
On generating a flexible class of non-stationary

spatial models using Gaussian predictive processes

Sujit K. Sahu∗and Sabyasachi Mukhopadhyay,

University of Southampton, UK

January 13, 2016

Abstract

This article proposes a flexible class of non-stationary spatial models by
using recently developed Gaussian predictive processes. So far these processes
are only used as approximate dimension reduction models for analysing large
spatial data sets. The contribution of the current article lies in proposing these
models even for small sample sizes and studying the nature of non-stationarity
implied by these predictive processes under various scenarios of selection of
the knot locations where the predictive process is to be anchored for both
small and large data sets. Results obtained here show that different random
and non-random choices of knot-locations lead to new flexible forms of non-
stationary covariance functions not yet studied in the literature. These new
covariance functions give rise to new flexible Bayesian predictive models but
do not complicate the fitting and analysis methods unlike other non-stationary
models. The proposed methods are illustrated using two practical data sets
on modelling air pollution exposure in London and the other on modelling a
well-known data set on scallop abundance in the Atlantic Ocean near the City
of New York.
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1 Introduction

Stochastic spatial models based on Gaussian processes are experiencing a surge of

popularity in recent literature due to their abilities to investigate spatial variation

in many physical quantities of interest in diverse application areas. A stationary

Gaussian process with an isotropic covariance function is often the default choice for

statistical modellers since such an assumption implies a tractable model leading to

easily amenable analysis and computation. The Gaussian processes, used naively,

lead to stationary and isotropic covariance models for data. Due to their analytical

tractability, these models are not only convenient to specify but also are easy to fit

and analyse using contributed software packages inside the R language environment.

Recent references include: Banerjee et al. (2015); Cameletti et al. (2013); Cressie and

Wikle (2011); Finley et al. (2015) and Bakar and Sahu (2015).

Simplicity of the Gaussian processes, however, does not often represent reality and

practical data sets often exhibit non-stationarity. Non-stationarity arises when the

distribution, or its features, e.g., means, variances, and correlations, depend on the

actual spatial locations where random variables have been observed. Non-stationarity

is hard to generalise into a simplistic parametric model although there is a relatively

large literature on constructing non-stationary models using deformation, see e.g.

(Sampson and Guttorp, 1992; Schmidt and O’Hagan, 2003) and kernel mixing, see

e.g. (Higdon, 1998; Paciorek and Schervish, 2006); Section 3.2 of Banerjee et al.

(2015) provides a review. More recent articles in this area include: Konomi et al.

(2014) who use a non-stationary covariance function constructed based on adaptively

selected partitions; Guhaniyogi et al. (2013) who use spatially varying cross-covariance

models; Katzfuss (2013) who uses spatial basis functions with nonstationary Matérn

covariance functions. Alternatives to these approaches are those based on approxi-

mations using stochastic partial differential equations, see e.g. (Lindgren et al., 2011;

Bolin and Lindgren, 2011; Ingebrigtsen et al., 2014) and Fuglstad et al. (2015) where

non-stationary models have been proposed by locally varying co-efficients in the ap-

proximations.

The main objective of this paper is to introduce a method to generate flexible

non-stationary spatial models which are also based on Gaussian processes – so that

it is also easy to fit and predict with the models. The generating mechanism relies on

specification of a Gaussian predictive process (GPP), see Banerjee et al. (2008), which

induces non-stationarity. However, there are several un-resolved questions regarding

the use of GPP as a method to generate non-stationary spatial models. What are

the covariance properties of the new spatial process induced by GPP? How do those

properties change as the knots are moved around in the study region? How does a
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particular clustering of the knots affect these properties? What happens if the knots

are instead specified randomly according to a specific point pattern model, see e.g.

Guhaniyogi et al. (2011)? How does the choice of the number of knots influence the

covariance structure of the new process?

Our main contribution here is to investigate the above issues in detail with prac-

tical examples in order to develop accurate predictive models. Here we find that the

GPP defines a new class of flexible spatial models which are able to capture non-

stationarity as yet un-explored in the literature. The new processes generate models

having non-stationarity in both the marginal variances and correlations. The flexible

nature of non-stationarity is controlled by the number as well as the positioning of

the knots. The flexibility ranges from complete stationarity, corresponding to having

no knots at all, to highly non-stationary models corresponding to a dense distribution

of the knots covering the entire study region.

As expected, the generated non-stationary models produce anisotropic covariance

functions (Zimmerman, 1993; Ecker and Gelfand, 1999). Anisotropic covariance func-

tions are those for which the covariance depends not only on the distance but also

on the direction between random observations at any two locations. For example,

the covariance function as a function of distance may decay at different rates when

measured at different directions (range anisotropy). It is also be possible to have

sill anisotropy where the covariance function may asymptote to different levels when

measured at different directions. Zonal anisotropy is generated by placing knots with

different clustering patterns at different zones of the study region. In addition, the

generated processes will exhibit geometric anisotropy if the parent Gaussian process

also posses the same characteristic. In this sense, the generated processes are capable

of generating anisotropic covariance functions which can be sill, range, geometric and

zonal at the same time.

In practical and empirical data modelling situations, it is often difficult to decide

a-priori what type of anisotropy (or non-stationarity) will be the most appropriate

unless there is specific information regarding the processes to be modelled. Bayesian

modelling experimentation with different random and non-random schemes for knot

placements is proposed to be a possible solution to this problem. Competing Bayesian

models are to be compared using either Bayesian predictive model choice criteria,

e.g., Gelfand and Ghosh (1998); Spiegelhalter et al. (2002), or empirical validation

measures calculated using predictions for set aside observations. The paper details

setting up of the full Bayesian model corresponding to random placement of the knots

within the study region and then compares these models with those specified using

default non-random designs for knot placements.
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The plan of the remainder of the paper is as follows. In Section 2 we review the

predictive process model and explore different ways to generate anisotropic models.

Section 2.1 illustrates the nature of anisotropy generated by the proposed method by

two theoretical examples. Full Bayesian hierarchical models and prediction details

based on the anisotropic covariance functions are laid out in Section 3. Section 4

contains illustrations of the methods using two practical examples: one for the scallop

catch data set and the other for modelling NO2 pollution levels in the city of London

in 2011. A few summary remarks are placed in Section 5.

2 GPP method for generating non-stationary mod-

els

A GPP is simply defined as the process induced by Kriging. To formally define this,

assume that w(s) is the spatial random effect at a location s and it follows a zero-mean

stationary GP with an isotropic covariance function σ2
wC(·) where C(·) is assumed

to be a member of the Matérn family. The correlation function, C(·), will depend

on two additional parameters: smoothness ν and the rate of decay φ but these are

suppressed from the notation C for convenience.

Given a set of m point locations S∗m = (s∗1, . . . , s
∗
m), which are to be called the

knot-locations or simply the knots, in a d-dimensional study region D (D is a subspace

of Rd), the GPP at a new location s, denoted by w̃(s), is defined as the conditional

expectation of the GP w(s) given the m realisations at the knots denoted by w∗ =

(w(s∗1), . . . , w(s∗m))T . In particular,

w̃(s) = E [w(s)|w∗] . (1)

Properties of the underlying GP yield that: (i) marginally w∗ follows N (0, σ2
wSw∗)

where Sw∗ is the m × m correlation matrix whose entries are formed using C(·)
and (ii) the random vector (w(s),w∗)T follows the multivariate Gaussian distribution

with mean zero and a covariance matrix given by σ2
w

(
1 c∗T (s)

c∗(s) Sw∗

)
where c∗(s) =

(C(|s− s∗1|), . . . , C(|s− s∗m|))
T . Multivariate Gaussian theory yields that

w̃(s) = c∗T (s)S−1
w∗ w∗. (2)

Consider the following simplification of the above setting that motivates the cen-

tral issue in the paper. Suppose that the real line R1 is the study region D. With one

knot point (m = 1), s∗1, say at the origin, and assuming the exponential correlation
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function with decay parameter φ > 0 in the GP with unit spatial variance we can

easily see that w̃(s) = exp(−φ |s|)w∗(0) according to (2) where w∗(0) ∼ N(0, σ2
w).

The marginal variance given by σ2
w exp(−2φ|s|) depends on the location through |s|

hence this will generate a non-stationary process. In general, the covariance between

w̃(s) and w̃(s′) will depend not only on the distance |s − s′| but also on the rela-

tive positioning of s and s′ with respect to the origin, the sole knot-location here.

However, in this one dimensional example the correlation between w̃(s) and w̃(s′)

will be equal to one due to the dimension reduction performed by the GPP for any

s 6= s′. To avoid this degeneracy caused by dimension reduction, m must be taken to

be greater than n, or another independent process must be added for data modelling

as discussed in Section 3.

Further complexities in the covariance function are easily introduced by: (i) as-

suming specific clustering processes for the knot-locations and (ii) assuming the knot

locations to be assigned at random over a finite subspace in D as we demonstrate

below for a two-dimensional example.

Returning to the general GPP (2), for two locations s and s′ the covariance be-

tween w̃(s) and w̃(s′) is given by:

Cov (w̃(s), w̃(s′)) ≡ σ2
w C̃(s, s′) = σ2

w c∗T (s)S−1
w∗ c∗(s′). (3)

The above defines a valid non-negative definite covariance function since according

to (2), w̃(s) and w̃(s′) are finite linear combinations of the elements of w∗, which is

equipped with a valid positive definite covariance function C(·). As discussed in the

above example, C̃(·, ·) will give rise to a singular correlation matrix when the number

of realisations n is larger than m due to the dimension reduction. The singularity will

not arise when we explore the correlation structure in the remainder of this section

with n = 2 points, s and s′, and by taking m ≥ 2. Of-course, in practical data

modelling settings, non-singular models are guaranteed by adopting the w̃(·) process

in a hierarchical model as in Section 3.

Clearly, C̃(s, s′) depends on both s and s′ and not only through the separation

vector s− s′ or the distance |s− s′|. As a result, the model specification with w̃(s) as

the spatial effects will also imply non-stationary and, hence, anisotropic correlation

structure.

The covariance function (3) is easily used to define the traditional semivariogram,
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denoted by, γ̃(s,h) of the spatial effects w̃(s) as follows:

2γ̃(s, s′) = Var [w̃(s)− w̃(s′)]

= E [w̃(s)− w̃(s′)]2

= E
[
c∗T (s)S−1

w∗ w∗ − c∗T (s′)S−1
w∗ w∗

]2
= E

[(
c∗T (s)− c∗T (s′)

)
S−1
w∗ w∗

]2
=

(
c∗T (s)− c∗T (s′)

)
S−1
w∗ (c∗(s)− c∗(s′)) .

Non-stationarity of the w̃(s) is also apparent from the dependence of the semivari-

ogram, γ̃(s, s′) on both s and s′. Further exploration of non-stationarity is proceeded

with the covariance function (3) itself instead of the semivariogram, γ̃ for ease of

interpretation since C̃ uniquely determines γ̃ but not the converse. Moreover, for

Gaussian processes covariance functions are natural quantities to look at and in prac-

tical modelling situations those are the ones that must be specified but not derived

quantities like the semivariogram.

Exploration of non-stationarity is not straightforward because of the dependence of

C̃(s, s′) on both of its arguments and not only on the separation vector h = s−s′ or the

distance |h|. However, to facilitate comparison with (or departure from) stationarity

we first write it as a function of s, |h| and also of the angle at which s′ lies with

respect to the reference axes used to define the underlying GP w∗(s). The covariance

function still will vary with s, which itself can be any point within the study region,

D.

To study the nature of non-stationarity in the w̃ process, we consider variation of

C̃(s, s′) by taking s as a ‘central’ location within D. In practical modelling situations

when data locations are available, we can take the unique centroid of the convex

hull of all the locations. This allows us to study the induced directional correlation

structure as data locations move away from the centroid, denoted by s∗∗, to the

boundaries of D. The central location, to be used for exploration purposes only and

not for inference, can also be an ‘externality’ in the study region, for example, the

centre of the business district when modelling land prices, see Banerjee et al. (2015).

The number, m, and configuration of the knots play a major role in dictating the

nature of non-stationarity as the examples below will illustrate. A novel proposal

here is to allow the knot-locations to be random given m. This randomness generates

further flexibility in modelling and is the preferred approach as developed and illus-

trated in the later sections. Before going into the specific modelling and computing

details, we first note that the correlation function C̃(s, s′) will be a random quantity

if the knot locations S∗m are also random. Hence, by using the covariance identity

Cov(X, Y ) = ECov(X, Y |Z) + Cov(E(X|Z), E(Y |Z))
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for any three random variables, X, Y and Z, we obtain

C̃(s, s′) = Eπ(m),π(S∗m)E
[
c∗T (s)S−1

w∗ c∗(s′)|m,S∗m
]

(4)

where we continue to use C̃(s, s′) to denote the expected covariance and the outer

expectation is taken over the distributions of m and S∗m denoted respectively by π(m)

and π(S∗m). Note that the second term in the covariance identity vanishes because

the conditional expectation of w̃(s) given m and S∗m is zero since E(w∗) = 0 since it

is a random realisation of the underlying zero mean GP.

We use Monte Carlo sampling to evaluate the outer expectation in (4) as follows.

At the `th Monte Carlo replication (out of L where L is large) we generate an m`

from π(m) and and a set of m` random knots S∗ml
from π(S∗m`

) and using those values

evaluate C̃(`)(s, s′) = c∗(`)(s)TS
−1(`)
w∗ c∗(`)(s′) where c∗(`)(s) is obtained by plugging in

the values of m` and S∗ml
in c∗(s). The matrix S

(`)
w∗ is also obtained similarly. The

C̃(`)(s, s′), ` = 1, . . . , L values are averaged to obtain an estimate of the true covariance

C̃(s, s′). In our implementation, we have taken L to be 500, but taking a larger value

did not change the reported conclusions.

Thus the most general method we propose to generate a nonstationary process is

based on a random number of knots which are also selected according to a random

point pattern distribution over the study region of interest D. In addition, we also

propose a number of intermediate strategies ranging from this random allocation of

m knots to a fixed space-filling design to generate flexible models. These methods are

illustrated in the next section with two examples one each on one and two dimensional

sub-spaces.

2.1 Illustration of non-stationarity and anisotropy

Assume that the study region D is the compact region, [−a, a] × [−a, a] where we

take a = 2 for illustration purposes. Origin is taken as the centroid and we work with

orthogonal axes. We examine the correlation between two realisations, one at the

origin and the other at a unit distance away from the origin but at different angles

starting at 0 and by taking increments of 450, i.e., 0, 45, 90, 135, 180, 225, 270 and

315. We take m = 100 knot locations within the domain. We adopt the exponential

correlation function with a fixed decay parameter of 0.2 for the underlying GP. To

study the induced correlation structure we consider several designs for the knot points.

Our first two designs are taken to be regular grids one of which spans the en-

tire study region and the other within a smaller rectangle containing the origin, see

the two plots in the first column of Figure 1. The two plots in the second column

show the covariance as a function of distance away from the origin. The covariance
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curves collapse to just two in both cases because of the complimentary angles used to

calculate those and the periodicity of the trigonometric functions for complimentary

angles. The plots show sill and range anisotropy since the covariance function is seen

to decay to zero at a different rate of the distance when that is calculated at different

angles, see e.g. Zimmerman (1993) and Section 2.2 of Banerjee et al. (2015)) for

formal definitions.

More interesting type of anisotropy arises when the knot-design is taken as ran-

dom, see Figure 2. In the first design the knots points have been placed completely

at random and in the second case the knots are placed at random but all within the

first quadrant to see the effect of clustering of the knots in one particular sub-region

which may have been incorrectly chosen by the modeller. The covariance function

plots show a full spectrum of range and sill anisotropy and show the flexibility of the

GPP method to generate anisotropic and hence non-stationary models. Here edge

effects can be clearly seen in Figure 2, whereby the correlations are not asymptotically

reduced to zero. Clearly, correlations must be calculated for larger distances to see

the asymptotics. A different random realisation of the knots will introduce a different

anisotropic model.

Figure 3 illustrates the effect of varying m, the knot size on anisotropy and non-

stationarity. Here the correlation function is plotted for m (=10, 50 and 100) ran-

domly selected knots when distances are calculated along the perpendicular line. The

other parameters and settings are chosen exactly as in panel (b) of Figure 2. The plot

of the correlation function in the isotropic case without any knots is also provided for

comparison purposes. The plot shows a variety of possible non-stationary correlation

functions without any possible ordering of the correlation curves which arises due to

the random placing of different number of knot points.

Though the GPP method offers a flexible class of anisotropic models, it is difficult

to get a mathematical form of the covariance function from the general form in (3).

However, from the equation (3) it is clear that the main parameters determining the

shape of the covariance function are the number of knots m, the form of the correlation

function and the relative arrangement of the knots S∗ with respect to the points of

interest s. The complexity of the covariance form in(3) arises mainly because it is not

straightforward to determine how a given choice of knots and other parameters affect

the shape of the correlation curve. To illustrate the covariance function we consider

the following example.

Suppose that the study region is the two dimensional plain R2, and there are only

two knots. One of the knots lies in the first quadrant and the other is placed in the

third quadrant of the orthogonal coordinate axes. We denote the knots as (h, h) and
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(−h,−h), where h > 0 is the pre-fixed value (shown as red points for several values of

h in Figure 4). The points of interest s are chosen as sEi = i√
2
× 0.08× h(1, 1) along

the North-East (NE) direction and sWi = i√
2
× 0.08× h(−1, 1) along the North-West

(NW) direction, i = 1, . . . , 1000, see Figure 4 for example locations.

A closed form expression for the correlation function in (3) is obtained when the

origin, denoted by s0, is one of the two locations of interest. In fact, we have

C̃(si, s0) = exp(−2φdi1h) + exp(−φh(di1 + di2 + 2
√

2)) + exp(−2φdi2h), (5)

where dik = d(si, s
∗
k)/h and d(si, s

∗
k) is the distance between si, i = 1, . . . , n and the

knot s∗k, for k = 1, 2. Here si can be either sEi or sWi . We illustrate this covariance

function by constructing a two dimensional surface plot by varying h and i for si = sEi
in the NE-direction as follows. Figure 5 shows the surface plot of C̃(si, s0) where

si = sEi = i√
2
× 0.08 × h(1, 1) for i = 1, . . . , 1000 and then taking 100 equispaced

values of h between 0.01 and 1. As h and i increase the non-linearity of the correlation

functions decrease. The anisotropic behaviour of the correlation function tends to

change towards isotropy as h and i increase which also implies that the relative

distance between the knots and sEi increases.

The above form (5) indicates presence of different forms of anisotropy, e.g. range,

angular and nugget, in the model, see Zimmerman (1993) for definitions and numerical

illustrations. The GPP based models developed here are much easier to fit in practical

situations as we shall discuss in the next section.

3 Hierarchical model specification

Our starting point of spatial modelling is an assumed data realisation of the random

variable Z = (Z(s1), . . . , Z(sn))′ at n-locations, s1, . . . , sn, which we assume not to

be preferentially sampled, see e.g. Gelfand et al. (2012). Also assume that there are

p-covariates, x(s) measured along with Z(s) at each data and prediction site s. A

spatial random-effect model with nugget effect, see e.g. Cressie and Wikle (2011) is

given by:

Z(s) = x(s)Tβ + w̃(s) + ε(s) (6)

where β denotes the unknown regression coefficients and ε(s) ∼ N(0, σ2
ε ) is the nugget

effect measuring micro-scale variation around s and is independent across locations

and also independent of w̃(s).

The full Bayesian hierarchical model is specified is as follows. As in Guhaniyogi

et al. (2011), we allow the m-knots S∗m to be random according to a non-homogeneous
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Poisson point process model with an assumed intensity function λ(s) so that

π (S∗m) = (λ(D))−m
m∏
j=1

λ(sj),

where λ(D) =
∫
D
λ(s)ds. There are many possibilities for choosing the intensity

function λ(s). For example, one can assume spatially varying explanatory variables,

q(s) say, to inform the intensity, i.e. log(λ(s)) = q(s)Tγ where γ are unknown

parameters. In a similar vein, Guhaniyogi et al. (2011) propose that

log(λ(s)) =
1

m

m∑
j=1

N2 (s | uj,Σλ) ,

where N2 (s | uj,Σλ) denotes the density, evaluated at s, of the bivariate normal

distribution with unknown mean uj and covariance matrix Σλ. These unknown pa-

rameters are then proposed to be estimated using the full Bayesian model which is

completed by assuming suitable prior distributions for them. However, we can avoid

this extra level of parametric uncertainty by discretizing the study region as follows.

We envision that there are M total number of possible knot locations denoted by

s∗1, . . . , s
∗
M each having an associated probability of selection

π(s∗j) =
p(s∗j)∑M
j=1 p(s

∗
j)

(7)

where p(sj) is thought to provide a covariate like information for selecting the knots.

For example, we may use a population density surface in an environmental monitoring

situation that will guarantee knots being placed at high density areas. We propose

sampling without replacement to avoid duplicated knots.

Conditional onm we assume the GPP specification (2) given by w̃(s) = c∗T (s)S−1
w∗ w∗

where w∗ is a realisation of the underlying zero mean Gaussian process with spatial

variance σ2
w and isotropic Matérn correlation function C(·; ν, φ) where ν and φ are

the smoothness and the decay parameter respectively.

The Bayesian model is completed by assuming suitable prior distributions for

all the parameters and the hyper-parameters. As is often used, we shall assume

normal prior distribution with zero mean and large variance, 104 say, for the regression

parameter β. For the variance components σ2
ε and σ2

w we assume that their inverses

follow the Gamma distribution with parameters a and b, which we take to be 2 and

1 respectively. These values imply a proper prior distribution for each of the two

variance components and experimentation here shows that inference is not sensitive

to these choices.
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The logarithm of the full posterior distribution is given by:

log (π (m,S∗m,w (S∗m) ,θ|z)) ∝ −n
2

log(σ2
ε )

− 1

2σ2
ε

∑n
i=1

(
z(si)− x(si)

Tβ − w̃(si)
)2

− m log(λ(D)) +
∑m

j=1 log(λ(sj))

− m
2

log(σ2
w)− 1

2
log |Sw| − 1

2σ2
w

(w∗)TS−1
w w

+ log(π(θ))

where θ = (β, σ2
ε , σ

2
w, ν, φ)T and π(θ) denotes the prior distribution of θ. Implement-

ing the Gibbs sampler with Metropolis-Hastings steps is straightforward, see e.g.

Section 3.2 of Guhaniyogi et al. (2011). Our implementation differs from theirs only

when updating the knot-locations S∗m. Discretization of the space with M possible

grid locations allows us to avoid having to evaluate the integral for λ(D). Conse-

quently, to update S∗m we can simply simulate m proposed knots from the prior (7)

without replacement and then use a Metropolis-Hastings step to accept the proposed

knots. Alternatively, conditional on m, to update S∗m, we can find a new set of m

proposal knots based on the current set by shifting each knot according to a random

walk centred around the corresponding current knot. The proposed set of knots is

then accepted using the appropriate Metropolis-Hastings step. Acceptance rate of

this scheme is dependent on the step size of the random walk and is tuned to have

about 30% (Gelman et al., 1996). The starting configuration of the knots is taken to

be according to a space filling design.

Predicting the response Z(s0) at a new location s0 is achieved by the posterior

predictive distribution

π(z(s0)|z) =

∫
π(z(s0)|m,S∗m,w∗,θ, z)π(m,S∗m,w

∗,θ|z)dmdS∗mdw
∗dθ

where θ denotes the parameter vector (β, σ2
ε , σ

2
w, ν, φ)T . Note that since m is as-

sumed to be discrete, integrating m out in the above must be taken as an appropriate

summation. MCMC samples from the posterior distribution facilitate evaluation of

the above predictive distribution. Here z(s0) is assumed to be independent of z ac-

cording to the top level model given all the parameters and the realisation of the

GP. Now π(z(s0)|m,S∗m,w∗,θ) requires w̃(s0) which is calculated as c∗(s0)S
−1
w∗ w∗,

continuing to use (1). At the jth MCMC iteration with a posterior sample of

m(j),S
∗(j)
m ,w(S

∗(j)
m ),θ(j) we simulate z(s

(j)
0 ) from the normal distribution with mean

x(s0)
Tβ(j) + w̃(j)(s0) and variance σ

2(j)
ε for j = 1, . . . , J where J is the total number

of MCMC simulation. Finally, we form ergodic averages of z(s
(j)
0 ), or its transformed

values, to estimate features of the posterior predictive distribution.
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We perform model validation using the root mean square prediction error (RM-

SPE) and also a cross-validation version of it. We also report the mean absolute

prediction error to confirm robustness of the findings. The cross-validation RMSPE

is calculated by first setting aside and then predicting each of the n observations in

turn and then calculating
√

1
n

∑n
i=1(z(si)− ẑ(si))2 where ẑ(si) is the cross-validation

prediction for the observation z(si). We also use the Bayesian predictive model choice

criterion (PMCC) proposed by Gelfand and Ghosh (1998) using independent predic-

tive replicate Zrep,i at location si of the observed data. The PMCC is sum of two

parts: a goodness of fit G and penalty P where G =
∑n

i=1(z(si) − E(Zrep,i))
2 and

P =
∑n

i=1 Var(Zrep,i).

4 Practical examples

4.1 Scallop data example

We consider the scallop data example studied by Ecker and Gelfand (1999) to illus-

trate the fitting and performance of the proposed anisotropic models. In this data set,

recorded is the number of scallop catches for the year 1990 from 146 different locations

in the North Atlantic near the City of New York. Following Ecker and Gelfand we

also log-transform the data to reduce variability and to encourage Gaussianity. There

is no spatially varying covariate available for this data set. Hence we work with a

constant mean surface taking the value β at any location s within the study region.

The mean parameter β is given the normal prior distribution with mean 0 and vari-

ance 104. We assume the exponential correlation function for the underlying GP and

following Ecker and Gelfand we assume the uniform prior distribution U(0.001, 30) for

the decay parameter φ. This prior distribution allows for an effective range between

0.1 to 3000 kilometres. As mentioned before, 1/σ2
ε and 1/σ2

w are assigned the Gamma

prior distribution with parameters 2 and 1.

We have discussed several anisotropic models corresponding to different choice

of knots and compared these next using out of sample cross-validation methods.

To facilitate model comparison we split the data set into a training set, with 136

observations, and a validation set with the remaining 10 observations. The validation

observations have been chosen to be at the same 10 sites as in the Ecker and Gelfand

paper so that we can make a fair comparison of out of sample predictive performances

of their model with that of the proposed ones.

We first select the number of knot locations using the RMSPE and the mean

absolute prediction error (MAPE) based on the 10 validation observations. Table 1
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provides the validation error estimates for the knot sizes of 100, 136, 225 and 400 for

the two models where the knots are chosen by a space-filling design and the other

one using a random placement of the knots. We include the model with a knot size

of 136 since there are 136 observations in the fitting data set. As expected, the error

estimates first decrease with the increasing knot-size and then start to increase after

reaching a plateau of minimum values. The model with 225 knots and a random space-

filling design seems to be the best according to the two error criteria. Henceforth, we

proceed with this model, denoted by RSF225.

We now compare the best performing model with the following relevant modelling

suggestions. We compare the performances of simple Kriging, and two models com-

pared by Ecker and Gelfand: one with a general exponential covariance structure but

with anisotropy as defined by their Equation (10) and the other with six parameter

range anisotropic Matérn family as defined by their Equation (13). We denote these

models by EGM I and II respectively. Table 2 provides the validation error estimates.

The model RSF225 performs the best compared to all the other models including the

EGM I model and the default GPP model with 136 knots.

Finally, we examine the predictions made using the anisotropic EGM I and the

RSF225 at the 10 validation sites in Table 3. The values for the EGM II model are

taken from the Ecker and Gelfand paper. The prediction standard deviations are

lower for the proposed RSF225 and also as expected, the individual predictions are

closer to the actual observed values.

4.2 London air pollution data example

As a second data example we consider the annual NO2 air pollution data from 91

monitoring sites within Greater London and its suburb for the year 2011. In addition

to these monitored data, we also make use of output of a numerical model, Air Quality

Unified Model (AQUM) developed by Savage et al. (2013). AQUM is a large computer

simulation model and uses emission inventory and many meteorological variables such

as wind speed and direction to produce air pollution estimates at 1-kilometre square

grids. We use the AQUM outputs in a downscaler regression model following Sahu

et al. (2009) and Berrocal et al. (2010). Throughout, we model the data on the square

root scale that encourages symmetry and normality. However, all the predictions are

performed and compared on the original scale of the data for ease of interpretation.

We adopt model (6) with three covariates: AQUM values on the square-root scale,

a rural-urban indicator and a roadside indicator as has been detailed in Lee et al.

(2015). Here we compare four modelling methods as follows. The first method is the

full spatial random effects model with the exponential covariance function denoted by

13



GEM16. We compare this base model with the following models: FCL16 for which

16 knots are clustered within a smaller rectangular sub-region covering the city of

Westminster, FSF16 where 16 knots are selected according to a space filling design

and kept fixed, and finally we consider the random space filling designs for knot

selection with 9, 16 and 25 knots denoted respectively by RSF9, RSF16 and RSF25.

All of the models are implemented with the exponential covariance function. The

results reported below, however, remain unchanged qualitatively if the Matérn model

is assumed instead. We have set the decay parameter φ to a fixed value 0.02 since

this produced the best predictive performance for the models. In general, a tuning

experimentation is required to choose the decay parameter value.

The first part of Table 4 shows the values of the PMCC (Gelfand and Ghosh, 1998).

According to PMCC, we see that the RSF16 and RSF25 model are the best, although

it has a higher G term than FSF16. The random placing of the knots is able to reduce

the predictive penalty P term substantially but at the cost of increasing the G term.

This however is a not a concern since the out of sample predictions as summarised by

the cross-validation RMSPE and MAPE. The model RSF16 reduces the RMSPE’s

for the GEM16 model by about 75% pointing to a substantial gain. Figure 6 provides

an interpolated surface showing the posterior probability of the knot-locations for

the RSF25 model. The plot reveals that locations closer to the observation sites are

slightly more likely to be selected as knots. An interpolated prediction surface, along

with the observed values of NO2 concentrations for a selection of sites to enhance

readability, is shown in Figure 7. The map shows very good agreement between the

predictions and observations.

5 Discussion

This paper finds that the GPP models, which originated as dimension reduction

methods, are also able to generate flexible non-stationary and anisotropic models for

spatial data. The paper demonstrates that structured selection of the knots leads to

structured form of non-stationary and anisotropic models. The paper investigates the

nature of anisotropy generated by these models and shows that the models generate

different general forms of anisotropy which can accommodate the known types such as

geometric and zonal anisotropy, see e.g. Chiles and Delfiner (2012) and Zimmerman

(1993). These models are also shown to perform well using out of sample cross-

validation predictions for two practical examples.

Novelty of our proposal also lies in recommendation of the models even for a

smaller number of data points where dimension reduction is not required. Theoreti-
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cal investigation and empirical evidence from two practical examples confirm that a

random space filling design for knot selection for the predictive processes is the best

which has been also observed by Guhaniyogi et al. (2011), but for large data sets in

the context of dimension reduction. In this article our focus has been on using the

GPP method even for smaller data sets. The predictive processes will also work for

large data sets, but then the number of knot locations must be taken to be much

smaller than the number of observations.

Future work will explore these methods in spatio-temporal data modelling settings

with the added complexity of dynamic knot-designs at different time points. Work

here will extend the space-time GPP models implemented in Bakar and Sahu (2015).

Extension is also required for multivariate spatial data modelling.
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100 136 225 400

RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

SF 0.85 0.74 0.87 0.74 0.88 0.74 0.80 0.66

RSF 0.78 0.67 0.77 0.66 0.73 0.62 0.79 0.68

Table 1: Validation error estimates for the two models: space filling (SF) and random

space filling (RSF) with different number of knots.

Kriging EGM I EGM II RSF225

RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1.08 0.63 0.99 0.84 0.89 0.77 0.73 0.62

Table 2: Validation error estimates for different models for the 1990 scallop data set.
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EGM I RSF225

Site Z(s) Mean SD Mean SD

1 1.946 2.181 1.331 2.00 1.141

2 1.792 2.745 1.372 2.558 1.283

3 4.007 3.666 1.369 3.455 1.286

4 4.331 4.318 1.325 4.370 1.302

5 5.501 4.463 1.330 4.754 1.235

6 5.645 4.456 1.309 4.358 1.295

7 5.620 4.131 1.369 4.780 1.112

8 4.394 3.718 1.374 3.525 1.252

9 3.332 2.756 1.240 3.10 1.263

10 0 1.216 1.304 0.797 1.312

Table 3: The predicted values along with their standard deviations using the two

models.

Model GEM16 FCL16 FSF16 RSF9 RSF16 RSF25

G 255 155 154 155 155 155

P 5847 529 524 12 11 11

G+P 6102 684 678 167 166 166

RMSPE 85.37 21.48 21.40 21.48 21.25 21.46

MAPE 76.82 16.87 16.70 17.09 16.74 16.87

Table 4: PMCC values and summaries of leave one out cross-validation values for

models fitted to annual NO2 data from 91 monitoring sites in London for the year

2011. GEM16 stands for the full dimensional spatial random effects model. FCL16

is the model based on 16 clustered knots and FSF16 is the model with 16 fixed knots

chosen according to a space filling design. RSF9, RSF16 and RSF25 denotes models

with random space filling design with 9, 16 and 25 knots respectively.
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Figure 1: Two fixed knot-designs (panels (a) and (c)) and the corresponding implied

covariance function plots (panels (b) and (d)) when distances are calculated from the

origin at different angles, which are shown as black straight line segments in panels

(a) and (d).
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Figure 2: Two random knot-designs and the implied covariance function plots when

distances are calculated from the origin at different angles. The knots in panel (a)

are chosen at random locations over the whole study region and the knots in panel

(d) are randomly chosen to lie in the first quadrant only.
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Figure 3: A plot of the correlation functions for different knot sizes when the knots are

placed randomly and the distances are calculated along the perpendicular line. The

plot for the isotropic correlation function is super imposed for comparison purposes.

Other correlation parameters are taken to be the same as in panel (b) of Figure 2.
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Figure 4: Illustration of the arrangement of knots, denoted by K and data locations

of interests, denoted by D.
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Figure 5: Surface plot of correlation values between the observations at the origin and

a location determined by i, i = 1, . . . , 1000, for various values of h, which determines

the knot locations.
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Figure 6: An interpolated surface the posterior probability of the knot-locations. The

observation sites are superimposed except for the 7 seven sites which fall outside the

Greater London boundary shown in the map.
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Figure 7: Prediction surface showing the annual average NO2 values. Actual observed

values from selected sites are superimposed. Values from the remaining sites are

omitted to enhance readability.
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