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of zero entries in K. It is also possible to say that one stream seg-
ment may be so far from another that we would put a zero entry
in the corresponding entry of K too. Here, we capture the fact
that in different parts of the stream network, stream segments
are flow related, not flow related, or both, by specifying which
entries of K are zero or nonzero.

4. CONCLUSIONS

The underlying questions here are all concerned with why we
want to allow (or not, as the case may be) correlation between
specific locations, and how large we would like those correla-
tions to be. In general, we like the variance-components model
given by VHP, since it can easily handle nonstationarities in
their Equation (10), and it can deal with flow-connected and
flow-unconnected dependencies through mixtures. (It is eas-
ily seen that mixing on different types of models, tail-up, tail-
down, and Euclidean, results in a covariance function that is
equivalent to the variance-components model.) We have also
shown how the spatial random effects model of Cressie and Jo-
hannesson (2008) can be adapted to modeling on stream net-
works, opening up possibilities for modeling nonstationary de-
pendencies parsimonously.
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Comment
Sujit K. SAHU

1. INTRODUCTION

The flow of water in streams and rivers poses a unique prob-
lem in defining the association between underwater monitored
quantities at any two sites. The usual methods of using Matérn
covariance functions for the random quantities measured above
water do not work, because the flow of the water and move-
ment of creatures such as fish in both upstream and down-
stream directions must be allowed to influence the association
appropriately. This very original and impressive article devel-
ops and illustrates some new moving average models for stream
networks. New covariance models are presented based on the
stream distance rather than the Euclidean distance.

We begin our discussion by raising some questions on the
models developed. We conclude by considering possible exten-
sions of the variance component models to other inferential set-
tings.

2. VARIANCE COMPONENT MODELS

The authors cleverly construct a variance component model
corresponding to eq. (10),

Y(s) = x(s)Tβ + zu(s) + zd(s) + ε(s), (1)

where zu(s) and zd(s) are underlying independent tail-up and
tail-down processes with previously defined covariance func-
tions Cu(·) and Cd(·), and x(s) are location-specific covariate
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values. Below eq. (10), the authors also discuss the possibil-
ity of adding another component accounting for unmeasured
covariates, zo(s) say, (where the suffix o represents omnidirec-
tional) that could be related due to underlying bedrock charac-
teristics. This additional component can serve many other pur-
poses as well; for example, we may want to model character-
istics of connected streams, rivers, and lakes at the same time.
Wider segments of the rivers and the lakes connecting the up-
stream and downstream areas will require the use of the term
zo(s), because the random observation at any location can de-
pend on that from any other location, not just those upstream or
downstream. This gives rise to the general model

Y(s) = x(s)Tβ + zu(s) + zd(s) + zo(s) + ε(s). (2)

But the additional term, zo(s), may make one or both of zu(s)
and zd(s) nonsignificant, because the omnidirectional term may
capture all of the dependence. The data alone may not be rich
enough to separate out the directional dependencies. This par-
allels a very common problem in spatial statistics on assessing
anisotropy using directional variograms. For example, Baner-
jee, Carlin, and Gelfand (2004, sec. 2.3.2) remarked that “direc-
tional variograms from data generated under a simple isotropic
model will routinely exhibit differences of magnitude seen in
Figure 2.9(a).” One possible solution to this problem might be
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to introduce weights for various components, analogous to the
discussion in Section 2.2.1. Suitable prior covariance structure
for the zo(s), zu(s), and zd(s) processes also may help identify
them.

A further drawback of the foregoing formulation is the a pri-
ori assumption of independence of the tail-up, tail-down, and
omnidirectional components. It is not hard to imagine applica-
tions in which these cannot be assumed independent and there
can be confounding effects between the three components; for
example, the same fish (creature) can travel both upstream and
downstream and “horizontally” as well. In such cases a mul-
tivariate specification must be provided. There are well-known
problems of multivariate spatial specifications, and either a sep-
arable model or a linear model of co-regionalization can be
specified (see, e.g., Gelfand et al. 2004 and references therein,
including Ver Hoef and Barry 1998).

3. EXTENSION TO THE SPACE–TIME DATA

The authors discuss the possibility of extending the model to
space–time data. Indeed, the model representation in eq. (2) can
easily do that,

Y(s, t) = x(s, t)Tβ t + zu(s, t) + zd(s, t) + zo(s, t) + ε(s, t), (3)

where the spatial processes at a particular time point are ex-
tended to spatiotemporal processes indexed by time point t
(t = 1,2, . . .). A careful choice of the dynamic processes is
necessary for model description, identification, estimation, and
prediction. The covariate process x(s, t) may depend on time
and may need to be modeled as well. (See, e.g., Huerta, Sanso,
and Stroud 2004 and Sahu, Gelfand, and Holland 2007, where
meteorological variables such as temperatures are modeled si-
multaneously with ozone concentration levels.) The process β t
can be assumed to be β t = ρβ t−1 + ηt, where ηt are indepen-
dent Gaussian random variables. The parameter ρ can be as-
sumed to be 0 for independence of β t’s, 1 for random walk,
and some nonzero value in the interval (−1,1) correspond-
ing to autoregressive processes. The tail-up [zu(s, t)], tail-down
[zd(s, t)], and omnidirectional [zo(s, t)] processes can be as-
sumed to be independent over time as a simple starting model.
Complex, multivariate space–time interaction can be built up
by joint modelling of the three processes. (Chap. 8 in Baner-

jee, Carlin, and Gelfand 2004 is an excellent starting point for
this sort of modeling.) The pure error process, ε(s, t), is usu-
ally assumed to be independent in space and time, providing
the so-called “nugget effect.”

4. EXTENSION TO THE GENERALIZED
LINEAR MODELS

The first-stage Gaussian models described so far are not ap-
propriate for discrete data. It also is very common to observe
presence–absence data for species or chemicals in a stream net-
work. In those cases, the Gaussian distribution assumption for
the Y(s, t) must be replaced by an appropriate member of the
exponential family of distributions, and the model specifica-
tion (3) is now written as

g
(
E(Y(s, t))

) = x(s, t)Tβ t + zu(s, t) + zd(s, t) + zo(s, t) (4)

for a suitable link function g(·). Process assumptions made
on the second and subsequent stages can remain the same
except for the nugget effect ε(s, t), which will no longer be
there, although there are computational reasons for keeping the
term.

The likelihood function for these variance components mod-
els will not be tractable for estimation purposes. The Bayesian
computation methods based on Markov chain Monte Carlo
(MCMC) techniques can be used as an alternative. But the
Bayesian methods will require specification of prior distribu-
tions for all of the parameters and hyperparameters. Once a
MCMC method has been successfully implemented, it is a rel-
atively straightforward task to perform predictions using poste-
rior predictive distributions.
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Cressie and O’Donnell’s discussion, we refer to our article as
VHP throughout.
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1. STREAMS AS DIRECTED GRAPHS

Cressie and O’Donnell bring up the interesting connection
between stream networks and directed graphs. They make their
point clearly, and the analogous model complexity and com-
putational difficulties that arise from chain graphs and mixed
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