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Abstract

Item response models are essential tools for analyzing results from many educational and psychological
tests. Such models are used to quantify the probability of correct response as a function of unobserved
examinee ability and other parameters explaining the difficulty and the discriminatory power of the
questions in the test. Some of these models also incorporate a threshold parameter for the probability
of the correct response to account for the effect of guessing the correct answer in multiple choice type
tests.

In this article we consider fitting of such models using the Gibbs sampler. A data augmentation
method to analyze a normal-ogive model incorporating a threshold guessing parameter is introduced and
compared with a Metropolis-Hastings sampling method. The proposed method is an order of magnitude
more efficient than the existing method. Another objective of this paper is to develop Bayesian model
choice techniques for model discrimination. A predictive approach based on a variant of the Bayes
factor is used and compared with another decision theoretic method which minimizes an expected loss
function on the predictive space. A classical model choice technique based on a modified likelihood
ratio test statistic is shown as one component of the second criterion. As a consequence the Bayesian
methods proposed in this paper are contrasted with the classical approach based on the likelihood ratio
test. Several examples are given to illustrate the methods.
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1 Introduction

Item response data are often found in educational and psychological testing. Typically a set of binary
responses from a group of individuals on a number of questions constitute such data. Parametric item
response models are popular for these data. The probability of correct response is modeled as a function
of individual level effects due to the subjects and the questions (items). Models are built on additive
and/or multiplicative assumptions on two types of parameters. To account for the effect of guessing in a
multiple choice test another set of parameters, often called the guessing parameters, are also introduced,
thus creating the so called three parameter models. These models appeared in item response theory
(IRT) literature through the pioneering work of Birnbaum (1968), Lord (1980), Novick et al. (1972)
and Rasch (1961) among many others. Accessible discussions and literature reviews are found in recent
texts, e.g. Baker (1992), Johnson and Albert (1999), van der Linden and Hambleton (1997), and the
references therein.

Model fitting in IRT is rather challenging since the joint maximum likelihood estimates (mle) for
many of the models are not theoretically guaranteed to exist. Although some variants of the mle e.g.
the conditional mle have finite values in some cases, usually they do not have the desirable large sample
properties. This is because the number of unknown parameters under these models increases with the
number of data points. General purpose software for these models, e.g. PC-BILOG (Mislevy and Bock,
1986), incorporate some limited Bayesian estimation techniques. Computational difficulties associated
with a full Bayesian analysis are perhaps to blame for the paucity of literature in this area before the
1990s.

Computational techniques based on the Gibbs sampler (Gelfand and Smith, 1990) and other Markov
chain Monte Carlo (MCMC) methods, see e.g. Gilks et al. (1996) for a review, have enabled routine
fitting of these models under the Bayesian paradigm. In the IRT setting: Albert (1992) and Albert
and Chib (1993) propose the Gibbs sampler for normal-ogive models; Ghosh et al. (2000) examine
integrability of the associated posterior distributions; Patz and Junker (1999a, 1999b) describe and use
more advanced MCMC methods. The Gibbs sampling software BUGS is also able to fit some of the
models in this context (Spiegelhalter et al., 1996).

The present article sets out with the following two main objectives.
e Introduction of an efficient data augmentation scheme (DAGS) for fitting the normal-ogive models.
e Comparison of different models using Bayesian predictive model selection criteria.

The new data augmentation scheme extends the work of Albert (1992) to fit the three parameter
models and provides a much faster implementation of the Gibbs sampler. This is especially beneficial
here since in many practical situations the available data sets are quite large and huge computing
power is needed to fit these models. In one of our examples the proposed data augmentation scheme is
approximately 10 times more efficient than a Metropolis-Hastings method currently used.

Another objective of this paper is to develop model selection techniques for deciding which model is

the best fit for a given set of data. We propose doing this via a Bayesian model choice methodology and



in so doing hope to address a range of modeling issues of which the most obvious include the following.
Should we use a either logistic or a normal-ogive model? Is it worthwhile to include item discriminatory
parameters? Should we include a set of guessing parameters? To our knowledge, the answers to these
questions are not available in the IRT literature.

Model selection methods based on the classical likelihood ratio statistics (Andersen, 1973; Baker,
1992; Bock and Aitkin, 1981) and the Pearson x? goodness of fit also run into problems for these
models, because the asymptotics needed for the sample statistics are not fulfilled, see e.g. Lord (1975).
Owing to these difficulties we consider Bayesian predictive model selection methods in this paper. A
Bayesian formulation of the models does not rely on the asymptotic arguments and avoids many of the
above mentioned difficulties, see e.g. Novick et al. (1972), Tsutakawa and Lin (1986), Swaminathan
and Gifford (1986).

The methods based on features of the posterior distribution of the likelihood added to a penalty
factor are available for model selection. For example, Aitkin (1997) interprets the p-values by using the
posterior distribution of the likelihood function. Spiegelhalter et al. (1998) propose a model selection
criterion for arbitrarily complex models called the deviance information criterion (DIC). They estimate
the effective number of parameters for such models using quantities similar to the leverages in linear
models. The penalty factor, which is the expected deviance minus the deviance evaluated at the
posterior expectations, is calculated and added to the posterior expectation of the deviance to form the
DIC.

In this paper we investigate the sensitivities of two model choice criteria available for Bayesian
analysis. The first one, based on the pseudo-Bayes factor (Geisser and Eddy, 1979), is philosophically
close to a pure Bayesian approach to model discrimination. The Bayes factor provides a measure
of whether the observed data increased or decreased the relative odds of two different models under
consideration.

The second approach considers a loss function based on the Kullback-Leibler type divergence measure
between the observed set of data and a future replicate of the data arising under the fitted model. The
expected loss with respect to the posterior predictive distribution, the distribution of a future replicate of
the data, is the proposed criterion. From a given set of models, the one with the minimum expected loss
is chosen as the best model for the data set currently under investigation. We show that the expected
loss can be decomposed into two parts, one is the familiar likelihood ratio statistic and the other is a
penalty for parameter estimation. In this way we are able to compare Bayesian model choice methods
with conventional classical methods for model selection.

We also show that the above criteria can be used to distinguish between different sets of models
based on different sets of assumptions. The proposed methods do not rely on asymptotic arguments and
are by-products of the MCMC methods used to fit the models. In addition, the methods suggested here
are based on predictive distributions and so do not require that the different models under investigation
be nested, unlike the classical methods using the likelihood ratio tests.

The remainder of this article is organized as follows. Section 2 describes the models and the prior



assumptions. In Section 3 we develop the DAGS and compare it with the Metropolis-Hastings methods
in numerical examples. Section 4 describes the Bayesian model choice techniques with a large simulation
example studying the sensitivities of different model choice criteria. We discuss a well known example
in Section 5. We conclude with a few summary remarks in Section 6. Some computational details for

calculating different model choice criteria are provided in the Appendix.

2 Hierarchical Models and Prior Assumptions

Suppose that each of n students are given k items (questions). The response y;; for the ith student

and the jth item is recorded as 1 or 0 according to whether the student answered the item correctly or

incorrectly. Let p;; denote the probability that the ith student is able to answer the jth item correctly.
We first consider the Rasch models (Rasch, 1961) where p;; is modeled as

pij =F0;=B5), i=1,...,n,5=1,...,k, (1)

where F' is either the logistic cdf, i.e. F(z) = —y or the standard normal cdf F(z) = ®(z). The
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models based on ®(x) are known as normal-ogive models. The parameter §; measures the ability of the
ith student and the parameter 3; measures the difficulty level of the jth item.

The two parameter models are obtained by introducing a slope parameter o (> 0) for each item.

Here p;; in (1) is modified to
Dij :F(Hiaj _Bj)a (o7 >0,i=1,...,n, j:].,... ,k‘. (2)

The restrictions a;j > 0,5 = 1,...,k assure that a student with a better ability §; has a higher
probability of getting the jth item correct.

The three parameter models introduce a threshold probability ¢; for p;;. Here we assume
Dij :cj-l-(l—cj)F(Giaj —,Bj), 0<c¢;<lLa;>0,i=1,...,n, j=1,... k. (3)

The differences between the three models are clear. The total probability of correct response under
the three parameter model is explained by an additional factor of guessing. Contrasting the two and
one parameter model, we can see that the two parameter model estimates a slope parameter a; for
each item while the one parameter model sets it at unity in an appropriate binary regression model.
We denote the two and the three parameter models with the logistic cdf by 2PL and 3PL respectively
(parameter logit). Similarly the normal-ogive models are denoted by 2PP and 3PP (parameter probit).
The one parameter probit model is henceforth denoted by 1PP.

Some authors prefer not to label the ¢;, j = 1,...,k as guessing parameters. Instead those are
viewed as threshold probabilities for p;;. The quantity % in a multiple choice type test with M
alternatives serves as a very good guess for ¢;. A beta prior distribution with density proportional to
z" (1 — z)*~! for suitable non-negative values of x and X can be used for ¢;. Higher values of these
parameters lead to more precise prior information. These parameters should be chosen in such a way
that E(c;) =

4> is some pre-specified value, e.g. %, see e.g. Swaminathan and Gifford (1986). In



many applications M = 4 and in this article we work with this choice throughout. Note that a uniform
prior distribution gives E(c;) = 3.

The ability parameters 8;,7 = 1, ... ,n are considered random effects following independent standard
normal distributions, i.e. §; ~ N(0,02) where 0? = 1. It is possible to estimate the ability variance o>
if it is unknown. In this case a suitable prior distribution for ¢ is required. Conjugate inverse gamma
prior distributions are usually considered, see e.g. Spiegelhalter et al. (1996). In this paper, however,
we have not pursued this.

We assume a normal prior distribution, N (0, ) say, for §; and a truncated normal prior N (0,v)I(a; >
0) where I(-) is the indicator function for a;. Although we can fit the models with any suitable prior
distributions, we choose the above for illustration. The truncated normal distribution prior for «;,
however, is advantageous to work with the normal-ogive models because of conjugacy. Also note that
large values of § and v provide non-informative prior specification whereas smaller values correspond
to higher prior precision.

Let ¢ = (0,8, a,c) denote the collection of parameters. The full joint posterior density, 7(¢|y), of

¢ for the three parameter model is given by

n

3 3 1
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ij i=1
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;ﬂ? + %Z;a? HI(aj > O)H[c?_l(l—cj))"l].

J J

(4)
The posterior densities for the one and two parameter models are obtained appropriately. For example,
the two parameter model is obtained by setting ¢; = 0 and removing the prior term for c;.

The models (2) and (3) are not identifiable since they are preserved if each 6; is multiplied by a
factor and each a; is divided by the same, see e.g. Albert (1992). As claimed there, a proper prior
for @; essentially gets rid of this difficulty. However, there may still be problems as o;; may be weakly
identified by the full Bayesian model. This emerges from the fact that the precision assumed in the
prior for 8; together with the likelihood function may not be enough to ‘separate’ out ; from «;. Hence
the posterior distributions of some of the a; may show evidence of very heavy tails. Here suitable
choices of the hyper-parameters § and v can help. We illustrate the choices with two examples. Model
parameters for the small data example in Section 3.3 with only 39 students and 6 items required high
prior precision whereas the same for the second (larger) data set in Section 5 did not require such high

precision.

3 Computation

3.1 MCMC using rejection and the Metropolis algorithm

The models described above can be fitted using the powerful MCMC methods such as the Gibbs sampler
(Gelfand and Smith, 1990). For the item response models note that all the full conditional distributions

are non-standard. Hence straightforward implementation of the Gibbs sampler using standard sampling



distributions is not possible. However, all the full conditional distributions for the one and two parameter
probit and logit models are log-concave (log of the density is concave), see e.g. Ghosh et al. (2000). Exact
sampling from one dimensional log-concave distributions can be performed using rejection sampling,
even when the normalizing constants are unknown, see e.g. Gilks and Wild (1992). These authors also
develop an adaptive rejection sampling (ARS) scheme. ARS dynamically constructs two envelopes (one
lower and one upper) for the distribution to be sampled from using successive evaluations of the density
at the rejected points. The algorithm is stopped when one proposed point has been accepted. The
routines to implement ARS are freely available from http://www.mrc-bsu.cam.ac.uk/ and the Gibbs
sampling software BUGS (also available from this web site) is able to fit these models.

Computational difficulty arises when fitting the three parameter models. The three parameter
models are not contained within the broad framework of the one parameter exponential family models,
rather they are mixtures of those. Hence log concavity of the full conditional distributions no longer
holds. As a consequence nice computing tricks which are available for the exponential family models,
e.g. ARS cannot be used here in general. However, the computations can be performed using a
Metropolis step (Gilks et al., 1995). Computer codes for performing adaptive rejection Metropolis
sampling (ARMS) are publicly available from the above web site and we have used those for our
examples in this paper.

However, MCMC samplers for the three parameter models with Metropolis sampling steps take
a long time, e.g. days and hours, to run for large data sets, see e.g. Patz and Junker (1999a). To
have faster implementations, we exploit the mixture structure in (3) to sample the guessing parameter
¢;j- Using standard techniques for mixture decomposition, we are able to obtain a sampling scheme in
which all the required sampling can be performed using standard distributions for the 3PP model, thus

eliminating the need for Metropolis updating steps (see below).

3.2 Data Augmentation for the Normal-Ogive Models

We introduce two independent random variables corresponding to each data point y;; as follows. The
first is a Bernoulli random variable, denoted by wu;;, with success probability c¢;. The second augmented
variable is a normal random variable z;; with mean 7;; = 6;0; — B; and variance unity. The response y;;
restricts the augmented random variables u;; and 2;; so that the three parameter model (3) is obtained

as a consequence. Thus we set
Yij = wij + (1 — ug;) x I(zi; > 0). (5)

It is easy to see that (3) follows from (5) by taking expectations.

The Gibbs sampler corresponding to this data augmentation scheme is implemented as follows. First,
we consider sampling u;; and z;; given the data and the other parameters. Note that the restriction (5)
must be obeyed at every step of the algorithm. Consequently several cases arise depending on the value
of the response y;;. Suppose that y;; = 0, then u;; must be equal to zero and z;; must be negative.

Therefore, when y;; = 0, we set u;; = 0 and draw z;; ~ N(n;;, 1) I(2;; <0).



Next we consider the case when y;; = 1. If u;; = 0 then z;; must be positive, and if z;; is negative
then u;; must be equal to unity. Hence we adopt the following conditional sampling scheme. If the
current value of u;; is 0 then we sample z;; ~ N(n;;, 1) I(z;; > 0). Otherwise z;; is obtained as a draw
from N(7;;, 1). Once z;; has been sampled we test to see if it is negative. If it is, then we simply set
ui; = 1. Otherwise u;; is drawn as a Bernoulli random variable with success probability c;.

Now we draw a new value of ¢; from the beta distribution with parameters £ + > . u;; and
A+n—3"  u;. Once the u;j, 2; and ¢; have been simulated we follow Albert’s (1992) method for
simulating the rest of the parameters, 6;, a; and ;. Let 7 = o~ 2. The full conditional distribution for
0; is normal with mean y; and variance V say, where

& k
= Vfleaj(z,-j +8;), and V7! =7 + w where w ! = Za?.

j=1 j=1
The full conditional distribution for the vector of parameters (o, ;) is the bivariate normal distribution

restricted over the range a; > 0 with mean p and dispersion X as given below,
p=3"'X77; and 7' = XTX + diag(6~*,v71),

where diag(6~1,v71) is a diagonal matrix; X = [b,—1]; 1 is an n x 1 vector of 1’s and Z; =
[21j,.-. ,2nj]T. Note the benefit of assuming conjugate normal priors for a; and 3;. Non-conjugate pri-
ors except for few simple cases, e.g. an exponential distribution prior for a;, will destroy the conjugate
sampling distribution of ;.

If the guessing parameter c; needs to be fixed at some known value other than 0, we simply omit the
sampling step for ¢;. If however, they are not to be included at all, (as in the two and one parameter
models) we set u;; = 0 at every iteration and omit the sampling step for c;.

It is straightforward to implement the above algorithm since all the complete conditional distribu-
tions for Gibbs sampling are standard. A computer program written in the C language is also available

from the author.

3.3 An Example

An algorithm that is fast per iteration may produce highly autocorrelated samples, which are less useful
for parameter estimation. In order to make fair comparison between different MCMC algorithms we
use the notion of effective sample size, (ESS), Kass et al. (1989). ESS is defined for each parameter
as the number of MCMC samples drawn, B, divided by the parameter’s autocorrelation time, v =
1+237° | pr, where py is the autocorrelation at lag k. Estimation of vy using sample autocorrelations

is problematic because fewer MCMC samples are used in estimating py as k increases. There are many

1+p*

alternatives, see e.g. Roberts (1996) for a review. Here we use a simple upper bound T where

*

p

given below.

= maxg>1 |px|. In many applications p* = |p;| and we have used this for our numerical example

For the three parameter model in equation (4) the choices of the hyper-parameters, x and A play a

significant role in the performance of the algorithms. As mentioned in Section 2, higher values of x and



A lead to more precise prior information. Hence the marginal densities of the parameters c¢; become
more peaked and concentrated around the prior mean k/(k + \).

Note that the DAGS samples the ¢; parameters exactly from the conditional distribution. Although
the Metropolis scheme also obtains exact samples, it is expected to be less efficient than the DAGS
since effectively it has to search for the high density area in the unit interval from a very complicated
conditional distribution obtained from Equation (4). Intuitively, the DAGS should out-perform the
Metropolis scheme and the difference between the two should get better as more precise prior distribu-
tions are assumed. This point is illustrated empirically using the following example.

We consider a data set taken from Tanner (1996, page 190), see also Sahu and Roberts (1999) for
an interesting study on the rate of convergence. For this example, we have n = 39 and k£ = 6. We have
implemented the full three parameter probit model using both the DAGS and the ARMS. Although we
have investigated many other choices for the hyper-parameters § and v, we take § =2 and v = % as in
Patz and Junker (1999a). Larger values of these parameters led to unstable estimates.

We work with run lengths of 5000 iterations after discarding 1000 initial iterations. We obtain the
effective sample size, ESS using the methodology described above for each of the 18 parameters (6 each
of B, a; and ¢;). Also the sample size per second (ES/s), ESS divided by the running time, is calculated
for each parameter. In Table 1 we report the average ESS and ES/s (average over 18 parameters) for
the two algorithms run under different choices of the hyper-parameters x and A. The last column gives

the ratio of the ES/s for the two algorithms.

DAGS ARMS

ESS | ES/s | ESS | ES/s || Eff
K=1,A=1 3323 | 475 | 1377.3 | 5.6 || 8.9
K=1,A=3 3412 | 487 | 12784 | 53 || 93

k=6.25,A=1875 || 709.1 | 101.3 || 2011.5 | 8.1 11.5
k=12.5,A=37.5 962.6 | 137.5 || 23794 | 94 12.6
k=100, = 300 1642.0 | 234.6 || 3082.3 | 11.8 || 15.7

Table 1: Performance of the DAGS and ARMS for the Tanner’s data example

We have included the uniform prior distribution for ¢; in our analysis, although it does not give

E(cj) = % a-priori. For this choice we see that the efficiency of the DAGS compared to the ARMS is

minimum. All other choices have E(c;) = 1 a-priori. Note that, in terms of ESS the ARMS scheme
does much better than the DAGS. However, when computing time is taken into account, the DAGS
performs much better (about 10 times better). Lastly, the efficiency of the DAGS compared to the
ARMS gets better as more precise prior information is assumed.

The performance of the DAGS gets even better for examples with larger data sets. For instance for
the law school data example considered in Section 5 the DAGS is about 20 times more efficient than

the ARMS. Note that these conclusions may change if one adopted different efficiency criteria from



those considered here. However, we speculate that the performance of the sampling scheme under any

sensible criteria would show an order of magnitude improvement similar to that reported here.

4 Model Choice

4.1 The Pseudo-Bayes Factor

A pure Bayesian approach to model selection is to report posterior probabilities of each model by
comparing Bayes factors defined as follows. Let 7(-) denote the density of its argument and ¢ denote
all the parameters under the assumed model. Let y,bs denote the observed data with individual data
points Yrobs,” = 1,... ,N. The prior predictive density of a set of observations at the actual observed

point yobs is given by

T(Yobs) = /W(YObsK) 7(¢) d¢. (6)

(Note that in the Bayesian inference setup the actual observations y,ps is fixed. The above is interpreted
as the density of a set of observables evaluated at the observed point y,ns.) The Bayes factor for

comparing two given models M; and M, is

BF = 7"'(}’obsljul) :
7r()’obs”M?)

where 7(yobs|M;) is the density in (6) when M; is the assumed model, i = 1,2.

The BF gives a summary of the evidence for M; against M provided by the data. Calibration
tables for the BF are available for deciding how strong is the evidence, see e.g. Raftery (1996). Note
that 7(¥obs|M;) is the marginal likelihood of the data under model M;. Hence the BF chooses a model
for which the marginal likelihood of the data is maximum.

Although there have been recent advances in computing the Bayes factor, see e.g. Raftery (1996)
for a review, there are problems in calculating it for high dimensional models such as those advocated
here. Also for improper priors the Bayes factor is not meaningful since it cannot be calibrated. This is
because the predictive density (6) is improper when 7(¢) is. However, we can work with the following
version of the BF which avoids these problems.

The methodology requires calculation of the cross-validation predictive densities. Let y(r) ons denote
the set of observations y,,s with rth component deleted. The cross-validation predictive density is

defined by:

T Wr 1Y (0).0b0) = / |G, Yoy o00) TCIY().0bs) dC- (1)

Note that in the case of conditionally independent observations given ¢, 7(y,|¢, ¥(1),0bs) = 7(y,[¢)- The
above predictive density is also known as the conditional predictive ordinate (CPO). The pseudo-Bayes

factor (PsBF) (Geisser and Eddy, 1979) for comparing two models M; and M, is defined as,

PsBF = ﬁ 7T(yr,obs|Y(r),0bS7 M)
"T(yr,obsl}’(r),obsa My) ’

r=1



This is a surrogate for the Bayes factor, see e.g. Gelfand (1996) and its interpretations are similar.
The CPOs are also useful for checking model adequacy. Instead of using a single summary measure
alone, e.g. the PsBF, the individual CPOs can also be compared under any two models. This is to
guard against any single highly influential observation concealing a general trend. One observation,
Yr,obs, prefers model My to M, if the rth CPO is higher under M;. The appendix contains details for
calculating the PsBF.

4.2 Expected Predictive Deviance

For many Bayesian purists no further analysis is required after calculating the BF. In this article,
however, we do not take such a strong view. Here we develop an alternative model selection criterion
which provides an independent check for the conclusions obtained using the BF or the PsBF. Further,
we shall see that the likelihood ratio statistic is one component of the criterion. This provides a way of
comparing the Bayesian methods with the classical likelihood ratio tests.

The method is developed for a different but probabilistically equivalent description of the data and
the models introduced in Section 2. We first describe this new setup. Recall that there are k items
in our setting. Let s = 2* be the total number of response patterns. Hence the score vector of each
of n students is a particular pattern among the total s possible patterns. Let the observed number of
students with the rth pattern be denoted by y, ons- The resulting s dimensional count vector y,ps then
follows a multinomial distribution with parameters n and an unknown probability vector P since the
scoring pattern of each subject can be one and only one of the s patterns. In this setup we take N = s.
Observe that P depends on the assumed model and the unknown parameters ¢, and its elements sum
to unity. Later we shall see how to compute P using the assumed model.

Let yrep (abbreviation for replicate) with components y,rep,” = 1,...,s denote a future set of
observables under the assumed model. Intuitively, the assumed model is a ‘good’ fit to the observed
data yobs if yrep is able to replicate the data well. Hence many model choice criteria can be developed
by considering different loss functions measuring the divergence between yopbs and yrep. In particular,
we consider the following loss function between the two

L(yrep; YObs) =2 (Z Yr,obs log M) . (8)

r=1 Yr,rep

Since (8) is an entropy like (Kullback-Leibler) divergence measure between yons /1 and yrep/n, it is likely
to yield high values if the predicted data y.ep is not ‘close’ to the observed data yops. Furthermore, the
rth term in the summation is strictly convex in y, rep if Yrobs is positive. We can avoid such difficulties
with the zero counts by removing the corresponding terms from the sum in (8) or add % to every cell
as is often done in practice, see e.g. Waller et al. (1997).

The best model among a given set of models is the model for which the expected value of the above
loss function is the minimum, where the expectation is to be taken with respect to a suitable predictive
distribution of y,¢p. Here the previously defined distributions, namely the prior predictive distribution

(6) or the cross-validation distribution (7) can be considered. However, those have several limitations

10



and are difficult to work with even in an MCMC setup. We consider the following posterior predictive
density. This is similarly defined as (6) but the prior 7(¢) inside the integral is replaced by the posterior
7(€|Yobs). The posterior predictive density of yyep, given by

ﬂm@ww=/}mﬁowm%wdg 9)

is the predictive density of a new independent set of observables y.ep under the model given the actual
data yopns. In what follows, we shall see that the posterior predictive distribution is easier to work with,
because features of yep, having the density (9) can easily be estimated when MCMC samples from the
posterior m({|yobs) are available.

The expected value of the loss function (8) with respect to the predictive distribution (9) is the
proposed model selection criterion. This has attractive interpretations in terms of the classical likelihood
ratio test statistic for comparing two models. Let the fitted probabilities (based on the mle) for a full
and a reduced model be denoted by P and P, respectively. The likelihood ratio statistic for comparing

the two models is given by
s
d(P,P) =2 Z Yr,obs (log P, —log Pr) -
r=1

Note that if a so called saturated model is taken as the full model then P, = Yr,obs/m. Now the above

statistic reduces to

r

El
d(P,P) =2 (Z Yr.obs 108 ZZ%"S) ) (10)

r=1
This is the likelihood ratio test used by Bock and Aitkin (1981).
Let P = E(yrrep/n) where the expectation is taken with respect to the predictive distribution (9).

Now we have

EAL(Yrep: Yobs)} = 252y Urobs [ 108(Unobs/n) — E {108(unsep/m)} |
= 23, 1 Yrobs [IOg(yr,obs/n) —log P? +log Pr — E {log(yr,rep/n)}]
= LRS+2Y,_, Yrobs|log P} — E{log(yrrep/n)}]
where LRS is the likelihood ratio statistic (10) with the mle P replaced by P*. The LRS provides
a goodness of fit measure as can be seen from its connection with the likelihood ratio test. Usually a
more complex model provides a better fit and hence the LRS should go down when a more complex
but nested model is fitted to the data set.

Using a Taylor series expansion for the log function the second term can be approximated as the
variance of Y, rep, sSee Waller et al. (1997) for a similar example. Hence the second term is likely to be
high if the fitted model is too large for the data set. In other words, this takes care of uncertainty in
estimation as the variability of yrep is likely to be higher if a more complex model is fitted. Intuitively
the parameters are less clearly identified hence more poorly estimated (i.e. variability is higher) under
a more complex model. Henceforth, we use the following notation and decomposition for the expected

loss function

EPD = E{L(yrep, Yobs)} = LRS + PEN, (11)

11



where PEN is obtained by subtraction. The notation EPD stands for expected predictive deviance,
another name for the expected loss function (8) used here.

Note the conflicting behavior of the two components in (11). As a more complex model is fitted
the LRS should go down whereas the penalty should go up. Hence when fitting a sequence of more
complex and nested models a trade-off must arise. At some intermediate model the increase in PEN
will not be offset by the decrease in LRS. The model choice criterion (11) chooses this model as the

best model for the data set. See the appendix for computational details for the quantities in (11).

4.3 A Simulation Example

We consider a simulation example to compare and study the sensitivities of the model choice criteria
described above. We take n = 200 subjects with k¥ = 5 items. The item difficulty parameters 8 =
(B1, B2, B3, B4, Bs) are chosen as 5 equally spaced points in the interval [-3, 3]. The slope parameters
are all set at 1. The subject parameter 6; is simulated from its prior distribution which is the standard
normal distribution. The guessing parameter c; is also simulated from its prior distribution which in
this case is the beta distribution with parameters 1 and 3. In each of the 1000 simulation replications
we first generate a data set from the three parameter probit model.

We fit all three models to each simulated data set using the MCMC methods developed here. After
an initial burn-in of 1000 iterations we use the next 5000 iterates to calculate all the model choice
criteria discussed above. The whole experiment takes about a month to run on a 450 Mhz PC with 128
MB RAM running the linux operating system.

We report the results of the experiment in Table 2. The model choice criteria are given in rows
and the three models are given in columns. Each entry in the table represents the number of times the
particular model in the column is judged to be the best model according to the model choice criterion
in the corresponding row.

Observe from the table that the EPD and the PsBF behave similarly; there is not much difference
between the two rows. We have investigated also on the relative magnitude of each of the two criteria
EPD and PsBF for the three different models. The absolute difference between the values of EPD (or
PsBF) for two different models behaves like an exponential random variable. That is, for some data sets
the EPD criterion (or PsBF) cannot discriminate well and for some other data sets the criterion strongly
prefers one model against the other (corresponding to the right tail of the exponential distribution).
Conflict between the two criteria arises in 374 out of 1000 replications. We have investigated the data
sets corresponding to these 374 cases in detail. These did not reveal any obvious pattern for making
general conclusions. However, in many of these cases we have observed that the absolute differences
between the values of any of the two model choice criteria for two different models are not large. In
other words the best model is not selected very strongly in these cases. In conclusion, this example
finds that the two Bayesian predictive model selection criteria prefer the more complex two or three
parameter models. In almost 50% of the simulations a three parameter model is selected as the best

model.
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1PP | 2PP | 3PP
EPD 0 536 | 464
PsBF | 2 523 | 475

Table 2: Model choice for the simulation example. An entry in the table indicates the number of
replications for which the particular model (in the column) is judged to be the best according to the

model choice criterion (corresponding to the row).

5 Law School Data Example

We consider a well known data set from Section 6 of the Law School Aptitude test (LSAT). Each of the
1000 candidates attempted 5 items in this section. The total number of correct responses for each item
in order are 924, 709, 553, 763 and 870. There are 298 subjects who answered all 5 items correctly.

This data set has been extensively analyzed in the literature, see e.g. Baker (1992), Bock and Aitkin
(1981). The BUGS software also fits one and two parameter models to this data set. We use the beta
prior distribution with parameters 1 and 3 for the guessing parameter c;. Empirical evidence based on
the MCMC output suggests that we can work with a non-informative prior distribution for 5;. We take
§ = 10* and v = 1 which guarantees identifiability of the a;.

We implement the Gibbs sampler for the logistic models using the ARMS as discussed in Section 3.1.
For the normal-ogive models we undertake computation using the DAGS developed in Section 3.2.
Several convergence diagnostics have been calculated and they did not show any particular sign of
non-stationarity. We have used 10,000 iterates from the ARMS and 100,000 iterates from the DAGS to
make inference.

Tables 3 and 4 provide the parameter estimates. The estimates of the item difficulty parameter (5;)
from all the models agree with the marginal totals of the correct responses. According to the estimates
item 3 is the most difficult and item 1 is the easiest. The marginal totals agree with this. Item 3 is
also the most discriminatory item and the estimates of as point this out. The Bayes estimates and the

Bock and Aitkin (1981) marginal maximum likelihood estimates for the logistic models are close.

1PP 2PP 3PP
Ttem B B P B a c
1 | -0.82(0.06) | —0.70(0.08) | 1.03(0.32) || —0.86(0.27) | 0.85(0.32) | 0.28(0.21)
2 || 0.30(0.04) || 0.26(0.07) | 1.07(0.29) | 0.33(0.37) | 1.22(0.51) | 0.29(0.18)
3 || 0.84(0.04) || 0.70(0.05) | 1.38(0.60) | 0.81(0.39) | 1.51(0.66) | 0.21(0.12)
4 || 0.10(0.04) || 0.08(0.05) | 0.97(0.25) || 0.16(0.40) | 1.11(0.50) | 0.32(0.20)
5 || —0.42(0.05) || —0.34(0.06) | 0.86(0.28) | —0.43(0.33) | 0.87(0.39) | 0.30(0.21)

Table 3: Expected a posteriori estimates of the parameters of the normal-ogive models fitted to the

LSAT data set. Standard deviations are given in parentheses.
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Rasch 2PL 3PL

B B «a B a c

MLE Bayes MLE Bayes MLE Bayes Bayes Bayes Bayes

~1.29 | -1.32(0.10) || -1.30 | —1.30(0.17) | 1.10 | 1.07(0.34) || —1.52(0.52) | 0.93(0.39) | 0.28(0.20

0.48 | 0.50(0.07) 0.48 | 0.48(0.09) | 0.96 | 1.01(0.28 0.56(0.62) | 1.19(0.63) | 0.27(0.18

) ) )
(0.28) (0.63) (0.18)
1.26 | 1.30(0.07) || 1.22 | 1.22(0.08) | 1.19 | 1.28(0.40) || 1.44(0.66) | 1.66(0.89) | 0.21(0.12)
0.17 | 0.17(0.07) || 0.19 | 0.19(0.10) | 0.92 | 0.96(0.26) || 0.13(0.56) | 0.96(0.46) | 0.26(0.19)
-0.63 | —0.66(0.09) || —0.58 | —0.59(0.12) | 0.87 | 0.90(0.28) || -0.60(0.70) | 0.92(0.47) | 0.31(0.23)

Table 4: Parameter estimates for the parameters of the logistic models fitted to the LSAT data set.
Standard deviations are given in parentheses. MLE stands for the Bock and Aitkin marginal ML
estimates (MMLE) using the EM algorithm.

Table 5 shows the different model choice criteria for the two and three parameter models. The one
parameter models are excluded because those did not provide adequate model fit. Also results from
the simulation example in Section 4.3 justify this. The values of LRS are similar to those reported by
Bock and Aitkin (1981) for the same data set.

According to the LRS the three parameter models provide better fit than the corresponding two
parameter versions as expected. However, note that the penalty factor PEN is higher for the three
parameter models. As a result the 2PL model is selected according to the EPD criterion. This is
also confirmed by the PsBF criterion since the Bayes factor for the 2PL. model is larger than 1 when
compared against any other model. The CPOs for 2608 of the 5000 binary observations are higher
for the 2PL model than the 3PL model. Hence the 2PL seems to be the best model for this data set,
although it is not much better than the 2PP model.

Normal-Ogive Logistic
2PP 3PP 2PL 3PL
LRS 21.1 17.5 21.2 17.4
PEN 33.6 44.4 33.2 44.5
EPD 54.7 61.9 54.4 61.9
In(PSB) || —2457.8 | —2458.6 || —2457.6 | —2458.7

Table 5: Model choice criteria for different models fitted to the LSAT data set. LRS is the likeli-
hood ratio statistic, PEN is the predictive variability penalty, EPD is the overall expected predictive

deviance, and In(PSB) is needed to calculate the pseudo-Bayes Factor.
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6 Discussion

This article proposes a new data augmentation scheme for running the Gibbs sampler for the three
parameter item response models with probit link function. This extends the work of Albert (1992) to
fit the three parameter models. Numerical examples show that the new scheme is much faster to run
and is more efficient than the default Metropolis scheme.

Another contribution of this article is the investigation into model selection procedures. A simulation
investigation shows that the two predictive Bayesian model selection criteria prefer more complex two
and three parameter models. It also gives justification for considering the more complex three parameter

models for which a new MCMC computing method has been developed in this article.

Appendix: Details for computing the model choice criteria

Computing the PsBF

To compute the PsBF we have to evaluate the CPO for each binary response. Note that here y,ps
is the vector of nk (= N) binary observations and ¢ is the vector of all parameters under the assumed
model. Further, it is obvious that under any of the models the responses y;;,i =1,...,n;5 =1,... ,k
are conditionally independent given all the parameters. In this situation it is relatively straightforward
to evaluate the CPO for the ijth observation y;;. Suppose that ¢ (1), - ,C(B ) denote B Gibbs sampled

values from m(C|yobs). A Monte Carlo estimate of 7(y;;|y (x),0bs) iS

-1
ﬁ-(yijb’(r),obs :< Z y,J 1_p 1 yij) ;
ij

where p;; is the probability of the correct response under the assumed model and it is evaluated at the
simulated parameter values C(t). In other words, the CPO is estimated by the harmonic mean of the
Bernoulli probability mass functions.
Computing the EPD criterion

We now provide the computational details to approximate criterion (11). We first give details to
estimate the unconditional probabilities P, for the rth pattern under the assumed model. Without loss
of generality assume that the ith person (i = 1,... ,n) with given ability § has the rth score pattern.
Let P, /g be the conditional probability of this event. If we have fitted a model for the probabilities p;;
then

r|9 pr” l—p” 1 Vi (12)

where 6; (in the definition of p;;) is replaced by 6. Let g(6) denote the prior ability distribution. Now
the unconditional multinomial probabilities P,.,r = 1,...,s is given by P, = [ P9 g(8) df, see e.g.
Bock and Aitkin (1981). This integral can be easily estimated using Monte Carlo integration as follows.

At the tth iteration we sample a new ability value #®) from the standard normal distribution. Then we
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calculate P, g using the model and equation (12). Now the sample average

1 B
B PR AT (13)
t=1

is an estimate of P,.

Calculation of the expected loss function (11) however, is more involved. This requires estimating
the probabilities P, at each MCMC iteration rather than at the end of the MCMC run. We overcome
this problem by generating a number, C say, of new ability values 8(1), ... ,8(©) at each iteration ¢. Then
we form the average é Zf’;l Prw(i) to estimate P,.. Empirical evidence for the example in Section 5
suggests that a value as small as 10 is good enough because the estimates do not change very much if
we take a larger value.

Note that under the posterior predictive density (9) the replicated data yrep is a multinomial obser-
vation with parameters n and the estimated probability vector P. At each iteration we obtain a new
multinomial observation ye, and evaluate the loss function (8). Average of these evaluations at the
end of the MCMC run is an estimate of EPD. Also after the MCMC run we evaluate the probability
P, using (13). These probabilities are then put back in (10) to obtain LRS. PEN is obtained by

subtraction.
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