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Abstract: This paper considers general linear models for Gaussian geostatistical data with multi-dimensional separable
correlation functions involving multiple parameters. We derive various objective priors, such as the Jeffreys-rule, in-
dependence Jeffreys, and usual and exact reference priors for the model parameters. In addition, we relax and simplify
the assumptions in Paulo [2005] for the propriety of the posteriors in the general setup. We show that the frequentist
coverage of posterior credible intervals for a function of range parameters do not depend on the regression coefficient
or error variance. These objective priors and a proper flat prior based on ML estimates are compared by examining
the frequentist coverage of equal-tailed Bayesian credible intervals. An illustrative example is given from the field of
complex computer model validations.

The Canadian Journal of Statistics xx: 1–22; 2013 c⃝ 2013 Statistical Society of Canada
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1. INTRODUCTION

The Bayesian approach for modeling spatial data and making inferences about spatially varying
phenomena can be dated from Kitanidis [1986] and Le and Zidek [1992]. Despite its success, the
Bayesian inference depends on the choice of prior distribution, which is supposed to summarize the
information a researcher might have about the underlying distribution of the data. This is often a
major task before any formal data analysis. However, in practice, it is difficult to accomplish a for-
mal prior elicitation due to time constraints or a lack of prior information. Thus the prior elicitation
was often a combination of intuition and ad-hoc methods. See De Oliveira [2010] for references. In
addition, Diggle and Ribeiro [2007] pointed out that diffuse priors still have noticeable influence
on the inferences even with several hundred observations in a data set, so “it remains a lingering
concern because the prior does potentially influence the predictive distribution which we report for
any target.” Objective Bayesian analysis, however, avoids the prior elicitation and has received a
lot of attention since 2001.
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Berger et al. [2001] were perhaps the first who considered objective Bayesian analysis for geo-
statistical data with a single correlation parameter. Surprisingly, the authors found that the inde-
pendence Jeffreys prior and the reference prior derived by using the asymptotic marginalization
algorithm of Bernardo [1979] and Berger and Bernardo [1992] can fail to yield a proper posterior.
Alternatively, they recommended the use of the exact reference prior developed by using exact
marginalization in the reference prior algorithm. Since then, objective Bayesian analysis for geo-
statistical data has been extensively studied (e.g., Paulo 2005; De Oliveira 2007 and 2010).

Noting that there is a single (one-dimensional) range parameter assumed to be unknown in
Berger et al. [2001], Paulo [2005] considered multi-dimensional separable correlation functions
involving several parameters and found that these commonly used objective priors, which include
independence Jeffreys and the usual reference priors, all yield proper posteriors under some as-
sumptions. However, Paulo only considered a rather special linear model with either an intercept
without any explanatory variables or one explanatory variable without intercept. This is quite re-
strictive and in practice, this model is rarely the case.

One of the motivations of this paper is to consider general linear models with spatially depen-
dent errors. In addition, we relax and simplify the assumptions for the propriety of the posteriors
in Paulo [2005]. The reference priors based on asymptotic marginalization in the reference prior
algorithm of Bernardo [1979] and Berger and Bernardo [1992] are also considered and yield a
proper posterior.

The paper is organized as follows. In Section 2, we set up the model and present the Jeffreys
and reference priors. In Section 3, we introduce a class of priors and obtain the behavior of the
integrated likelihood. We also develop the conditions ensuring the posterior propriety for these
objective priors. Section 4 presents the frequentist coverage of the credible intervals for the func-
tion of parameter of interest, range parameters in our spatial model, is independent of regression
coefficient and error variance. We also consider empirical Bayes method by placing proper flat
priors for range parameters. The results of a simulation study are used to compare the frequentist
coverage of equal-tailed Bayesian credible intervals for these priors. Finally, an example is used
for illustration. The summary is given in Section 5.

2. MODELS AND OBJECTIVE PRIORS

2.1. The Model

The model considered here is of general interest for the field of geostatistics, especially for the anal-
ysis and validation of complex computer models. A prominent approach to the problem involves
fitting a Gaussian process to the computer model output, and a separable correlation function in-
volving several parameters. See, for example, Sacks et al. [1989] and Bayarri et al. [2007].

Let {y(s), s ∈ D},D ⊂ IRl, be the random field of interest, where IRl denotes l-dimensional
Euclidean space and l ≥ 1. In this study, we will assume the correlation matrix to be separable,
and hence we only consider the case l ≥ 2. Suppose that the data are observed at locations si ∈
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D, i = 1, · · · , n and that the joint distribution of y = (y(s1), y(s2), . . . , y(sn))
′ follows

(y | θ, δ1, β) ∼ Nn(Xβ, δ1Σ), (1)

where X is the known n× p design matrix, β = (β1, β2, . . . , βp)
′ is the vector of unknown regres-

sion coefficients, δ1 = var{y(s)} and Σ is an n× nmatrix with elements Σij = corr{y(si), y(sj)}.
We assume that corr{y(si), y(sj)} = Kθ(d(si, sj)), a known function of d(si, sj) and unknown pa-
rameter θ = (θ1, . . . , θr)

′. Here d(·, ·) is an Euclidean distance. The case where the correlation
function depends only on the absolute distance between points is often termed isotropic. Thus, Kθ

is an isotropic correlation function, and Σ is a function of unknown parameter vector θ.

Remark 1. (a) When r = 1, objective Bayesian analysis for model (1) has been studied by Berger
et al. [2001]. In this paper, we assume r > 1. (b) When p = 1, it has been studied by Paulo [2005].

For the model (1), the likelihood function of (θ, δ1, β) is given by

L(θ, δ1, β;y) ∝
1

δ
n
2
1 |Σ| 12

exp

{
− 1

2δ1
(y −Xβ)′Σ−1(y −Xβ)

}
. (2)

A full Bayesian analysis would require a prior. As discussed in the introduction, we sought ob-
jective priors for the unknown parameter (θ, δ1, β). We first give the Jeffreys and usual reference
priors, and then derive two exact reference priors. These objective priors are improper and the
propriety of the posterior is studied under the separable conditions.

2.2. Jeffreys and Reference Priors

The following proposition gives the Fisher information matrix for (θ, δ1, β), denoted by I(θ, δ1, β).
This is crucial for finding the Jeffreys-rule and independence Jeffreys priors. The independence
Jeffreys priors are obtained by treating the groups of parameters are independent, as it was studied
by Berger et al. [2001] and Paulo [2005]. Parts (a)-(c) can also be found in Paulo [2005], whose
proof is omitted. Some relationships among the independence Jeffreys priors and reference priors
can be found in Remark 2.

Proposition 1. (a) For i, j = 1, . . . , r, write Ui =
∂Σ
∂θi

Σ−1, ψi = tr[Ui], and Ψij = tr[UiUj].
Also, define the column vector ψ = (ψ1, . . . , ψr)

′ and the r × r matrix Ψ = (Ψij). The Fisher
information matrix of (θ, δ1, β) is given by

I(θ, δ1, β) = diag

(
1

2

(
Ψ ψ

δ1
ψ′

δ1
n
δ21

)
,
1

δ1
X′Σ−1X

)
. (3)

(b) The Jeffreys-rule prior of (θ, δ1, β) is then given by

πJ(θ, δ1, β) ∝
√
|X′Σ−1X|

√
|Ψ| (n− ψ′Ψ−1ψ)

δ
1+ p

2
1

. (4)
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(c) The independence Jeffreys prior of (θ, δ1, β), obtained by assuming that (θ, δ1) and β are inde-
pendent a priori, is

πIJ1(θ, δ1, β) ∝
√
|Ψ| (n− ψ′Ψ−1ψ)

δ1
. (5)

(d) The independence Jeffreys prior of (θ, δ1, β), obtained by assuming that θ, δ1 and β are inde-
pendent a priori, is

πIJ2(θ, δ1, β) ∝
√

|Ψ|
δ1

. (6)

Remark 2. One can show that the reference priors with the orderings {(θ, δ1), β}, {β, (θ, δ1)},
{θ, δ1, β}, {β, θ, δ1} and {θ, β, δ1} are the same as πIJ1(θ, δ1, β). Here the ordering {θ, δ1, β}
means that θ is the most important or the parameter of interest, δ1 is less important, and β is least
important. Also, the reference priors with the orderings {θ, δ1, β}, {δ1, β, θ} and {β, θ, δ1} are the
same as πIJ2(θ, δ1, β).

2.3. The Exact Reference Priors

Paulo [2005] also derived the Fisher information matrix based on the integrated likelihood of (θ, δ1)
by integrating out β under the constant prior and one “exact” reference prior for the parameters in
model (1), and we briefly present the ideas and the results here.

In order to derive the “exact” reference priors for the parameters in model (1), we specify (θ, δ1)

as the parameter of interest and β as the nuisance parameter. The reference prior can be factored
as πR(θ, δ1, β) = πR(β|θ, δ1)πR(θ, δ1). Choose πR(β|θ, δ1) = 1 since the conditional Jeffreys-rule
(or reference) prior for parameter vector β is constant when (θ, δ1) is assumed to be known. The
integrated likelihood of (θ, δ1) with respect to this conditional prior is

L∗(θ, δ1;y) ∝
1

δ
n−p
2

1 |Σ| 12 |X′Σ−1X| 12
exp

(
− S2

2δ1

)
, (7)

where S2 = y′Γ(Σ,X)y. Here the matrix function Γ(·, ·) is defined as

Γ(A,Z) = A−1 −A−1Z(Z′A−1Z)−1Z′A−1, (8)

where we assume A is an n× n and Z is n× p, and both A and Z′A−1Z are nonsingular so Z is
a full column rank matrix.

Berger et al. [2001] pointed out that there is a particular transformation of the data that has
sampling distribution proportional to (7) based on the result given by Harville [1974], so we can
compute the associated Jeffreys-rule prior from the above integrated likelihood.
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It follows from Paulo [2005] that the Fisher information matrix of (θ, δ1) based on the integrated
likelihood function L∗ is given by

I(θ, δ1) =
1

2

(
Ξ ξ

δ1
ξ′

δ1

n−p
δ21

)
, (9)

where ξ is the r-dimensional column vector defined by ξi = tr[Vi] and Ξ is the r × r matrix de-
fined by Ξij = tr[ViVj]; here Vi =

∂Σ
∂θi

Γ(Σ,X), i = 1, . . . , r. Part (a) in the following proposition
can be found in Proposition 2.1 of Paulo [2005]) and (b) is easy to derive.

Proposition 2. Suppose that the sampling distribution is given by (1).
(a) The exact reference prior with ordering {(θ, δ1), β} is

πR1(θ, δ1, β) ∝
1

δ1

√
|Ξ| (n− p− ξ′Ξ−1ξ). (10)

(b) The exact reference priors with orderings {θ, δ1, β} and {δ1, θ, β} are given by

πR2(θ, δ1, β) ∝
1

δ1

√
|Ξ|. (11)

2.4. Separability

We partition a general element of s ∈ D into s = (s1, . . . , sr), where r ≤ l and each subvector
si, i = 1, . . . r is of dimension li. Thus,

∑r
i=1 li = l. The correlation function Kθ is called partially

separable if Kθ(d(s, t)) =
∏r

i=1Ki(d(s
i, ti)), where s, t ∈ D and Ki(·) are isotropic correlation

functions in IRli . If a separable correlation function is applied and if the set of locations at which
the process is observed forms a Cartesian product, so that the parameter space is rectangle and
the correlation matrix of the data is the Kronecker product of the individual correlation matrices
associated with each dimension si. (Recall that the Kronecker product of two matrices A = (aij)

and B is defined by A⊗B = (aijB).) This is essential for us to study the analytical properties of
the integrated likelihood and priors, along with establishing sufficient conditions for the propriety
of the posterior. Thus, we will assume that the following conditions hold.

Assumption A. Separability of the correlation function:

Kθ(d(s, t)) =
r∏
i=1

Kθi(d(s
i, ti)),

where Kθi is a valid correlation function, s = (s1, . . . , sr) and l ≥ r ≥ 2.
Assumption B. Cartesian product of the design set:

D = D1 × . . .×Dr,
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where Di = {x1i, . . . ,xni,i} ⊂ IRli . By this, there are ni elements in Di. Thus, we have n =∏r
i=1 ni, where D has n elements.

Assumption C. Separable design matrix X:

X = X1 ⊗X2 ⊗ . . .⊗Xr, (12)

where Xi are ni × pi, i = 1, 2, . . . , r. Thus, p =
∏r

i=1 pi.

Remark 3. Paulo [2005] considered pi = 1 for i = 1, . . . r.

By Assumptions A and B, we have a very convenient Kronecker product expression for the
correlation matrix of the data:

Σ = Σ1 ⊗Σ2 ⊗ . . .⊗Σr ≡ ⊗r
i=1Σi, (13)

where Σi are the ni × ni correlation matrices associated with each of the separated dimensions
and each Σi is assumed to depend only on θi for i = 1, . . . , r.

Note that Ui =
∂Σ
∂θi

Σ−1. Under Assumptions A and B, we will have nice expressions for tr[Ui]

and tr[UiUj] by (13), accordingly the expressions of objective priors in Proposition 2.2, which
are useful in deriving propriety of priors and the corresponding posteriors. In the following propo-
sition, we only present the expression for πIJ1(θ, δ1, β). The expressions for other priors such as
πJ(θ, δ1, β), and πIJ2(θ, δ1, β) , can be derived similarly. The proof is in Appendix B.

Proposition 3. Under Assumptions A and B, we have

(a) The expressions of tr[Ui] and tr[UiUj] are given by

tr[Ui] =
n

ni
tr

[
∂Σi

∂θi
Σ−1
i

]
, (14)

tr[UiUj] =


n
ni
tr
([

∂Σi

∂θi
Σ−1
i

]2)
, if i = j,

n
ninj

tr
[
∂Σi

∂θi
Σ−1
i

]
tr
[
∂Σj

∂θj
Σ−1
j

]
. if i ̸= j.

(15)

(b) The independence Jeffreys prior given in (5) has the form

πIJ1(θ, δ1, β) ∝
1

δ1

r∏
i=1

{
nitr

([∂Σi

∂θi
Σ−1
i

]2)
−
(
tr

[
∂Σi

∂θi
Σ−1
i

])2
}1/2

. (16)

(c) For any permutation (i1, · · · , ip) of (1, · · · , p) and any permutation (j1, · · · , jr) of (1, · · · , r), the
one-at-a-time reference priors for (θ, δ1, β) with the ordering {θj1 · · · , θjr , δ1, βi1 , · · · , βip} or
{βi1 , · · · , βip , θj1 · · · , θjr , δ1} are the same as πIJ1 in Part (b).
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From equations (14) and (15), tr[Ui] only depend on θi and tr[UiUj] only depend on both θi and
θj . Part (b) shows that these priors can expressed as the product of r functions and each of them is
a function of only θi, i = 1, . . . , r.

3. POSTERIOR PROPRIETY

The objective priors for (θ, δ1, β) in Propositions 1 and 2 are all improper because marginal priors
for both δ1 and β are improper. In order to use these priors, one has to verify the posterior propriety.
The objective priors all belong to the following class of improper prior densities for (θ, δ1, β),

π(θ, δ1, β) ∝
π(θ)

δa1
, (17)

where a is a fixed real value and π(θ) is the marginal prior for θ. Here the priors of θ, δ1 and β
are independent. We will see that the marginal prior for θ in Propositions 1 and 2 can be proper or
improper.

Under the prior (17), we have∫ ∞

0

∫
IRp

L(θ, δ1, β;y)π(θ, δ1, β)dδ1dβ = L∗∗a(θ;y)π(θ),

where

L∗∗a(θ;y) ∝
1

|Σ| 12 |X′Σ−1X| 12 (S2)
n−p
2

+a−1
. (18)

Under Assumptions A, B and C, the integrated likelihood (18) can be written as

L∗∗a(θ;y) ∝
1∏r

i=1

{
|Σi|

n
2ni |X′

iΣ
−1
i Xi|

p
2pi

}
(S2)

n−p
2

+a−1
. (19)

Because the prior distributions are improper, we need to verify the posterior distribution pro-
priety. This can be done under the following assumptions. These assumptions are not too restric-
tive and are satisfied by many commonly used isotropic models, especially four standard models:
Spherical, power exponential, rational quadratic and Matérn. The details of these models can be
found in Banerjee et al. [2004], for example.

Assumption D1. Kθi(d) = Ki(d/θi), where Ki is a continuous correlation function satisfying
limu→∞Ki(u) = 0 for i = 1, 2, . . . , r.

Assumption D2. As θi → ∞ for i = 1, 2, . . . , r, correlation matrix Σi in (13) satisfies

Σi = Σ∗
i + o(νi(θi)), (20)

Σ∗
i = 1ni

1′
ni
+ νi(θi)Di (21)
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where νi(θi)(> 0) is a continuous function of θi > 0 satisfying limθi→∞νi(θi) = 0 and Di is a
fixed nonsingular matrix satisfying 1′

ni
D−1
i 1ni

̸= 0.

Assumption D3. For each i, Σi is continuously differentiable and as θi → ∞,

∂Σi

∂θi
= ν ′i(θi)Di(1 + o(1)). (22)

Assumption D4. ni > pi, i = 1, . . . , r.
Assumption D5. (tr[U2

i ])
1/2 is integrable at zero for θi, i = 1, . . . , r.

Remark 4. The proof of the following (iii) and (iv) can be found in Ren [2008].

(i) Although Paulo [2005] made the assumptions for Σi and ∂Σi

∂θi
implying (20) and (22), he basically

used our expressions of assumption in his verifications.
(ii) The following assumptions about Di and Xi in Paulo [2005]:
(a) X′

iD
−1
i Xi is nonsingular;

(b) If 1ni
/∈ C(Xi), then 1′

ni
D−1
i 1ni

̸= 1′
ni
D−1
i Xi(X

′
iD

−1
i Xi)

−1X′
iD

−1
i 1ni

,

can be dropped where C(Xi) denotes the column space of Xi consisting of all linear combina-
tions of column vectors of Xi, i = 1, . . . , r. This generalizes Paulo’s results.

(iii) If the correlation matrix Σi is positive definite, then the nonsingular Di in Assumption D2 has
exactly one negative eigenvalue and ni − 1 positive eigenvalues.

(iv) Assume that the correlation matrix Σi is positive definite. An equivalent condition for which Di is
nonsingular and 1ni

′D−1
i 1ni

̸= 0 in Assumption D2 is that Σ∗
i is a positive definite correlation

matrix for sufficiently large θi.

In the following, we first present the behavior of the integrated likelihood at zero and at infinity
for each θi while the rest are fixed, which provides the key to determining whether the posterior is
proper or not. The proof is in Appendix C. And then we give the results on the posterior propriety
under the objective priors in Section 2, which is Theorem 3, and the proof is given in Appendix D.
Finally, Theorem 3 gives the propriety of the posterior under the exact reference priors.

In order to simplify the expression of limiting matrices in the following proposition, we
introduce some notations. For example, define Σ[−i] = ⊗j ̸=iΣj , X[−i] = ⊗j ̸=iXj and Φi =

Σ−1
i Xi(X

′
iΣ

−1
i Xi)

−1X′
iΣ

−1
i . In addition, we define Σ0i and Φ0i are the limit of Σ and ⊗r

i=1Φi

when θi → 0+, respectively. Under Assumption D1, we have

Σ0i = Σ1 ⊗ . . .⊗Σi−1 ⊗ Ini
⊗Σi+1 . . .⊗Σr,

Φ0i = Φ1 ⊗ . . .⊗Φi−1 ⊗Xi(X
′
iXi)

−1X′
i ⊗Φi+1 . . .⊗Φr.

Proposition 4. Under Assumptions A,B,C,D1, D2 and D4, we have L∗∗a(θ;y) is a continuous
function and

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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(a) For fixed θ[−i] = (θ1, . . . , θi−1, θi+1, . . . , θr)
′, when θi → 0+,

L∗∗a(θ;y) ∝
1

|Σ[−i]|
ni
2 |X′

[−i]Σ
−1
[−i]X[−i]|

pi
2 (S2

0,i)
n−p
2

+a−1
,

where S2
0,i = y′(Σ−1

0i −Φ0i)y depends only on θ[−i].
(b) For fixed θ[−i], when θi → ∞,

L∗∗a(θ;y) ∝

{
g(θ[−i])νi(θi)

n
2ni

+a−1
, if 1ni

/∈ C(Xi),

g(θ[−i])νi(θi)
n

2ni
− p

2pi
+a−1

, if 1ni
∈ C(Xi),

where

g(θ[−i]) =
1

|Σ[−i]|
ni
2 |X′

[−i]Σ[−i]X[−i]|
pi
2 (S2

1,i)
n−p
2

+a−1
,

S2
1,i = y′

{
⊗i−1
j=1Σ

−1
j ⊗ Ei ⊗r

j=i+1 Σ
−1
j −⊗i−1

j=1Φ
−1
j ⊗ Ẽi ⊗r

j=i+1 Φ
−1
j

}
y,

Ei = D−1
i −

D−1
i 1ni

1′
ni
D−1
i

1′
ni
D−1
i 1ni

, Ẽi =

{
EiXi(X

′
iEiXi)

−1X′
iEi, if 1ni

/∈ C(Xi),

Ei − Γ(Di,Xi), if 1ni
∈ C(Xi).

Theorem 1. Consider the model with sampling distribution (2). Under Assumptions
A,B,C,D1−D5, the reference, Jeffreys-rule and independence Jeffreys priors yield proper pos-
terior distributions.

Since a Fisher information matrix is nonnegative definite, by Hadamard’s inequality (e.g. Page 306
at Marshall et al. [2009]), |Ξ| ≤

∏r
i=1(tr[V

2
i ])

1/2 and hence there exists a constant c > 0 such that

πRj(θ) ≤ c
r∏
i=1

(tr[V2
i ])

1/2, j = 1, 2,

where πRj(θ) are the marginal reference priors for θ. By the definition of Γ(Σ,X), we
have Γ(Σ,X) ≤ Σ−1, where two symmetric matrices A and B satisfying A ≤ B mean that
B−A is nonnegative definite. Since Γ(Σ,X) is nonnegative definite, it can be written as
Γ(Σ,X)1/2Γ(Σ,X)1/2.

tr[V2
i ] = tr

[
Γ(Σ,X)1/2

∂Σ

∂θi
Γ(Σ,X)

∂Σ

∂θi
Γ(Σ,X)1/2

]
≤ tr

[
Γ(Σ,X)1/2

∂Σ

∂θi
Σ−1∂Σ

∂θi
Γ(Σ,X)1/2

]
= tr

[
∂Σ

∂θi
Σ−1∂Σ

∂θi
Γ(Σ,X)

]
. (23)
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Since Σ−1 is a positive definite, it can be written as Σ−1/2Σ−1/2. Applying the above method to
tr
[
∂Σ
∂θi

Σ−1 ∂Σ
∂θi

Γ(Σ,X)
]
, we have

tr[V2
i ] ≤ tr[U2

i ],

and hence we have the following results from the conclusion in Theorem 1.

Theorem 2. Consider the model with sampling distribution (2). Under Assumptions
A,B,C,D1−D5, the exact reference priors yield proper distributions.

4. NUMERICAL COMPARISONS

In this section, we first introduce a simulation method that makes computation less expensive and
more feasible. Second, we briefly describe the empirical Bayes method introduced by Paulo [2005],
which is used to construct proper vague priors. Next, we will report the simulation studies of the
frequentist properties of Bayesian inference for our parameter of interest θ based on the following
priors: Empirical Bayes, the Jeffreys-rule prior πJ , two independence Jeffreys priors πIJ1 and πIJ2,
and two exact reference priors πR1 and πR2. Finally, we present results for an example from Bayarri
et al. [2007].

4.1. Frequentist Coverage of the Credible Intervals

Suppose η = η(ξ), which is a function of the parameter vector ξ = (θ, δ1, β), is a parameter of
interest. Note that η could be a function of θ if the components of θ are the only parameters of
interest.

For the fixed ξ = ξ∗ ≡ (θ∗, δ∗1, β
∗), we will simulate the data based on y | ξ∗. Denote the α-

posterior quantile of η given y by ηα(y) where 0 < α < 1. That is

P (η∗ < ηα(y) | y) = α, ∀α ∈ (0, 1), (24)

where the probability is computed based on the marginal posterior distribution of η given y.
Next, consider the frequentist coverage of the one-sided credible interval (ηL, ηα(y)), where

Pξ∗(η
∗ < ηα(y)), (25)

and ηL is the low boundary of η and the probability is based on the distribution of y given ξ∗. It
is possible that the coverage probability depends on the ηα(y), which is often hard to compute by
itself. Alternatively, since

η∗ < ηα(y) if and only if F (η∗|y) < α,

where F (η | y) is the marginal cumulative posterior distribution of η given y,

Pξ∗(η
∗ < ηα(y)) = Pξ∗(F (η

∗ | y) < α). (26)
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It shows that the frequentist coverage probabilities depend only on the posterior cumulative distri-
bution function F (η∗ | y) at the true values. Finding F (η∗ | y) requires only integration, and there
is no need to find posterior quantiles in simulations.

Theorem 3. Assume that the prior (17) is used. If η is a function of θ, then the frequentist cover-
age probabilities in (26) depend only on θ∗ and are independent of (δ1, β).

The proof is similar to the proof of Theorem 2 in Ren and Sun [2012], so it is omitted here.
Theorem 3 shows that the frequentist coverage probabilities of Bayesian credible intervals un-

der a large class of priors will depend only on θ. Therefore, in the simulation study (δ1, β) could be
taken at any value. For simplicity, take (δ∗1, β

∗) to be (1,0). Now, since one does not need to con-
sider the choices of nuisance parameters, it can simplify and speed up computation tremendously.

Let’s consider a special case when r = 2. That is, θ is a 2-dimensional vector, denoted by
(θ1, θ2). It is easy to see that finding the marginal posterior cumulative distribution of θ1 and θ2
requires only 2-dimensional integration. In fact, define

g(θ1, θ2) =
π(θ1, θ2)

|G|1/2|X′G−1X|1/2(S2)(n−p)/2+a−1
.

If we use the transformations s1 = θ1/(θ1 + 1) and s2 = θ2/(θ2 + 1),

F1(θ
∗
1 | y) ≡ P (θ1<θ

∗
1 | y) =

∫ θ∗1
θ∗1+1

0

∫ 1

0

g

(
s1

1−s1
,
s2

1−s2

)
1

(1−s1)2(1−s2)2
ds1ds2∫ 1

0

∫ 1

0

g

(
s1

1−s1
,
s2

1−s2

)
1

(1−s1)2(1−s2)2
ds1ds2

, (27)

F2(θ
∗
2 | y) ≡ P (θ2<θ

∗
2 | y) =

∫ 1

0

∫ θ∗2
θ∗2+1

0

g

(
s1

1−s1
,
s2

1−s2

)
1

(1−s1)2(1−s2)2
ds1ds2∫ 1

0

∫ 1

0

g

(
s1

1−s1
,
s2

1−s2

)
1

(1−s1)2(1−s2)2
ds1ds2

. (28)

Thus, if, for example, we take a random sample of size m, (y1,y2, . . . ,ym), from the model (1)
with the parameter ξ∗ = (θ∗1, θ

∗
2, 1,0), then the frequentist coverage probability Pξ∗(θ∗1 < θ1α(y))

can be estimated by

#{yi, i = 1, · · · ,m : F1(θ
∗
1 | yi) < α}

m
.

4.2. Proper Vague Priors

In practice, some proper and vague priors or data-dependent priors have been used. An obvious
advantage of using such proper priors is that the posterior is always proper. However, Berger et al.
[2001] pointed out the problems by using vague proper priors. For example, it is extremely sensi-
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tive to the hyperparameters chosen. Paulo [2005] studied a data-dependent proper prior for range
parameters. Here we describe his method, which we will use for comparisons in the next section.

Suppose θi, i = 1, . . . , r have independent exponential priors with unknown mean parameters
ϕi, i = 1, . . . , r. Let θ̂i be the MLE of θi. Then the priors of these parameters are exponential
(denoted by πEB) obtained by replacing ϕi by cθ̂i, where c is a factor. Paulo [2005] chose c = 10.
θ̂i are the solution of the following equations:

∂l∗
∂θi

=
1

2

{
y′RΣViy

δ1
− tr[Vi]

}
= 0, i = 1, . . . , r,

∂l∗
∂δ1

=
1

2

(
S2

δ21
− n− p

δ1

)
= 0,

where l∗ = logL∗(θ, δ1;y). Since there is no analytical expression of θ, Fisher’s scoring method,
a variant of the Newton-Raphson method that results from approximating the Hessian of the loga-
rithm of integrated likelihood by its expected value is used. The (s+ 1)st iterate of the numerical
method is given by

θ(s+1) = θ(s) + λΞ(θ(s))−1∂l∗
∂θ

∣∣∣∣
θ=θ(s),δ1=δ̂1,

where Ξ(θ) ≡ Ξ, δ̂1 = S2/(n− p) and λ is the step size of the algorithm used to assure conver-
gence.

4.3. Simulation Study

We perform a simulation experiment to investigate the frequentist coverage of equal-tailed
Bayesian credible intervals for two parameters of interest: the range parameters θ1 and θ2, when
one of the five objective priors or the empirical Bayes method is used. The closer to the nominal
level this frequentist coverage is, the ‘better’ the prior.

The simulation study is conducted in the context of the power exponential correlation function
with α1 = α2 = 1, that is

K((u1, v1), (u2, v2)) = exp(−|u1 − u2|/θ1) exp(−|v1 − v2|/θ2).

For a 5× 5 equally spaced grid in D = [0, 1]× [0, 1], we consider two different mean func-
tions IE{y(s)}, namely the constant p1 = p2 = 1 (dimension p = 1) or p1 = 2 (linear) and p2 = 3

(quadratic) (dimension p = 6). The three different values of each of θ1 and θ2: 0.2, 0.5, and 1.0

are considered. 3, 000 replications are generated for each choice of (θ1, θ2) and compute the equal-
tailed 95% credible intervals for both θ1 and θ2.

Table 1 gives frequentist coverage of Bayesian equal-tailed 95% credible intervals for both
θ1 and θ2 corresponding to six priors. The results of these experiments based on the empirical
Bayes method are comparatively poor performance for the general case compared with the model
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in Paulo [2005]. This further confirms that for those who tend to turn to “vague” or “diffuse”
priors whenever a formal objective prior is not available, one should oppose this type of approach
to objective Bayesian analysis for general case, while Paulo [2005] made it in special case. The
coverage of the Bayesian credible intervals are similar to each other and reasonably close to the
nominal 0.95 except the Jeffreys-rule prior when p = 6 for the rest priors. This was already reported
by Berger et al. [2001]. As they pointed out, this is likely a consequence of the spurious degrees of
freedom added by the Jeffreys-rule prior.

The present simulation study does not provide a way to compare the rest of the four priors.
In addition, it is also too limited to ensure that these four priors generally yield inferences with
satisfactory frequentist performance. However, this study does provide rather strong evidence that
the Jeffreys-rule prior can be seriously inadequate in terms of frequentist coverage.

4.4. An Example

Consider a simplified version of a problem in Bayarri et al. [2007], which was also analyzed by
Paulo [2005]. They considered the analysis of a computer model that simulates the crash of pro-
totype vehicles against a barrier, recording the velocity curve from the point of impact until the
vehicle stops. In this paper, we will envision that if we input an impact velocity and an instant in
time, the computer model will return the velocity of the vehicle at that point in time after impact.

The data consist of the output of the computer model at 19 values of the instant in time, denoted
by t, and 9 initial velocities, denoted by v, which corresponds to a 171-point design set that follows
a Cartesian product. Paulo [2005] transformed the data by subtracting from each of the individual
curves the initial velocity, so the curves would start at zero and decay at a rate roughly proportional
to the initial velocity. Thus, he considered the mean function IEy(v, t) = vtβ for the transformed
data. In this paper, we transform the data. When the original data are used, it seems reasonable to
assume the mean function is separable and is given by

IEy(v, t) = (β10 + β11t)(β20 + β21v)

= β10β20 + β11β20t+ β10β21v + β11β21tv

= β0 + β1t+ β2v + β3tv. (29)

For the correlation function, we will assume a two-dimensional separable power exponential func-
tion, which is the same as Paulo [2005], with the roughness parameters fixed at 2, and the parame-
terization

k((t1, vl), (t2, v2)) = exp{−θ1(t1 − t2)
2} exp{−θ2(v1 − v2)

2}.

Based on our methods, if the mean function is separable, we can test whether the model should
include the higher order terms or not. For example, we can consider a separable mean function
with a quadratic term. Since the estimates of the coefficients for the higher order terms based
on the simulation results are almost equal to zero, we can ignore the quadratic term in the mean
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TABLE 1: Frequentist Coverage of Bayesian Equal-Tailed 95% Credible Intervals for θ1 and θ2

p = 1 p = 6

θ1 = .2 θ1 = .5 θ1 = 1 θ1 = .2 θ1 = .5 θ1 = 1

θ2 = .2 θ1 πR1 .964 .947 .943 .951 .943 .939

πR2 .953 .946 .946 .936 .941 .944

πIJ1 .963 .948 .945 .955 .952 .948

πIJ2 .952 .945 .946 .940 .944 .945

πJ .979 .951 .941 .991 .713 .666

πEB .911 .878 .869 .896 .853 .853

θ2 πR1 .969 .970 .969 .956 .964 .968

πR2 .961 .965 .965 .944 .954 .961

πIJ1 .969 .969 .969 .958 .968 .972

πIJ2 .961 .964 .964 .943 .955 .964

πJ .983 .984 .984 .986 .991 .993

πEB .920 .916 .917 .893 .893 .893

θ2 = .5 θ1 πR1 .968 .946 .946 .960 .952 .950

πR2 .962 .945 .946 .953 .954 .956

πIJ1 .967 .947 .948 .962 .960 .961

πIJ2 .960 .945 .947 .957 .956 .958

πJ .982 .954 .946 .991 .655 .605

πEB .904 .877 .866 .890 .842 .854

θ2 πR1 .959 .958 .960 .954 .959 .960

πR2 .955 .957 .959 .948 .957 .960

πIJ1 .959 .959 .960 .958 .962 .962

πIJ2 .953 .955 .958 .948 .958 .960

πJ .956 .955 .957 .868 .825 .808

πEB .880 .885 .881 .861 .859 .870

θ2 = 1 θ1 πR1 .967 .949 .945 .962 .955 .952

πR2 .964 .950 .946 .955 .955 .957

πIJ1 .966 .950 .947 .966 .964 .963

πIJ2 .961 .948 .947 .959 .959 .960

πJ .982 .953 .942 .991 .657 .597

πEB .900 .874 .864 .879 .861 .858

θ2 πR1 .948 .951 .951 .950 .954 .956

πR2 .953 .950 .951 .952 .955 .957

πIJ1 .949 .951 .952 .951 .955 .960

πIJ2 .954 .953 .953 .952 .956 .957

πJ .945 .942 .945 .858 .818 .791

πEB .869 .869 .872 .864 .857 .862
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function. Therefore, it is enough to consider the mean function given by (29).
In this example, four objective priors including two independence Jeffreys and two exact refer-

ence priors are used. We adopt a ratio-of-uniforms method by Wakefield et al. [1991] for sampling
(θ1, θ2) from their marginal posterior distribution. Based on 3, 000 replications, Figure 1 shows the
posterior densities based on these four priors and gives no noticeable difference among them.

5. SUMMARY AND COMMENTS

In this paper, we propose an objective Bayesian analysis method for spatial models with separa-
ble correlation functions and a separable design matrix. The reference priors and Jeffreys priors,
including Jeffreys-rule and independence Jeffreys priors, are developed for these models. The prop-
erties of these priors and resulting posteriors are studied. Based on the simulation study, the exact
reference priors and independence Jeffreys priors are recommended as default priors.

Berger et al. [2001] found both independence Jeffreys prior and reference prior failed to yield
proper posteriors. Recently, Ren et al. [2012] studied the model for spatially correlated data with
measurement errors, again for a single correlation parameter, and found these commonly used
noninformative priors fail to yield proper posteriors. These results show the complications of using
objective priors in spatially correlated data.

Appendix A: Lemmas

Lemma 1. If A is a nonsingular matrix and u and v are vectors, then

|A+ uv′| = |A|(1 + v′A−1u).

If, furthermore, v′A−1u ̸= −1, then A+ uv′ is nonsingular and

(A+ uv′)−1 = A−1 − A−1uv′A−1

1 + v′A−1u
.

The following four lemmas can be found in Ren [2008].

Lemma 2. Let Σn be an n× n positive definite correlation matrix. Then we have (i) 1′
nΣ

−1
n 1n −

1 > 0, and (ii) A is nonsingular and 1 + 1′
nA

−11n < 0, where A = Σn − 1n1
′
n.

Lemma 3. Suppose Σθ = 1n1
′
n + ν(θ)D is an n× n positive definite correlation matrix, where

ν(θ) > 0 is a continuous function of θ > 0, and D is a fixed nonsingular matrix. Assume that X is
an n× p full column rank matrix. Then, X′D−1X is nonsingular if and only if f(X) ̸= 0, where

f(X) = 1− 1′
nΓ(Σθ,X)1n, (30)

and Γ(·, ·) is given in (8).

With the conclusion that a′(I−T(T′T)−1T′)a = 0 if and only if a ∈ C(T), where T is n× p and
rank(T) = p, one can easily verify the conclusion of the following lemma.
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Lemma 4. Suppose that A is an n× n positive definite matrix, and X is an n× p full column
rank matrix. Then

a′Γ(A,X)a = 0, (31)

if and only if a ∈ C(X), where the function Γ(·, ·) is given in (8).

Lemma 5. Define A = B− 1n1
′
n. Assume that both A and B are n× n symmetric and nonsin-

gular, and X is an n× p full column rank matrix and 1′
nB

−11n ̸= 1. Assume that both X′A−1X

and X′B−1X are nonsingular. Then we have

Γ(A,X) = Γ(B,X) +
Γ(B,X)1n1

′
nΓ(B,X)

1− 1′
nΓ(B,X)1n

, (32)

Γ(B,X) = Γ(A,X)− Γ(A,X)1n1
′
nΓ(A,X)

1 + 1′
nΓ(A,X)1n

, (33)

where the function Γ(·, ·) is given in (8).

Lemma 6. Suppose that A and B are k × l matrices and C and D are m× n matrices. If
A⊗C = B⊗D, then there exists a constant c such that A = cB and D = cC.

Appendix B: Proof of Proposition 3

(a) Because the correlation matrix Σ is separable and each Σi depends only on θi, we have

Σ−1 = ⊗r
i=1Σ

−1
i ,

∂Σ

∂θi
= Σ1 ⊗ . . .⊗Σi−1 ⊗

∂Σi

∂θi
⊗Σi+1 ⊗ . . .⊗Σr.

Thus, ∂Σ
∂θi

Σ−1 = In1 ⊗ . . .⊗ Ini−1
⊗ ∂Σi

∂θi
Σi ⊗ Ini+1

⊗ . . .⊗ Inr and one can verify (14) and (15).
(b) Note that tr[UiUj] =

1
n
tr[Ui]tr[Uj] for i ̸= j from (a). Therefore, with some algebra, we can

obtain the conclusion.
(c) We consider only the ordering {θr · · · , θ1, δ1, β1, · · · , βp} and the others are similar. Noting
that the Fisher information of (β1, · · · , βp) given (θ1 · · · , θr, δ1) does not depend on β, one can
obtain that the conditional reference prior (β1, · · · , βp) given (θ1 · · · , θr, δ1) is a constant. Then
the conditional reference prior of δ1 given (θ1 · · · , θr) is 1/δ1. For i = 1, · · · , r, define

ψi =


tr[U1]

tr[U2]
...

tr[Ui]

 , and Ψi =


tr[U2

1] tr[U1U2] . . . tr[U1Ui]

tr[U1U2] tr[U
2
2] . . . tr[U2Ui]

...
...

...
...

tr[U1Ui] tr[U2Ui] . . . tr[U
2
i ]

 .
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Note that the conditional reference prior of θi, given θi−1 = (θ1, · · · , θi−1)
′ is

πr(θi | θi−1) ∝

∣∣∣∣∣∣
Ψi

ψi

δ1
ψ′
i

δ1
n
δ21

∣∣∣∣∣∣
/∣∣∣∣∣∣

Ψi−1
ψi−1

δ1
ψ′
i−1

δ1
n
δ21

∣∣∣∣∣∣ (34)

Using the results in (a), one can obtain

πr(θi | θi−1) ∝ ntr[U2
i ]− (tr[Ui])

2, (35)

which does not depend on θi−1. The result then holds.

Appendix C: Proof of Proposition 4

It is easy that L∗∗a is a continuous function of θ > 0. For (a), as θi → 0+, Σi → Ini
. Thus,

⊗r
j=1Σj → Σ0i, ⊗r

j=1Φj → Φ0i, and

X′Σ−1X→⊗i−1
j=1X

′
jΣ

−1
j Xj ⊗X′

iXi ⊗r
j=i+1 X

′
jΣ

−1
j Xj.

Since Σi is ni × ni, |Σ0i|−1/2 = |Σ[−i]|−ni/2 and

|X′Σ−1X|−1/2 → |X′
iXi|−p/(2pi)|X′

[−i]Σ
−1
[−i]X[−i]|−pi/2.

It is easy to see that S2 → S2
0,i as θi → 0+. Part (a) then follows.

For (b), if θi → ∞, then by Assumption D2, we have

|Σi| = νi(θi)
ni−1|Di|1′

ni
D−1
i 1ni

(1 + o(1)). (36)

For |X′
iΣ

−1
i Xi|, firstly, we assume that 1ni

/∈ C(Xi). In the following discussion, from Remark
4(iv), we will ignore the o(1) term, that is, we assume that Σi = 1ni

1′
ni
+ νi(θi)Di is also a positive

definite correlation matrix. By Lemma 1,

Σ−1
i =

1

νi(θi)

(
D−1
i −

D−1
i 1ni

1′
ni
D−1
i

νi(θi) + 1′
ni
D−1
i 1ni

)
. (37)

X′
iD

−1
i 1ni

is a vector, so there exists an orthogonal matrix P such that

X′
iD

−1
i 1ni

1′
ni
D−1
i Xi = P′

(
ai 0

′

0 O

)
P,
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and ai = 1′
ni
D−1
i XiX

′
iD

−1
i 1ni

≥ 0. With (37), we have

X′
iΣ

−1
i Xi =

1

νi(θi)

{
−
X′
iD

−1
i 1ni

1′
ni
D−1
i Xi

νi(θi) + 1′
ni
D−1
i 1ni

+X′
iD

−1
i Xi

}
(38)

=
1

νi(θi)
P′

{(
− ai
νi(θi)+1′

ni
D−1

i 1ni

0′

0 O

)
+PX′

iD
−1
i XiP

′

}
P.

Since Σ−1
i is positive definite and Xi is full column rank matrix, so are X′

iΣ
−1
i Xi and(

− ai
νi(θi)+1′

ni
D−1

i 1ni

0′

0 O

)
+PX′

iD
−1
i XiP

′=̂

(
− ai
νi(θi)+1′

ni
D−1

i 1ni

+ d11 d
′

d D22

)
.

Thus, D22 is also positive definite. Since P is orthogonal, we have

|X′
iΣ

−1
i Xi| = νi(θi)

−pi|D22|
{
− ai

νi(θi) + 1′
ni
D−1
i 1ni

+ d11 − d′D−1
22 d

}
, (39)

and − ai
νi(θi)+1′

ni
D−1

i 1ni

+ d11 − d′D−1
22 d > 0. By applying Lemma 2 (ii) to the correlation matrix

1ni
1′
ni
+ νi(θi)Di one can obtain νi(θi) + 1′

ni
D−1
i 1ni

< 0, so if d11 − d′D−1
22 d = 0, then ai must

be positive and by (39) we have

|X′
iΣ

−1
i Xi| = O(νi(θi)

−pi). (40)

If d11 − d′D−1
22 d ̸= 0, that is, X′

iD
−1
i Xi is nonsingular, then by (38) we have

|X′
iΣ

−1
i Xi| = νi(θi)

−pi|X′
iD

−1
i Xi|

νi(θi) + 1′
ni
Γ(Di,Xi)1i

νi(θi) + 1′
ni
D−1
i 1ni

. (41)

Recall Σi = 1ni
1′
ni
+ νi(θi)Di. Since X′

i{νi(θi)Di}−1Xi = νi(θi)
−1X′

iD
−1
i Xi, which is also

nonsingular, by (32) in Lemma 5, we have the following

νi(θi)
−11′

ni
Γ(Di,Xi)1ni

= 1′
ni
Γ(Σi,Xi)1ni

+
(1′

ni
Γ(Σi,Xi)1ni

)2

1− 1′
ni
Γ(Σi,Xi)1ni

=
1′
ni
Γ(Σi,Xi)1ni

1− 1′
ni
Γ(Σi,Xi)1ni

.

By Lemma 4 and the assumption that 1ni
/∈ C(Xi), we have 1′

ni
Γ(Σi,Xi)1ni

̸= 0 and hence
1′
ni
Γ(Di,Xi)1ni

̸= 0 by above relationship between them. Noting that 1′
ni
Γ(Di,Xi)1ni

is inde-
pendent of θi, one can obtain (40).
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If 1ni
∈ C(Xi), then the matrix function in Lemma 3 f(Xi) = 1 and hence X′

iD
−1
i Xi is non-

singular and 1′
ni
Γ(Di,Xi)1ni

= 0. From (41), we have

|X′
iΣ

−1
i Xi| = νi(θi)

−pi+1 |X′
iD

−1
i Xi|

νi(θi) + 1′
ni
D−1
i 1ni

= O(νi(θi)
−pi+1). (42)

For S2, first we assume that 1ni
/∈ C(Xi). If X′

iD
−1
i Xi is singular, then for sufficiently large θi,

with the minor changes in the proof of finding the expression of |X′
iΣ

−1
i Xi|, one can show that

X′
iEiXi is a positive definite matrix. If X′

iD
−1
i Xi is nonsingular, then

|X′
iEiXi| =

|X′
iD

−1
i Xi|1′

ni
Γ(Di,Xi)1ni

1′
ni
D−1
i 1ni

.

Similarly, one can verify that |X′
iEiXi| ̸= 0. That is, X′

iEiXi is nonsingular. Therefore, by ignor-
ing the term o(1), we have that S2 is equal to

νi(θi)
−1y′(⊗i−1

j=1 Σ
−1
j ⊗Ei⊗r

j=i+1Σ
−1
j −⊗i−1

j=1Φ
−1
j ⊗EiXi(X

′
iEiXi)

−1X′
iEi ⊗r

j=i+1Φ
−1
j

)
y. (43)

By Lemma 6, since pj < nj , rank(Σ−1
j ) > rank(Φj) and Ei ̸= O, we have

S2 = O(νi(θi)
−1). (44)

If 1ni
∈ C(Xi), then X′

iD
−1
i Xi is nonsingular and S2 is given in (43) by replacing

EiXi(X
′
iEiXi)

−1X′
iEi with Ei − Γ(Di,Xi). The equation (44) holds by the same argument.

Finally, when 1ni
/∈ C(Xi), using (36), (40) and (44) in (19) results in the conclusion, whereas

when 1ni
∈ C(Xi), using (36), (42) and (44) in (19) results in the conclusion.

Appendix D: Proof of Theorem 1

We prove the posterior propriety under πIJ1 only. The others are similar. In this case, a = 1. The
same notation is used to denote the marginal prior of θ. From Proposition 3, we have

πIJ1(θ) ∝
r∏
i=1

{
nitr[U

2
i ]− (tr[Ui])

2
}1/2 ≤ n1/2

r∏
i=1

(tr[U2
i ])

1/2.

Thus, we obtain∫
(0,∞)r

L∗∗a(θ;y)π
IJ1(θ)d θ ≤ n1/2

∫
(0,∞)r

L∗∗a(θ;y)
r∏
i=1

(tr[U2
i ])

1/2d θ. (45)

By Assumption D5 and Proposition 4, the integration for the right-hand side of (45) is finite at the
interval (0, ξ], where ξ = (ξ1, . . . , ξr) and ξi > 0 and ξi can take any positive value.
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As θi → ∞, by Assumptions D2 and D3, we obtain

tr[U2
i ] =

nν ′i(θi)
2

ni
tr([DiΣ

−1
i ]2)(1 + o(1)).

Note that

Σ−1
i =

1

νi(θi)

(
D−1
i −

D−1
i 1ni

1′
ni
D−1
i

1′
ni
D−1
i 1ni

)
(1 + o(1)),

so we obtain

tr[U2
i ] =

{
ν ′i(θi)

νi(θi)

}2(
n(ni − 1)

ni

)
(1 + o(1)) ∝

{
ν ′i(θi)

νi(θi)

}2

.

Let both A and B be subsets of {1, . . . , r} and defined as follows. For A, if 1nk
/∈ C(Xk), then k ∈

A, and otherwise, k /∈ A. For B, if θk > ξk, then k ∈ B, where ξk is chosen to be large; otherwise,
k /∈ B. In the last case, we have 0 < θk ≤ ξk. Then we have

L∗∗a(θ;y)
r∏
i=1

(tr[U2
i ])

1/2 ∝
∏

i∈A∩B

|ν ′i(θi)|νi(θi)
n

2ni
−1

∏
i∈Ā∩B

|ν ′i(θi)|νi(θi)
n

2ni
− p

2pi
−1
∏
i/∈B

(tr[U2
i ])

1/2.

It is easy to see that the integration in right-hand side of above equation is finite. Therefore, the
prior πIJ1(θ, δ1, β) yields proper posterior distribution.
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FIGURE 1: The posterior densities of (θ1, θ2, δ1, β0, β1, β2, β3) based on the four priors πIJ1 (dotted line), πIJ2 (broken line and
dots), πR1 (solid line), and πR2 (dashed line) for the simulated data in Bayarri et al. [2007].
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