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a b s t r a c t

Recently, there has been a surge of interest in Bayesian space–time
modeling of daily maximum eight-hour average ozone concentra-
tion levels. Hierarchical models based on well known time series
modeling methods such as the dynamic linear models (DLM) and
the auto-regressive (AR) models are often used in the literature.
The DLM, developed as a result of the popularity of Kalman fil-
tering methods, provide a dynamical state-space system that is
thought to evolve from a pair of state and observation equations.
The AR models, on the other hand, cast in a Bayesian hierarchi-
cal setting, have recently been developed through a pair of models
where a measurement error model is formulated at the top level
and an AR model for the true ozone concentration levels is postu-
lated at the next level. Each of the modeling scenarios is set in an
appropriate multivariate setting to model the spatial dependence.
This paper compares these two methods in hierarchical Bayesian
settings. A simplified skeletal version of the DLM taken from Dou
et al. (2010) [5] is compared theoretically with a matching hier-
archical AR model. The comparisons reveal many important dif-
ferences in the induced space–time correlation structures. Further
comparisons of the variances of the predictive distributions by con-
ditioning on different sets of data for each model show superior
performances of the AR models under certain conditions. These
theoretical investigations are followed up by a simulation study
and a real data example implemented using Markov chain Monte
Carlo (MCMC) methods for modeling daily maximum eight-hour
average ozone concentration levels observed in the state of New
York in the months of July and August, 2006. The hierarchical AR
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model is chosen using all the model choice criteria considered in
this example.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Ground level ozone is a pollutant that is a significant health risk, especially for children with
asthma and vulnerable adults with respiratory problems. It also damages crops, trees and other
vegetation. It is a main ingredient of urban smog. To evaluate exposure to ozone levels, the United
States Environmental ProtectionAgency (USEPA) collects ozone concentration data continuously from
several networks of sparsely and irregularly spaced monitoring sites throughout the United States
(US). Data obtained from these sparse networks must be processed using spatio-temporal models to
spatially predict and temporally forecast at an unmonitored site in the vast continental land mass of
the US.

Space–time modeling of ground level ozone has received much recent attention in the literature;
see, e.g., [7,2]. Cox and Chu [3] used a generalized linear model to estimate site specific trends in daily
maximum ozone levels. Hierarchical Bayesian approaches for spatial prediction of air pollution have
also been developed; see, e.g. [1,8,16,12,11,13,14], and references therein.McMillan et al. [10] propose
a regime switching model for ozone level forecasting using meteorological variables as covariates.

The multivariate extension of the DLM for univariate time series [15] to model spatial dependence
has been made popular by many authors; see, e.g. [14,8]. Dou et al. [5] compare the modeling
approaches for hourly ozone concentration fields based on the DLM with a version of the Bayesian
spatial predictor adapted for temporal data; see, e.g., [9]. Their evaluation of a simplified version of
the DLM reveal some problematic properties for it, and they propose model alterations to fix some of
those; see Section 3 of this paper. They also mention that for computational reasons the DLM’s spatial
domain has to be restricted, and as a result only data from a limited number of monitoring sites can
be analyzed simultaneously. Zheng et al. [17] compare the generalized additive models with the DLM
fitted to annually aggregated ozone concentration levels for individual stations separately; they do
not compare the space–time covariance structures of the models.

The main focus of this paper is on comparing the DLM with a hierarchical version of the auto-
regressive (AR) models developed by Sahu et al. [11,13] for daily maximum eight-hour average ozone
concentration data. The ARmodels can be written as special cases of the DLMwhen the dimensions of
the observation and the state vectors are the same. Obviously, in such a case the comparisons become
much easier and the results obtained here will illustrate that. The main objective of this paper is to
compare the models when they may differ substantially in many respects. For example, as is often
done, at any time point the dimension of the state vector for the DLM is assumed to be much smaller
than the same for the AR model where it is equal to the dimension of the observation vector. In our
space–time modeling setup, the number of monitoring sites in the data set is the dimension of the
observation vector at any time point. Consequently, the ‘state vectors’ under the two models are very
different in nature, although they may be assumed to have the same prior mean and variance. The
multivariate DLM and ARmodels also differ in the way in which spatial correlations are introduced in
them; see Section 2. As a result they induce very different space–time correlation structures for the
data; see Section 3.1.

This paper proves several inequalities for the variances of the posterior predictive distributions
for spatial interpolation and temporal forecasting at unmonitored sites. For both the models, we
find the undesirable property that under suitable conditions the variance of the posterior predictive
distribution may increase for successive time points conditional on all the data up to that point. We
investigate such issues in detail and find conditions under which the reverse result may be true for
both of the modeling strategies.

As can be expected, the theoretical investigations can only be done for simpler versions
of the models. To compare the performances of the two modeling strategies in practical data
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modeling situations we adopt several predictive Bayesian model choice criteria. These show a better
performance of the AR models in a simulation study and a real data example on modeling daily
maximum eight-hour average ozone concentration levels observed in the state of New York in the
months of July and August, 2006.

The remainder of this paper is organized as follows. In Section 2, we briefly describe both
the models and their simplified versions. Section 3 discusses the theoretical properties for the
induced correlation structures and proves several inequalities involving the variances of the posterior
predictive distributions. Section 4 provides a simulation study and the real data example. Finally, a
few summary remarks are provided in Section 5.

2. DLM and AR models

2.1. DLM

Let Z(si, t) denote the square root of the observed daily maximum eight-hour average ozone level
in parts per billion (ppb) units on day t at the location si, with t = 1, . . . , T and i = 1, . . . , n. We
use the square root as the variance stabilizing transformation following the standard practice in the
literature; see e.g. [5,11,13].

Let Zt = (Z(s1, t), . . . , Z(sn, t))′ denote the observation vector for any 1 ≤ t ≤ T where T is the
total number of days in the data set. The DLM are specified by the following pair of observation and
state equations:

Zt = Ftθt + ϵt , t ≥ 1, (1)
θt = Gtθt−1 + ηt , t ≥ 1, (2)

where the observation error vector, ϵt , is assumed to follow the N(0, Σϵ) distribution independently
and the distribution of ηt is specified after we specify the matrices Ft and Gt . To accommodate p (say)
known covariate values at time t , denoted by the n × p matrix Xt , we assume that Ft = (1, Xt);
consequently θt is a p + 1-dimensional state vector. We assume the state transfer matrix Gt to be ρI
where |ρ| ≤ 1 and I is the identity matrix. We now assume that ηt ∼ N(0, Ση) for t ≥ 1. For the
initial state, we assume that θ0 ∼ N(µ, σ 2

0 I) for suitable values of the hyperparameters µ and σ 2
0 ,

where I denotes the identity matrix of appropriate order. Unlike the Dou et al. paper ours does not
include any seasonal term in themodels for daily data. Seasonal terms aremore relevant formodeling
the diurnal cyclic components often present in the hourly data.

The observations are spatially correlated; hence a spatially colored covariance matrix must be
assumed for Σϵ . For convenience, we assume the exponential covariance function to model spatial
dependence and let

Σϵ = σ 2
ϵ exp(−φϵD)

where φϵ > 0 is a spatial correlation decay parameter assumed to be known, and the n × n distance
matrix D has elements dij, the distance between si and sj, i, j = 1, . . . , n.

Details regarding the covariates, Xt will be discussed in the practical examples in Section 4.
Following Dou et al. [5] and only for the theoretical comparisons made in Section 3, we consider a
simplified version of the abovemodels where we assume that there is no covariate present, i.e. Ft = 1
which corresponds to the model that has a site invariant mean. Consequently, ηt turns out to be a
scalar, and we assume that ηt ∼ N(0, σ 2

η ). In this case the scalar θ0 is assumed to follow the N(µ, σ 2
0 )

distribution.

2.2. Hierarchical AR models

In the following descriptions of the AR models we keep the same notation for the corresponding
error vectors, the variance components and the parameters describing themean structure in the DLM
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for comparison purposes, although it is to be noted that parameters have different interpretations
under different models. Let O(si, t) denote the true value corresponding to Z(si, t) and Ot =

(O(s1, t), . . . ,O(sn, t))′. The hierarchical AR models are given by

Zt = Ot + ϵt (3)
Ot = ρOt−1 + ξ1 + Xtβ + ηt , (4)

where ρ is a temporal correlation parameter and the distributions for the error vectors ϵt and ηt ,
assumed to be independent, are given below. For the hierarchical error term ϵt we assume the
independent N(0, σ 2

ϵ I) distribution providing the so called nugget effect, σ 2
ϵ . For the spatial error

term, ηt , we assume the independent N(0, Ση) distribution where Ση = σ 2
η exp(−φηD) provides the

spatially colored exponential covariance matrix with site invariant common variance σ 2
η ; D continues

to be the n×n distancematrix and φη > 0 is a known spatial correlation decay parameter. Themodel
specification is completed by assuming the initial condition O0 ∼ N(µ1, Σ0) independently, where
Σ0 = σ 2

0 exp(−φ0D); again we assume the exponential covariance function with a known spatial
correlation decay parameter φ0 > 0. The variance component, σ 2

0 , for the initial condition is assumed
to be the same as for the DLM.

2.3. Differences and similarities between the models

Observe that spatial correlation is introduced at the top level of the DLM. This strategy is adopted
following many authors; see e.g., [5] and the references therein. The state variables specified in (2)
are usually thought to be free of spatial dependence. It is also not clear how spatial correlation can
be introduced through the state variables that are often assumed to belong to a lower dimensional
state space than the data vector Zt . For the AR models, the top level specification (3) providing the
nugget effect is advantageous for handling missing data since in an iterative Bayesian computation
framework for these models any missing Z(s, t) is simulated from the simple top level model at each
iteration. Moreover, the stationary assumption for the spatial covariance function is likely to be more
meaningful for the true underlying process O(s, t) than the observed noisy process Z(s, t).

The DLM given by the pair of Eqs. (1) and (2) can coincide with the AR models given by the pair
(3) and (4) when the dimension of θt , p + 1 equals n, the dimension of Ot and Zt , and the parameters
ξ and β are assumed to be zero in Eq. (4). This happens when analyzing univariate time series data,
i.e. for n = 1, which is not the casewhenmodeling spatio-temporal ozone concentration data. For this
modeling problem we assume that n is much larger than p + 1, as has been done in the comparison
study in [5].

The DLM corresponding to Gt = ρI in (2) when |ρ| < 1 will have many similarities with the
AR models. However, there will still be differences in the correlation structures induced by the two
models due to the mismatch in the dimensions of the ‘state vectors’ under the two models; see
Section 3.

The hierarchical versions of the AR models match with the DLM in many other respects. First,
the marginal mean values of the observations Z(si, t) are matched by assuming ξ = 0 in (4) and
µ = 0 in both the models. Note that we are not assuming any covariate effect for the theoretical
comparisons. Second, both sets of models have three variance components, given by σ 2

ϵ , σ 2
η and σ 2

0
at the three respective levels of the hierarchical specifications, with broadly similar interpretations:
observation error variance, process variance and a variance for the initial condition. Finally, the spatial
correlations can also be matched by assuming a common value for the decay parameters φϵ and φη ,
although these are assumed at different levels for the two models. The additional decay parameter
φ0 in the AR models can also be chosen to be the common value corresponding to an assumption of a
static spatial correlation field for the true ozone level process Ot . We shall make this assumption for
theoretical comparison purposes and use the notation φ as the common spatial decay parameter; we
will estimate φ in the practical data modeling examples in Section 4.

The two sets of models, however, differ in terms of the number of unknown parameters describing
the mean structure and the way spatial correlation is introduced in them. The DLM have fewer
parameters than the AR models since the mean for each Zt under the DLM is described by the
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p+1-dimensional θt whereas themeanunder theARmodels is describedby then-dimensionalOt ,ρ, ξ
and β. However, as noted above, the marginal means of the observations can easily be matched to
be the same by the hierarchical specifications. These facts justify the theoretical comparison study
reported in Section 3.

3. Model comparisons

In this sectionwe shall assume that all the variance components:σ 2
ϵ , σ 2

η andσ 2
0 , are known for both

the models. However, we shall remove these assumptions in our simulation and real data examples
in the next section. Further, to obtain theoretical results for comparisons we shall also assume that
there is no covariate present in both the models. That is Ft = 1 in the DLM as discussed in the last
paragraph of Section 2.1 and β = 0 and ξ = 0 in (4); these assumptions will be removed in the
practical examples in Section 4.

For the simplified versions of the DLM specifications in Section 2.1, when ρ = 1, direct calculations
yield (see also Theorem 1 in [5])

Cov(Zt , Zt+k) = (σ 2
0 + tσ 2

η )11′
+ 1(k = 0)σ 2

ϵ exp(−φD), k = 0, 1, . . . , (5)

where 1(k = 0) = 1 if k = 0, and 0 otherwise. As expected, here the variance of Zt will explode
with t . Although this is not a concern when the DLM is used to model non-stationary temporal data
observed for a short period of time, it can be stopped by assuming |ρ| < 1. In fact, for |ρ| < 1 we
obtain the following result by direct calculations:

Cov(Zt , Zt+k) =


σ 2
0 ρ2t+k

+ σ 2
η ρk 1 − ρ2t

1 − ρ2


11′

+ 1(k = 0)σ 2
ϵ exp(−φD),

k = 0, 1, . . . . (6)

We now obtain a similar result for the AR models as follows. For any positive integer t the AR
models imply that

Z(si, t) = ϵ(si, t) + η(si, t) + ρη(si, t − 1) + · · · + ρt−1η(si, 1) + ρtO(si, 0),

and for any integer k > 0,

Z(sj, t + k) = ϵ(sj, t + k) + η(sj, t + k) + ρη(sj, t + k − 1) + · · · + ρk−1η(sj, t + 1)

+ ρkη(sj, t) + ρk+1η(sj, t − 1) + · · · + ρt+k−1η(sj, 1) + ρt+kO(sj, 0).

Now recall that the spatial errors ηt and ηt+k are independent if k > 0 and the hierarchical error ϵt is
independent of the spatial error ηt , and the initial random variable O0 is independent of both ηt and
ϵt . Hence, we have

Cov(Z(si, t), Z(sj, t + k)) = Cov(ϵ(si, t), ϵ(sj, t + k)) + ρ2t+kCov(O(si, 0),O(sj, 0))
+ ρkCov(η(si, t), η(sj, t)) + ρk+2Cov(η(si, t − 1), η(sj, t − 1))

+ · · · + ρk+2t−2Cov(η(si, 1), η(sj, 1))

= ρ2t+kσ 2
0 exp(−φ0dij) + ρk 1 − ρ2t

1 − ρ2
σ 2

η exp(−φηdij),

assuming |ρ| ≠ 1. Thus we arrive at the following general covariance function:

Cov(Zt , Zt+k) = ρ2t+kΣ0 + ρk 1 − ρ2t

1 − ρ2
Ση + 1(k = 0)σ 2

ϵ I, k = 0, 1, . . . . (7)

Clearly, this covariance function will have many similarities to and differences from the earlier ones
obtained for the DLM in Eqs. (5) and (6). The following two subsections investigate these properties
in more detail.
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3.1. Correlation structures

Using the expressions for the general covariance functions in (5) and (6) we follow Dou et al. [5] to
establish the following results:

(i) Cor(Z(si, t), Z(sj, t + k)) for i ≠ j attains its maximum at k = 0 and decreases as k increases for
both the covariance functions. This can be a reasonable property since the correlation between
observations at different locations can be expected to be the maximum at the current time
because both of those locations may be influenced similarly by the prevailing meteorological
and other conditions, e.g. power station emission volumes, affecting ozone production. The
correlation should decrease at different times due to possible mismatches in these conditions
at different times.

(ii) Cor(Z(si, t), Z(sj, t)) → 1 as t → ∞ for i ≠ j when ρ = 1. This seems to be an unreasonable
property. The correlation between any two fixedmonitors should not increase with time. Indeed,
when |ρ| < 1 it is straightforward to see from (6) that the limit of this correlation is less than 1.

(iii) Cor(Z(si, t), Z(sj, t)) → 1 as dij → 0 for i ≠ j for both the covariance functions. This is a
reasonable property since the observations at two locations close to each other should be very
similar.

(iv) Cor(Z(si, t), Z(sj, t)) →
σ 2
0 +tσ 2

η

σ 2
0 +tσ 2

η +σ 2
ϵ
as dij → ∞ for i ≠ j when ρ = 1. When |ρ| < 1 this limit is

given by
σ 2
0 ρ2t

+σ 2
η (1−ρ2t )/(1−ρ2)

σ 2
0 ρ2t+σ 2

η (1−ρ2t )/(1−ρ2)+σ 2
ϵ
. Ideally, this limit should be close to 0 since the observations at

two far away locations should tend to be independent of each other. In order to achieve this ideal
limit, Dou et al. [5] suggested replacing σ 2

η by σ 2
η /T and taking σ 2

0 much smaller than σ 2
ϵ when

ρ = 1.

Similar properties of the AR models can be derived using the general covariance function (7). We
first note the following results for k > 0 and i ≠ j:

Var(Z(si, t)) = ρ2tσ 2
0 +

1 − ρ2t

1 − ρ2
σ 2

η + σ 2
ϵ

Cov(Z(si, t), Z(sj, t)) = ρ2tσ 2
0 e

−φ0dij +
1 − ρ2t

1 − ρ2
σ 2

η e
−φηdij

Cov(Z(si, t), Z(sj, t + k)) = ρk


ρ2tσ 2
0 e

−φ0dij +
1 − ρ2t

1 − ρ2
σ 2

η e
−φηdij


.

We now have the following results for the AR models.

(i) As in the corresponding DLM case (i), Cor(Z(si, t), Z(sj, t + k)) for i ≠ j decreases as k increases.

(ii) Cor(Z(si, t), Z(sj, t)) →
σ 2
η exp(−φdij)

σ 2
ϵ (1−ρ2)+σ 2

η
as t → ∞ for i ≠ j. Unlike in the corresponding case (ii) for

the DLM with ρ = 1, this correlation does not approach 1.
(iii) Cor(Z(si, t), Z(sj, t)) → 1 as dij → 0 for i ≠ j. This is a reasonable property as in the

corresponding case (iii) for the DLM.
(iv) Cor(Z(si, t), Z(sj, t)) → 0 as dij → ∞ for i ≠ j. Unlike in the corresponding case (iv) for

both versions of the DLM, here the ideal limit is reached without any further condition or model
adjustments.

3.2. Variance inequalities

The differences in the correlation structures imply very different behaviors in model based
predictions and forecasting. Herewe investigate the prediction variances by examining five important
inequalities capturing various possibilities for predictions. To compare the AR models with the exact
simplified version of the DLM proposed by Dou et al. [5] we take ρ = 1 in the DLM. Henceforth, we
do not consider the |ρ| < 1 case for the DLM, although a more fair comparison can be performed in
this case.
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For simplicity we consider prediction and forecasting at an unmonitored site s1 given the
observations at a monitored site s2. We also consider data and forecasting for two time points t = 1
and 2. We assume that all the parameters ρ, φ, σ 2

0 , σ 2
η , σ 2

ϵ are known. Hence the conditional variance
of Z(s1, t) given Z(s2, t ′) for any t and t ′ will be the predictive variance in the Bayesian setting since
there is no need to integrate over any unknown parameters to obtain the predictive distributions. The
comparisons performed in the simulation study and the real data example in the next section do not
make these assumptions.

With four possible space–time random variables Z(s1, 1), Z(s1, 2), Z(s2, 1), and Z(s2, 2) we
consider the following conditional variances:

Var(Z(s1, 1)|Z(s2, 1)) = σ 2
ϵ + ρ2σ 2

0 + σ 2
η − ζ 2 (σ 2

0 ρ2
+ σ 2

η )2

σ 2
ϵ + ρ2σ 2

0 + σ 2
η

Var(Z(s1, 2)|Z(s2, 2)) = σ 2
ϵ + ρ4σ 2

0 + (1 + ρ2)σ 2
η − ζ 2 {ρ4σ 2

0 + (1 + ρ2)σ 2
η }

2

σ 2
ϵ + ρ4σ 2

0 + (1 + ρ2)σ 2
η

,

where ζ = exp(−φd12) denotes the spatial correlation between the observations at the two sites
at any given time. The general covariance function (7) also allows us to calculate the conditional
variances Var(Z(s1, 1)|Z(s2, 1), Z(s2, 2)) and Var(Z(s1, 2)|Z(s2, 1), Z(s2, 2)); the expressions for
these are long and hence are omitted for brevity. Instead, we obtain the following results involving
them:

Var(Z(s1, 1)|Z(s2, 1)) − Var(Z(s1, 1)|Z(s2, 1), Z(s2, 2)) =
N

△(σ 2
ϵ + ρ2σ 2

0 + σ 2
η )

Var(Z(s1, 2)|Z(s2, 2)) − Var(Z(s1, 2)|Z(s2, 1), Z(s2, 2)) =
N

△(σ 2
ϵ + ρ4σ 2

0 + (1 + ρ2)σ 2
η )

,

where

N = ζ 2ρ2σ 4
ϵ (ρ2σ 2

0 + σ 2
η )2

and

△ = σ 4
ϵ + σ 2

η (ρ2σ 2
0 + σ 2

η ) + σ 2
ϵ {ρ2(1 + ρ2)σ 2

0 + (2 + ρ2)σ 2
η }.

Thus the above two differences in variances are always non-negative. These two variance inequalities
ascertain that the variance of the spatial prediction at site s1 using data from both time points will
always be smaller than that when the spatial prediction is done using data from only one time point.
Dou et al. [5] prove the exact same inequalities for the DLM with ρ = 1.

A striking difference between the two models lies in the expression for N , the numerator. Observe
that both differences have a factor ζ 2 in the numerator which implies that the differences increase as
the spatial correlation ζ increases. Intuitively, this is a very desirable property since spatial prediction
with more observations should become more accurate as the spatial correlation increases. However,
the same conclusion cannot be reached for the DLM since the same variance differences involve the
spatial correlation ζ only through a factor (1− ζ )2 in the numerator (see [5]); the details are omitted
for brevity. This seems to be an undesirable property of the DLM.

Dou et al. [5] also prove that, for the DLM, conditioned on the same amount of data, the predictive
variance of Z(s1, 1) would be no greater than that of Z(s1, 2), that is,

Var(Z(s1, 1)|Z(s2, 1), Z(s2, 2)) ≤ Var(Z(s1, 2)|Z(s2, 1), Z(s2, 2)).

Thus the predictive variance function is a monotonic increasing function of time t based on the same
set of data. The same inequality holds for the AR models only under the condition

ς ≡
σ 2

η

σ 2
0

≥ 1 − ρ2.
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Note that this always holds if we set ρ = 1 as in the DLM case. For other values of ρ, this condition
implies that the ratio of the process and the initial variance, ς , must be bounded below by 1−ρ2. This
condition holds if we set σ 2

0 to be the limiting variance of ηt given by σ 2
η /(1 − ρ2) as t > ∞.

All four conditional variances discussed so far can be proved to be monotonically decreasing
functions of spatial correlation ζ , or equivalently, increasing functions of the distance, d12 between
the data site, s2, and the prediction site, s1. In the time series modeling framework, it is worthwhile
to investigate whether or not it is possible to make more accurate spatial prediction by conditioning
on additional temporal data, that is, whether inequalities such as

Var(Z(s1, 2)|Z(s2, 2)) > Var(Z(s1, 2)|Z(s2, 1), Z(s2, 2)), (8)

can be expected to hold. The above inequality, however, is always true due to the fact that the
conditional variance decreases as the number of conditioning random variables increases in a nested
fashion.

A slight reformulation of the above question is more useful in practical modeling. Would the
inequality (8) hold if for the prediction problem in the left hand side we ignore the data at time t = 1
completely and apply the model at time t = 2 as for the first time? In this case, Var(Z(s1, 2)|Z(s2, 2))
when themodel is applied for the first time at t = 2will be exactly the same as Var(Z(s1, 1)|Z(s2, 1)).
Hence, we need to investigate what conditions will guarantee the inequality

Var(Z(s1, 1)|Z(s2, 1)) − Var(Z(s1, 2)|Z(s2, 1), Z(s2, 2)) > 0. (9)

For the DLM, Dou et al. [5] show that (9) holds if and only if

σ 2
ϵ

σ 2
0

<
ς + 1

ς
, (10)

where ς =
σ 2
η

σ 2
0
has been defined above. Note that this condition (10) is free of the spatial correlation

parameter ζ . We now investigate the conditions under which (9) holds for the AR models.
The analysis for the AR models is more complicated due to the presence of the extra temporal

correlation parameter ρ. We consider the following special and limiting cases. Straightforward
calculations yield that the variance difference in (9) is negative if σ 2

0 = 0. In addition, it goes to ∞ as
σ 2
0 → ∞; hence, large values of σ 2

0 will guarantee that (9) holds. Indeed, it always holds if we set σ 2
0

to be the limiting variance σ 2
η /(1 − ρ2).

Now it is interesting to investigate what happens if σ 2
0 takes any other value. We can prove that

the inequality (9) holds if

σ 2
ϵ

σ 2
0

<
ς + ρ2

ς − (1 − ρ2)
(11)

when ζ approaches 1 (i.e. for large spatial correlation). Observe that for ρ = 1 the above condition
reduces to the one for the DLM case (10); this generalizes the result obtained by Dou et al. [5]. Also
note that ς+ρ2

ς−(1−ρ2)
≥

ς+1
ς

, always, for any value of 0 < ρ2 < 1 which shows that the inequality (9)
holds for a wider range of parameter values under the AR models than the DLM. We can also prove
that when ζ → 0, the inequality (9) holds if in addition we have σ 2

0 > σ 2
η /(1 − ρ2).

In summary, the AR models are likely to have better properties if the initial variance σ 2
0 is large

compared to the process variance σ 2
η . In practical examples where the models are more complex and

parameters are unknown, we will not be able to verify the conditions required for the theoretical
results, and we must, therefore, rely on empirical evidence. This is where various Bayesian and
non-Bayesian model choice criteria can be used for performing model choice. The following section
discusses this with several simulations and a real data example.
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Fig. 1. A map of the 29 ozone monitoring sites in the state of New York. Four randomly chosen sites labeled A, B, C and D are
used for validation purposes and the remaining 25 sites (numbered 1–25) are used for modeling.

4. Examples

In this section we compare the DLM and AR models in practical data modeling situations where
these models are often implemented. We consider modeling daily maximum eight-hour average
ozone concentration data from the 29 ozone monitoring sites in the state of New York for 62 days
(=T ) in themonths of July and August in 2006.We shall use data from 25 (=n) sites for model fitting,
and the data from the remaining 4 (=m) sites will be used for model validation purposes. The state
of New York is considered as the spatial domain because the ozone monitoring network in this state
represents typical practical situations—a cluster of a few sites in and around a big city (the city of New
York here) and amoderate number of other sites, situated large distances apart, covering a vast region;
see Fig. 1 for a map of New York and the location of themonitoring sites. The data from 62 days in July
and August are modeled since these are in the high ozone season (May–August) in the USA. The year
2006 is chosen since that was the latest year for which the output of a computer simulation model
(used in our model as a covariate; see below) was available. The spatio-temporal domain considered
here represents a moderate computational problem where we can implement the models and obtain
results using a reasonable amount of computing time and effort.

In the practicalmodeling of this section, following Sahu et al. [13],we include as the single covariate
the output of a computer simulation model known as the CMAQ (Community Multiscale Air Quality)
model. The CMAQmodel is based on emission inventories, meteorological information, and land use,
and it produces average ozone concentration levels at each cell of a 12 km2 grid covering the whole of
the continental US retrospectively, although there is a version of themodel known as Eta-CMAQwhich
produces forecasts up to two days in advance. In this paper we use the retrospective daily maximum
eight-hour average CMAQ ozone concentration for the grid cell covering the monitoring site as the
single covariate. The spatial predictions at the unmonitored sites are performed using the CMAQ
output at the corresponding grid cells. In our models we have also included other meteorological
covariates such as the daily maximum temperature, but none of those turned out to be significant in
the presence of the CMAQ output; see Fig. 2 which shows a strong linear relationship between ozone
concentration values and the corresponding CMAQ output.

The full Bayesian model is completed by specifying prior distributions for all the unknown
parameters. We work with the inverse of the variance components σ 2

ϵ , σ 2
η and σ 2

0 and assume
an independent gamma prior distribution with parameters a and b having mean a/b for each of
1/σ 2

ϵ , 1/σ 2
η and 1/σ 2

0 . In our implementation we take a = 2 and b = 1 implying that these
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Fig. 2. A scatter plot of daily maximum eight-hour average ozone concentration levels against the CMAQ output for the
grid cells covering that monitoring site from 25 sites in New York for 62 days in July and August, 2006. The line y = x is
superimposed. The unit of ozone is parts per billion (ppb).

variance components have prior mean 1 and infinite variance. We assign a flat prior N(0, 104) for
the regression coefficient β . For the common decay parameter,φ, we assume an independent uniform
prior distribution in (0.001, 1) corresponding to approximate spatial ranges of 3–3000 km. This range
adequately covers the state of New York, our study region of interest. We use a Metropolis step to
simulate draws from the posterior conditional distribution in our Gibbs sampler implementation. The
scale of the proposal distribution in the Metropolis algorithm has been tuned to have a reasonable
acceptance rate between 30% and 40%. See [13] for an alternative empirical Bayes method of
estimation for φ based on minimizing the validation mean square error defined below in (13).

The fully specified Bayesian DLM and ARmodels cannot be compared using exact analyticmethods
as was done in Section 3. Hencewe use the following practical model selection criteria to compare the
models. The predictive model choice criterion (PMCC; see e.g. [6]) is suitable for comparing models
with normally distributed error distributions and is given by

PMCC =

n−
i=1

T−
t=1

E(Z(si, t)rep − z(si, t))2 +

n−
i=1

Var(Z(si, t)rep), (12)

where Z(si, t)rep denotes a future replicate of the data Z(si, t). The first term in the above is a goodness
of fit term (G) while the second is a penalty term (P) for model complexity. The model with the
smallest value of PMCC is selected among the competing models. Thus, to be selected a model
must strike a good balance between goodness of fit and model complexity. The terms P and G are
estimated using composition sampling; at each MCMC iteration k we first draw parameter values
from the posterior distribution and then Z(si, t)

(k)
rep from themodel equations conditional on the drawn

parameter values.
To assess the quality of the predictions we define the validation mean square error criterion

VMSE =
1
mT

m−
j=1

T−
t=1

(Ẑ(sj, t) − z(sj, t))2 (13)

where Ẑ(sj, t) is the model predicted value of Z(sj, t) at time t at the validation site j, and m is the
number of validation sites. In the calculations for VMSE, the terms corresponding to the missing
observations must be omitted; in such a case the divisor must be adjusted appropriately as well.

We have computed many other model validation criteria such as the mean absolute error.
However, the conclusions regarding the model choice and comparison turned to be the same as the
ones reported below using PMCC and VMSE.
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Table 1
Goodness of fit (G), penalty (P) and VMSE for the DLM and AR models where each model has been fitted to four replicated
simulation data sets.

Data set Simulation model = AR
Fitted model
AR DLM
G P P + G VMSE G P P + G VMSE

1 151.23 556.01 707.24 10.39 472.44 689.03 1161.47 18.57
2 143.68 541.22 684.90 9.82 455.19 642.81 1098.00 17.98
3 164.89 563.09 727.98 11.02 478.33 695.27 1173.60 19.01
4 160.56 557.32 717.88 10.88 474.31 691.48 1165.79 18.80

Data set Simulation model = DLM
Fitted model
AR DLM
G P P + G VMSE G P P + G VMSE

1 170.22 598.02 768.24 12.33 225.68 482.03 707.71 11.52
2 189.05 611.28 800.33 12.99 243.81 510.78 754.59 12.02
3 155.33 560.75 716.08 11.18 221.03 472.98 694.01 11.05
4 150.78 554.90 705.68 10.92 213.65 459.38 673.03 10.66

4.1. A simulation example

We first provide a simulation example where we test out the two model choice criteria and the
MCMC code that we developed for fitting the two sets of models. We simulate four data sets from
each of the DLMandARmodels. Each data set consists of observations from29monitoring sites and 62
days in July and August, 2006. Note that the simulationmodel includes the CMAQ output as the single
covariate. As mentioned above, data from 25 sites will be used for model fitting and the data from the
remaining 4 sites will be used for model validation purposes. For both models we set the common
value of φ at 0.01 for both simulation and fitting. The choice of the simulation model parameters is
guided by the practical example provided in the next subsection. For the AR simulationmodels we set
ρ = 0.2, σ 2

ϵ = 0.04, σ 2
η = 0.6, σ 2

0 = 0.2, µ = 8.0, ξ = 1.0 and β = 0.6. For the simulation from
the DLM we assume σ 2

ϵ = 0.5, Ση = 0.06I , Σ0 = 0.2I and µ = (1.0, 0.6)′.
Dou et al. [4] have developed a software package GDLM.1.0 which is freely available at

http://enviro.stat.ubc.ca for implementing the Gibbs sampler for the DLM with ρ = 1. To enable the
use of this software, and as has been mentioned before, we do not consider the case |ρ| < 1 for the
DLM in this study. We have developed our own code for implementing the Gibbs sampler for the AR
models following Sahu et al. [13]. The details are omitted for brevity. We note that the MCMC chains
converge rapidly for both models. We use 15000 iterates for making inferences after discarding the
first 5000 iterations.

Table 1 presents the values of two components, G and P , of PMCC and VMSE for the two models
fitted to four replicated simulation data sets from each of the two models. As expected, we see that
both PMCC and VMSE (and also G and P) indicate the true simulation model. The two components, G
and P , of PMCC also choose the true simulationmodel. Note also thatwhendata are simulated from the
DLM the performance of the incorrectly fitted AR models is not too far away from the DLM. However,
when the data are simulated from the AR models the performance of the incorrectly fitted DLM is
some distance away from the AR models. Thus the AR models provide reasonably good performance
even when data are simulated from the DLM.

We have also calculated some other model choice criteria andmodel diagnostics such as the mean
absolute error criteria and the nominal coverage probability for the 95% prediction intervals. All of
those criteria pick the correct simulation model in each case and hence are omitted for brevity. We
now proceed to the real data example.

http://enviro.stat.ubc.ca
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Fig. 3. Boxplot of the daily maximum eight-hour average ozone concentration levels from 25monitoring sites in New York for
62 days in July and August, 2006.

Table 2
VMSE values for the selected DLM and AR models overall and for the four validation sites.

A B C D Overall

AR 34.29 48.47 48.02 53.86 46.16
DLM 51.22 59.67 57.17 65.62 58.42

4.2. The New York data example

We analyze the NewYork data set obtained from 29monitoring sites for 62 days in July and August
in 2006. Out of these 1798 observations, 80 (4.45%) were found to be missing, which we assume to
be at random. In our Bayesian inference setup using MCMC we simply treat these missing values as
unknown parameters and simulate from their full conditional distribution at each MCMC iteration.

As mentioned previously, we use data from 25 sites for model fitting and the data from the
remaining four sites (labeled A–D in Fig. 1) are used for validation. The boxplot of the data from the
25 monitoring sites is provided in Fig. 3. The plot shows a moderately high level (more than 50 ppb)
of ozone concentration values for most days. There is no apparent strong overall trend, although it
seems that there is a slight decreasing trend during the last two weeks in August.

The optimal values of the VMSE for the selected DLM and AR models are 58.42 and 46.16,
respectively. This shows that the ARmodels performmuch better inmodel validation than theDLM. In
fact, these overall VMSE values are averages of the VMSE values for each of the four validation sites;
see Table 2. The VMSE for site D is highest since this is the validation site farthest from its nearest
data site; see Fig. 1. This table shows that the AR models outperform the DLM at all four validation
sites. Moreover, the values of the PMCC criterion for the selected DLM and ARmodels are 1066.04 and
735.22, respectively. This also confirms that the AR models are better suited for this particular data
set.

Table 3 provides the parameter estimates for the ARmodel adopted. It shows that the CMAQoutput
is a significant predictor since β is significant. The temporal correlation parameter ρ is also estimated
to be significant. The spatial decay parameter is estimated to be 0.012, corresponding to a range of
250 km. The estimates of the variance components show that on average, the initial variance, σ 2

0 ,
is much larger than the process variance, σ 2

η ; hence the theoretical results which required a large
initial variance will hold. In particular, we can show that the inequalities (9) and (11) hold for these
parameter estimates.

We have also performed forecasting for seven days ahead using both themodels. The VMSE for the
forecasts was lower for the selected AR model. All these findings provide additional justifications for
choosing the AR models for modeling the daily ozone data considered here.
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Table 3
Parameter estimates for the selected
AR model.

Mean 95% interval

µ 8.431 (7.582, 8.991)
ξ 1.226 (0.793, 1.811)
ρ 0.198 (0.157, 0.235)
β 0.669 (0.581, 0.734)
σ 2

ϵ 0.048 (0.037, 0.065)
σ 2

η 0.255 (0.198, 0.377)
σ 2
0 0.689 (0.592, 0.768)

φ 0.012 (0.009, 0.016)

5. Conclusions

In this paper we have generalized a number of theoretical results obtained by Dou et al. [5] for
model comparison purposes. Theoretical results for simple versions of the DLM and AR models show
better properties for the AR models under some conditions which have been shown to hold for the
practical data example considered in this paper.We have followed the theoretical investigationwith a
simulation study for a more practical version of the models. As expected, the simulation study shows
better performance of the DLMwhen the data are simulated from it. Similarly, the ARmodels are seen
to be better when the data are simulated from it. These results have been observed for four replicated
simulation data sets.

Finally, we have compared the models by fitting them to a real data set for daily maximum eight-
hour average ozone concentration levels in the state of New York for 62 days in July and August,
2006. A predictive Bayesian model choice criterion as well as setting aside validation data show
that the fitted AR model performs much better than the fitted DLM. These results show that the AR
models can be much better than the DLM in practical ozone data modeling situations. Note that these
practical results are only valid for the simple version of theDLMconsidered here. Further investigation
comparing the ARmodelswith amore flexible version of theDLM is likely to produce additional useful
results.
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