼ N(fg,t+1, δτ
−1
g ), (2)

ignoring for convenience the dependence of latent processes on the equation
parameters. Thus, BGC is now represented by a series of distributions at
discrete points in time. Following the same procedure for each DE in Section
2.3 gives

(it+1|it) ∼N(fi,t+1, δτ
−1
i )

(xt+1|xt, it) ∼N(fx,t+1, δτ
−1
x )

(et+1|et) ∼N(fe,t+1, δτ
−1
e )

(ht+1|ht, et) ∼N(fh,t+1, δτ
−1
h )

(ut+1|ut, et) ∼N(fu,t+1, δτ
−1
u ),

(3)

where
fi,t+1 =it + δ[−p1 +MI,t exp(−it)/VI ]
fx,t+1 =xt + δ[−p2 + p3 exp(−xt) exp(it)]

fe,t+1 =et + δ[−p4 + p5ME,t exp(−et)]
fh,t+1 =ht + δ[p6 exp et exp(−ht)− p7]
fu,t+1 =ut + δ[p8 exp et exp(−ut)− p9].

(4)

Uncertainty is also assumed present in BGC observations: on the log
scale, observed BGC (g∗t ) is assumed to have measurement error modelled by
white noise, with expectation equal to the underlying latent process,

g∗t |(gt, τg∗) ∼ N(gt, τ
−1
g∗ ). (5)
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BGC observations and the six processes of the model may be represented by
a directed acyclic graph (Figure 4), which shows the conditional relationships
between processes and observations.
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Figure 4: Directed acyclic graph of the modified exercise model.

The Bayesian approach is completed by modelling uncertainty in param-
eters using prior distributions: the natural logarithm of the positive equation
parameters, {p1, . . . , p11, VG, VI}, are assumed to have a normal prior distri-
bution, e.g.,

ln(p1) ∼ N(µp1 , τ
−1
p1

), (6)

and the precisions, {τg∗ , τg, . . . , τu}, are assumed to have a conditionally con-
jugate gamma prior distribution1, e.g.,

τg ∼ Gamma(ατg , βτg). (7)

Analysis and inference reagarding the SE model is based on the posterior
distribution, as determined by Bayes’ Theorem.

1The gamma parameterisation used here and throughout specifies that if X ∼ G(α, β)
then p(X;α, β) ∝ Xα−1 exp(−Xβ).

13



3.1 Posterior distribution of the SE model

For convenience, the equation parameters, precisions and latent processes are
split into three groups:

Ω1 ={p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, VG, VI},
Ω2 ={τg, τi, τx, τh, τu, τe, τg∗},
Φ ={g, i,x,h,u, e},

with the full collection denoted by θ = {Ω1,Ω2,Φ}. By Bayes’ Theorem, the
full, joint posterior distribution of all unobserved quantities is given by

p(θ|g∗) ∝ p(g∗|θ)p(θ)

∝ p(g∗|θ)p(Φ|Ω1,Ω2)p(Ω1)p(Ω2), (8)

where g∗ = {g∗1, . . . , g∗T} represents the set of BGC observations. The first
part of the likelihood, p(g∗|θ), is determined by (5):

p(g∗|θ) =
T∏
t=1

p(g∗t |gt, τg∗) ∝ (τg∗)T/2 exp[(−τg∗/2)
T∑
t=1

(g∗t − gt)2].

The second part of the likelihood consists of the joint distribution of the
latent processes, given by:

p(Φ|Ω1,Ω2) =
T∏
t=1

p(gt|·)p(it|·)p(xt|·)p(et|·)p(ht|·)p(ut|·)

where, e.g., p(gt|·) implies the conditional distribution of gt given all other pa-
rameters in Ω1, Ω2 and Φ. This joint distribution is determined by equations
(1)–(4):

p(Φ|Ω1,Ω2) ∝(τgτiτxτeτhτuτyτk)
T/2 exp

{
− 1

2δ

T∑
t=1

[
τg(gt − fg,t)2

+τi(it − fi,t)2 + τx(xt − fx,t)2 + τe(et − fe,t)2

+τh(ht − fh,t)2 + τu(ut − fu,t)2
]}
.

The final terms in the full posterior distribution are determined by (6) and
(7), where

p(Ω1) = p(p1)p(p2)p(p3)p(p4)p(p5)p(p6)p(p7)p(p8)p(p9)p(p10)

× p(p11)p(VG)p(VI)
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and

p(Ω2) = p(τg∗)p(τg)p(τi)p(τx)p(τe)p(τh)p(τu),

assuming independence of the parameters and precisions.
The SE model represents a highly complex, nonlinear system. We there-

fore advocate the use of Markov chain Monte Carlo (MCMC) methods25 as a
tool for parameter fitting and prediction of BGC. The suitability of MCMC
methods may be tested using a simulation study, where fixed parameter val-
ues are used to generate a BGC profile and MCMC estimates are derived for
the (known) parameters.

4 Simulation study

Parameters in Ω1 are fixed to previously-reported values2 (the value of pa-
rameter p3 was altered as it led to an unstable blood insulin time series), and
the precisions in Ω2 are also fixed at arbitrary values; all values are given
in Table 3. Glucose and insulin absorption from 24 hours of a volunteer’s
(Subject A) records are used as the inputs MG and MI , respectively, and the
same day’s physical activity (METs) measurements are used as the input
ME; these inputs are as presented in Figure 1 previously.

Table 3: Parameter values used to generate BGC time series for simulation study.

Parameter Value Parameter Value
p1 0.142 W 70
p2 0.05 VG 117
p3 0.00028 VI 1760
p4 0.8 τg 5
p5 0.8 τi 5
p6 0.00158 τx 5
p7 0.056 τh 5
p8 0.00195 τu 5
p9 0.0485 τg∗ 5
p10 0.035
p11 80

The conditional distributions presented in equations (2) and (3) are used
to simulate values of the latent processes, Φ, every five minutes over a 24-
hour period (288 time points). BGC “observations” are then simulated us-
ing equation (5); the simulated data are presented in Figure 6 (along with
MCMC output, as discussed later). Given this series of observations, MCMC
methods are used to estimate the parameters in Ω1 and Ω2.
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4.1 Preliminary analysis

Given the complexity of the model (with regard to the number of processes
and parameters), the computational burden is large (on an Intel Core 2 Duo
CPU with 1.95GB of RAM, 1000 iterations of a chain takes approximately
20 minutes); to reduce this burden, the process E and associated parameters,
p4 and p5, are treated as known. The process E describes the body’s delayed
response to physical activity, i.e., the delayed increase in heart rate and oxy-
gen uptake, and introduces a lag on the impact of activity on other processes;
its intended behaviour is therefore well understood, and it is dependent only
on armband measurements. The parameters p4 and p5 are fixed to 0.8 and
the DE for E is solved to coincide with BGC measurements. Solutions at
each time point are treated as known in the rest of the model.

The remaining parameters in Φ and Ω1 are updated using the single-
component Metropolis-Hastings algorithm, as their conditional posterior dis-
tributions are not of standard form. The normal distribution is chosen as
the proposal density for each parameter, with the mean determined by the
current state of the chain, i.e., for parameter θi, the proposal distribution
at iteration j is N(θ

(j−1)
i , λi), for given variance, λi. Parameters in Ω2 are

updated using Gibbs sampling, as the conditional posterior distributions are
from the gamma family.

The means of the prior distributions for parameters in Ω1 are chosen to
be the values previously presented (Table 3) and the variances are chosen to
be relatively large, e.g.,

α1 = ln(p1) ∼ N(ln(0.142), 1).

The prior distributions of parameters in Ω2 are given by

τg ∼ Gamma(2, 1),

a weakly-informative prior distribution.
Starting values for the equation parameters and precisions are chosen to

be the means of their respective priors, e.g., α
(0)
1 = ln(0.142) and τ

(0)
g = 2.

The latent processes are given arbitrary starting values across all time points:
∀t, gt = ln(p11) = ln(80), it = −5, xt = −5, ht = −5, and ut = −5.

A series of pilot studies, using chains of length 5 000–10 000, were run
to determine suitable values of the λi; these values were repeatedly tuned in
order to return acceptance rates of between 0.15 and 0.5 for each parameter
in Φ and Ω1. It was found that the high correlation between successive
time points in the latent processes led to occasional poor mixing; however,
blocking the processes in Φ led to very slow convergence in this case and so
was not pursued.
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The pilot studies highlight the difficulty of estimating all parameters in
Φ and Ω1: in particular, a number of parameter estimates are highly neg-
ative, suggesting the parameters are zero on the original scale; Figure 5
shows the trace plot for p3 from a chain of length 50 000 with burn-in 20
000. Six parameters (p3, p7, p9, p11, VG and VI) displayed such behaviour
and are omitted from the MCMC estimation procedure (and hence fixed
for the remainder of the simulation study). For the remaining parame-
ters (Ω∗1={p1, p2, p6, p8, p10}), results using over-dispersed starting values (not
shown) suggested a burn-in of 5 000 is acceptable for estimation. Chains of
length 10 000 (including burn-in) suggested posterior estimation of BGC
agrees well with simulated BGC (Figure 6).

Figure 5: MCMC trace plot for p3 from a long chain.

4.2 Results

Fifty data sets are simulated, and a Markov chain of size 10 000 (with burn-in
of 5 000) is used to estimate parameters in Ω1 and Ω2 for each set. Corre-
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Figure 6: Simulated BGC and MCMC output.

sponding 95% credible intervals are found by determining the 2.5th and 97.5th

precentiles according to ascending order of the sampled values. MCMC per-
formance was assessed by comparison of credible intervals from all chains
against the true parameter value (expressed as a percentage of intervals con-
taining the true value).

Figures 7-9 show means and 95% credible intervals for parameters p1,
p8 and p10, respectively, ordered by mean. Figure 7 shows 68% of credible
intervals contain p1, below the ideal of 95%; this may be due to an inade-
quate burn-in period, where non-convergence of the chain has led to poor
parameter estimation. However, the large computational burden (50 chains
of 10 000 iterations required seven days to run) meant a larger simulation
study could not be conducted to thoroughly investigate this. Results similar
to those of p1 were seen for parameters p2 and p6. Figure 8 shows consis-
tent underestimation of p8; this implies there may be issues with parameter
identification, where different values of p8 return the same distribution of
observations. In contrast, Figure 9 shows better performance for p10, with
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the majority (90%) of credible intervals containing the value of p10 used to
generate the simulated BGC.

Figure 7: Means and 95% credible intervals for p1 from each Markov chain in the simula-
tion study; the horizontal line represents the value of p1 used to generate the simulations.

Figures 10 and 11 show means and credible intervals for precisions τi and
τg∗ , respectively, ordered by mean. The results for τi (Figure 10) are typical
of those seen for τx, τh and τu, with all credible intervals containing the value
of the respective τ but a tendency for overestimation. The results for τg∗
(Figure 11) show all credible intervals contain the simulation value, without
obvious bias, and is similar to the results seen for τg.

4.3 Model Verification

MCMC methods may be further assessed by monitoring performance in the
predictive space; this was achieved by removing a selection of BGC measure-
ments (to be used as verification values) according to a number of scenarios:

• scenario A 25 randomly-selected measurements;

• scenario B one-hour block during early morning (when asleep);

• scenario C one-hour block after breakfast, and three-hour block after an
evening meal and into the night.
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Figure 8: Means and 95% credible intervals for p8 from each Markov chain in the simula-
tion study; the horizontal line represents the value of p8 used to generate the simulations.

Figure 9: Means and 95% credible intervals for p10 from each Markov chain in the
simulation study; the horizontal line represents the value of p10 used to generate the
simulations.
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Figure 10: Means and 95% credible intervals for τi from each Markov chain in the simu-
lation study; the horizontal line represents the value of τi used to generate the simulations.

Figure 11: Means and 95% credible intervals for τg∗ from each Markov chain in the
simulation study; the horizontal line represents the value of τg∗ used to generate the
simulations.
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The MCMC methods used in the previous section are extended to sample
from the distribution of BGC measurements (equation 5); Gibbs sampling
is used as the conditional posterior distribution of BGC measurements is a
normal distribution. Chains of size 20 000, including burn-in of 5 000, are
run to determine the ability of MCMC to predict measured BGC. Starting
values of the missing observations are chosen to be ln(p11) = ln(80).

4.3.1 Results

For each scenario, MCMC sample means and 95% credible intervals are cal-
culated for each missing BGC measurement. Figure 12 suggests good pre-
dictive performance under scenario 1 (random missing measurements), with
the credible intervals all containing the true value, and no obvious prediction
bias. Figure 13 shows the results for scenario 2, with the credible intervals
again containing the simulated BGC entirely. However, the intervals are so
wide as to be of limited use in practical terms; e.g., an interval of (1,8) is
equivalent to BGC in the range ∼(3,2980)mg/dl, which spans much of the
hypo- and hyperglycaemic range. The width of the confidence intervals is
due to the (arbitrarily chosen) values of the precisions; different choices of
these precisions results in different confidence intervals.

Figures 14 and 15 show the results for scenario 3, split into blocks of ver-
ification values; these show that the credible intervals contain the simulated
BGC almost entirely (one interval does not). The MCMC sample means do
not appear to pick up the fluctuating nature of the simulated BGC.

4.4 Robustness

Predictive performance may also be assessed by testing robustness to specifi-
cation of prior distributions or misspecification of parameters. Predictive per-
formance is assessed over 25 randomly-selected BGC simulated values across
a number of arbitrarily-determined scenarios, involving either (misleading)
informative prior distributions, parameter misspecification, or a combination:

• scenario 1 (baseline scenario) all fixed parameters kept at simulation
values, prior distributions as specified in Section 4.1. The remaining
scenarios are as scenario 1 except where specified;

• scenario 2 overestimation of p11 (simulation value of 80mg/dl; fixed
value of 90mg/dl);

• scenario 3 ten-fold overestimation of p7 (0.056; 0.56) and underestima-
tion of VI (176dl; 150dl);
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Figure 12: Means and 95% credible intervals for each missing observation under scenario
A.

Figure 13: Means and 95% credible intervals for each missing observation under scenario
B.
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Figure 14: Means and 95% credible intervals for each missing observation under scenario
C (first block).

Figure 15: Means and 95% credible intervals for each missing observation under scenario
C (second block).
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• scenario 4 ten-fold underestimation of p9 (0.0485; 0.00485), prior distri-
bution for p8 given by N(1, 0.1);

• scenario 5 all fixed parameters kept at simulation values, with prior dis-
tributions τg ∼ Gamma(10, 10) and τi ∼ Gamma(0.1, 0.1);

• scenario 6 prior distribution p10 ∼ N(0.35, 3);

• scenario 7 all equation parameter prior distributions set to N(5, 0.01),
100-fold overestimation of p3 (0.000028; 0.0028), ten-fold underestima-
tion of p7 (0.056; 0.0056) and overestimation of VG (117dl; 140dl).

The continuous ranked probability score (CRPS)26 is used to compare the
cumulative distribution of the MCMC samples in each scenario to the true
value, thereby providing a comparable measure of model performance in each
scenario.

4.4.1 Results

Estimated CRPS for each of the scenarios is given in Table 4. CRPS is
relatively consistent across the scenarios, suggesting the model is robust to
misspecification of parameters and/or different specification of prior distri-
butions. In particular, all scenarios performed at a similar level to scenario 1,
suggesting, at worst, only a minor loss of predictive performance compared
to the standard set-up.

Table 4: CRPS values under scenarios given in Section 4.4.

Scenario CRPS
1 0.395
2 0.397
3 0.410
4 0.393
5 0.393
6 0.400
7 0.412

Having established the use of our new methods in a simulation study, we
now turn attention to a real-world example.
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5 Case Study

MCMC is used to estimate parameters in Ω∗1, Ω2 and Φ for Subject A. All
prior distributions and starting points are as in the simulation study (Section
4.1). A chain of length 50 000 with burn-in of 20 000 is used to determine
parameter estimates.

5.1 Results

Errors between estimated BGC and observed BGC are given in Figure 16; the
plot shows close agreement of estimated and observed BGC. Estimates and
associated credible intervals of parameters in Ω∗1 and Ω2 are given in Table 5;
the results suggest some deviation from parameter estimates derived in the
Roy and Parker model,2 indicating there may be significant and potentially
important differences between parameter values across individuals.

Figure 16: Errors between MCMC-estimated BGC and observed BGC.

The estimated profile of plasma insulin concentration (I) is given along-
side estimated insulin absorption in Figure 17: peaks in plasma insulin co-
incide with insulin injections, suggesting the model is behaving as would be
expected with regard to the insulin subsystem; similar results are seen for
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Table 5: MCMC parameter estimates and associated 95 % credible intervals (CI) for
Subject A.

Parameter MCMC estimate 95% CI
p1 -1.47 (-1.97, -0.98)
p2 -1.65 (-2.28, -1.18)
p6 -6.75 (-7.49, -5.31)
p8 -8.24 (-9.44, -6.51)
p10 -3.52 (-5.27, -2.43)
τg∗ 3.78 (1.88, 5.80)
τg 3.31 (1.63, 5.12)
τi 7.29 (3.02, 14.13)
τx 12.32 (1.73, 31.96)
τh 10.21 (1.18, 25.23)
τu 9.86 (1.10, 24.34)

active insulin (X), with a slight shift in time (to the right) accounting for the
process by which plasma insulin binds to insulin-sensitive cells.

Figure 18 shows increased peripheral glucose uptake (U) with increased
physical activity, suggesting the model is again behaving as expected. How-
ever, there is evidence of instability when U becomes too negative (sim-
ilar results are seen for H); this may be due to model instability when
U→ 0⇒ u = ln(U)→ −∞.

Mixing is generally excellent across all time points for the processes G,
I and X; Figure 19 shows a set of trace plots (arbitrarily-selected) for these
processes. Mixing is more variable for processes H and U : Figure 20 shows
good mixing at early time points which becomes less satisfactory at later
time points. Mixing is excellent for the precisions in Ω2; Figure 21 shows the
trace plots for τg and τx, which are typical of the other precisions. For the
remaining parameters, in Ω∗1, mixing is less satisfactory; trace plots suggest
non-convergence - as exemplified by the trace plot of p2 (Figure 22 (i)) -
except in the case of p10, which has excellent mixing (Figure 22 (ii)).

6 Discussion

This article highlighted a number of practical and theoretical issues relating
to the combination of free-living data and mathematical models of blood
glucose, which represents an important step towards the development of an
artificial pancreas.

We have demonstrated major differences between free-living activity and
simplified exercise protocols in a clinical environment, and how this can vi-
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Figure 17: Model-estimated plasma insulin concentration (top) and insulin absorption
after injection (from insulin absorption model; bottom) for Subject A.

Figure 18: Model-estimated peripheral glucose uptake due to physical activity (top) and
METs (bottom) for Subject A.
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Figure 19: Selected MCMC trace plots for (i) log of blood glucose concentration at time
t=1 (g1), (ii) log of blood glucose concentration at time t=288 (g288), (iii) log of blood
insulin concentration at time t=100 (i100), (iv) log of active insulin concentration at time
t=200 (x200).
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Figure 20: Selected MCMC trace plots for (i) log of hepatic glucose release at time t=1
(h1), (ii) log of hepatic glucose release at time t=100 (h100), (iii) log of peripheral glucose
uptake at time t=10 (u10), (iv) log of peripheral glucose uptake at time t=200 (u200).
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Figure 21: MCMC trace plots for τg (top) and τx (bottom).

Figure 22: MCMC trace plots for p2 (top) and p10 (bottom).
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olate modelling assumptions. A new physiologically-based compartmental
model of glucose-insulin dynamics was developed to cope with free-living
data, and converted to a Bayesian network to account for process and mea-
surement variability; MCMC methods were then proposed as a tool for model
analysis.

A simulation study found that although MCMC was unable to accurately
determine estimates for all parameters, it was able to produce accurate es-
timates for the majority of parameters. Precisions were generally overesti-
mated, but all credible intervals contained the respective values of τ used for
simulation; credible intervals of other parameters were less ideal, but with
no obvious bias in most cases. MCMC performance in the predictive space
was tested under a number of scenarios, including parameter misspecifica-
tion and misleading informative prior distributions; variation in performance
was relatively small, suggesting robustness to situations where incorrect prior
information is included in the estimation procedure.

Finally, the use of our methods was demonstrated in a real-world example
on an individual. Model behaviour was as anticipated with respect to pro-
files of the unobservable processes (plasma and active insulin, and peripheral
uptake and hepatic glucose release due to activity).

Future work may investigate the potential association of parameters es-
timates and physical characteristics (e.g., percentage of body fat, cardiovas-
cular fitness); such research may indicate “preferable” (in terms of long-term
health outcomes) ranges of parameter values, and might further be used to
assess the effect of, say, exercise intervention programmes (under the caveat
of as yet unknown inter- and intra-individual variation).

Although we have not yet thoroughly tested the ability of MCMC to es-
timate parameters using longer chains, nor other methods (e.g. sequential
Monte Carlo) that may also improve computation time, we have demon-
strated a new approach to analysis of mathematical models in diabetes re-
search. We believe an individualised, stochastic representation of blood glu-
cose is more physiologically realistic compared to generic, deterministic mod-
els; hence, we believe the methods presented in this article are an important
step towards realising the goal of an artificial pancreas.

Appendix

The equations of the exercise model, as described by Roy and Parker,2 are
given in this section, and parameter estimates are presented in Table 6.

The physical activity (E) input is modelled to account for the delay be-
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tween activity onset and physiological response:

Ė(t) =− a1E(t) + a2ME(t),

where ME is measured activity intensity above basal level. Physical ac-
tivity affects insulin clearance (Z; µU/ml/min), hepatic glucose release (H;
mg/kg/min) and peripheral glucose uptake (U; mg/kg/min):

Ż(t) = a3E(t)− a4Z(t)

Ḣ(t) = a5E(t)− a6H(t)

U̇(t) = a7E(t)− a8U(t).

Glycogenolysis, the dominant form of glucose production in the liver,
slows when glycogen reserves are depleted during prolonged or intense exer-
cise; this results in a decrease in hepatric glucose release. The dynamics of
glycogenolysis are modelled by:

K̇(t) =


0 if A(t) < ATH

a9 if A(t) ≥ ATH

−K(t)/a10 if ME(t) = 0,

where ATH is a threshold (based on a linear function of activity intensity)
above which hepatic glucose release begins to decline, and A(t) is integrated
exercise intensity:

Ȧ(t) =

{
ME(t) if ME(t) > 0

A(t)/a11 if ME(t) = 0.

Blood insulin concentration (I; µU/ml) is modelled by

dI(t)

dt
= İ(t) = −a12I(t) + a13UI(t)− Z(t),

where a12 is insulin clearance, a13 is the inverse of insulin distribution space,
and UI is insulin infusion rate. Active insulin (X; min−1) is modelled by

Ẋ(t) =− a14X(t) + a15[I(t)− a16],

where a14 is the rate of insulin degradation, a15 is the rate of appearance of
insulin in the active compartment, and a16 is basal plasma insulin concen-
tration.
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Blood glucose concentration (G; mg/dl) is modelled by:

Ġ(t) =− a17(G(t)− a18)−X(t)G(t)

+ (W/VG)[H(t)−K(t)− U(t)] + UG(t)/VG,

where a17 is insulin-independent glucose metabolism, a18 is basal BGC, W is
the individual’s weight, UG is rate of glucose absorption after meals, and VG
is glucose distribution space.

Table 6: Parameter values as presented by Roy and Parker (RP).2

Parameter RP estimate Parameter RP estimate
a1 0.8 a10 6
a2 0.8 a11 0.001
a3 0.00125 a12 0.142
a4 0.075 a13 0.098
a5 0.00158 a14 0.05
a6 0.056 a15 0.000028
a7 0.00195 a16
a8 0.0485 a17 0.035
a9 0.0108 a18 80
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