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1.1 Summary

Bayesian forecasting in time and interpolation in space is achallenging task due to
the complex nature of spatio-temporal dependencies that need to be modeled for better
understanding and description of the underlying processes. The problem exacerbates further
when the geographical study region, such as the one in the Eastern United States considered
in this chapter, is vast and the training data set for forecasting, and modelling, is rich
in both space and time. This chapter develops forecasting methods for three recently
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proposed hierarchical Bayesian models for spatio-temporal data sets. The chapter also
develops Markov chain Monte Carlo based computation methods for estimating a number of
relevant forecast calibration measures that facilitates rigorous comparisons of the Bayesian
forecasting methods. The methods are illustrated with a test data set on daily maximum
eight hour average ozone concentration levels observed over a study region in the Eastern
United States. Forecast validations, using several movingwindows, find a model developed
using an approximate Gaussian predictive process to be the best and it is the only viable
method for large data sets when computing speed is also takeninto account. The methods
are implemented in a recently developed software package, spTimer, which is a publicly
available contributed R package that has wider applicability.

1.2 Introduction

Bayesian forecasting methods are very much in demand in manyapplication areas in
environmental monitoring and surveillance. Consequently, model based forecasting has
attracted much attention in the literature, see e.g., Baueret al. (2001); Damon and Guillas
(2002); Feister and Balzer (1991); Huerta et al. (2004); Kumar and Ridder (2010); McMillan
et al. (2005); Sahu and Bakar (2012a); Sahu and Mardia (2005a,b); Sahu et al. (2009, 2011);
Sousa et al. (2009); Stroud et al. (2001); West and Harrison (1997) and Zidek et al. (2012).
Some of these papers also consider space-time modelling forthe purposes of forecasting.
However, the methods proposed in these articles are not ableto handle the computational
burden associated with large space-time data sets that we model in this chapter for forecasting
purposes.

For point referenced spatial data from a large number of locations, exact likelihood based
inference becomes unstable and infeasible since that involves computing quadratic forms
and determinants associated with a high dimensional variance-covariance matrix (Stein
(2008)). Besides the problem of storage (Cressie and Johannesson 2008), matrix inversion,
at each iteration of the model fitting algorithm, such as the EM algorithm, is of O(n3)
computational complexity, which is prohibitive, wheren is a large number of modeled spatial
locations. This problem also arises in the evaluation of thejoint or conditional distributions
in Gaussian process based models under a hierarchical Bayesian setup, see e.g., Banerjee
et al. (2004). To tackle this problem, we develop a Bayesian forecasting method based on
a model recently developed by Sahu and Bakar (2012b), using Gaussian predictive process
(GPP) approximation method for the underlying spatial surface, see Banerjee et al. (2008).
Throughout this chapter, for convenience, we shall use the acronym GPP to also denote the
modelling method based on the GPP approximation.

Forecasting using hierarchical Bayesian models is furtherlimited by the lack of suitable
software packages. There are a few available packages for forecasting using variants of the
dynamic linear models (West and Harrison 1997), see e.g., Petris et al. (2010). However, these
packages do not allow incorporation of rich spatial covariance structure for the modelled
data. On the other hand,spBayes, a recently developed spatial data analysis package,
developed by Finley et al. (2007), can model short-length time series data by treating those
as multivariate spatial data, but it is not really intended to handle large volume of spatio-
temporal data that can be analyzed using thespTimer package developed by Bakar and
Sahu (2014).

This chapter develops forecasting methods for three Bayesian hierarchical models that
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have been implemented inspTimer. The first of these is an independent in time Gaussian
process (GP) based regression model that is simple to implement and is often regarded as a
starting model. The second is the hierarchical auto-regressive model developed by Sahu et
al. (2007), that has been shown to be better in out of sample validation than some versions of
dynamic linear models (Sahu and Bakar 2012a) and also a wide class of models (Cameletti et
al. 2011). The third and final forecasting method is the one based on the GPP approximation
method mentioned above. These methodological developments are then used to augment
thespTimer package with the forecasting modules that can be used in a wide variety of
applications in space-time data analysis.

Another objective of the chapter is to rigorously compare the Bayesian forecasts obtained
from the three models. Towards this end we develop Markov chain Monte Carlo (MCMC)
implementation methods for several forecast calibration measures and diagnostic plots that
have been proposed to compare the skills of the Bayesian forecast distributions, see e.g.,
Gneiting et al. (2007). The measures include: the continuous ranked probability score which
is an integrated distance between the forecasts and the corresponding observations, the hit
and false alarm rates and the nominal coverage. The diagnostic plots include the probability
integral transform and a marginal calibration plot that is used to calibrate the equality of
the forecast and the actual observations, see Section 1.5. These measures and plots enable
us to compare the implied Bayesian forecast distributions fully – not just their specific
characteristics, e.g., the mean forecast, as would be done by simple measures such as the
root mean square error and the mean absolute error.

A substantial application on an air pollutant, ground-level ozone, illustrates the forecasting
methods of this chapter. Ground-level ozone is a pollutant that is a significant health risk,
especially for children with asthma and vulnerable adults with respiratory problems. It also
damages crops, trees and other vegetation. It is a main ingredient of urban smog. Because
of these harmful effects, air pollution regulatory authorities are required by law to monitor
ozone levels and they also need to forecast in advance, so that at risk population can take
necessary precaution in reducing their exposure. In the United States (US), a part of which is
our study region in this chapter, the forecasts are issued, often, up to 24-hours in advance by
various mass-media, e.g. newspapers and also the websiteairnow.gov. However, ozone
concentration levels, and also other air pollutants, are regularly monitored by only a finite
number of sites. Data from these sparse network of monitoring sites need to be processed
for developing accurate forecasts. In this chapter, we compare the forecasts of ground-level
ozone, based on three models using a three-week test data seton daily maximum ozone
concentration levels observed over a large region in the Eastern US.

The rest of this chapter is organized as follows: Section 1.3describes the validation
data set we use in this chapter with some summary statistics.In Section 1.4 we develop
forecasting methods based on three recently proposed Bayesian spatio-temporal models.
Section 1.5 discusses several useful and important forecast calibration methods and develops
their MCMC implementation techniques. These are used to compare the forecasting methods
with a smaller subset of the full validation data set in Section 1.6. This investigation finds that
the GPP model is fast and it performs the best. Subsequently,this model is used in Section 1.7
to analyze and forecast for the full eastern US data set. Finally, Section 1.8 concludes with a
few summary remarks.
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1.3 Test Data Set

The forecasting models proposed in this chapter will be tested using daily ozone
concentration data for the 3-week period, June 24 to July 14 in 2010. A daily observation,
measured in units of parts per billion (ppb), is the maximum of 24 averages in a day where
each average is based on hourly ozone concentration readings from 8 consecutive hours.
In this chapter, we use daily data from 639 monitoring sites in the eastern US. We aim to
perform forecast validation for completely out of sample data from sites that we do not use
for modelling at all. Hence, we set aside data from 62 randomly chosen sites (roughly 10%)
for validation purposes. Figure 1.1 provides a map of these validation sites and the remaining
577 sites, data from which are used for modelling.

We perform forecast validation for seven moving windows of data from July 8 to July 14.
July 8 is taken to be the earliest day for forecast validationthat allows modelling of data for
14 days from June 24 to July 7. We also compare the next day forecasts based on modelling
data from just seven previous days that complete a weekly cycle. Thus, for example, for
forecasting for July 8 we use data from July 1 to 7.

Often, see, e.g.airnow.gov, a deterministic model, known as the community multi-
scale air quality (CMAQ) model, is used for forecasting levels of ozone concentration and
other air pollutants such as particulate matter. The CMAQ model in forecasting mode, known
as Eta CMAQ, is based on emission inventories, meteorological information, and land use,
and it produces gridded forecasts, up to two days in advance,for average ozone concentration
levels at each cell of a 12 square-kilometer grid covering the whole of the continental US
(Ching and Byun, 1999). However, these output are well-known to produce biased forecasts
and to reduce this bias, in this chapter, we develop statistical models that are able to improve
the Eta CMAQ forecasts by refining those in the light of the observed monitoring data.
Incorporation of gridded CMAQ forecasts in a spatial model for point referenced monitoring
data poses a spatial misalignment problem that is well knownin the literature, see for
example, Fuentes and Raftery (2005); Jun and Stein (2004); Lorence (1986). To incorporate
the Eta CMAQ output, the hierarchical models are set up as spatio-temporal downscaler
models, first implemented by Sahu et al. (2009), and then generalised by Berrocal et al.
(2010a,b), and Zidek et al. (2012). We use the forecasts for daily maximum 8-hour average
CMAQ ozone concentration for the grid cell covering the monitoring site as the single co-
variate, following Sahu et al. (2009).

Many meteorological variables such as the daily maximum temperature are important
predictors of ozone levels, see e.g., Sahu et al. (2007). However, the meteorological variables
no longer remain significant if the model for ozone levels also includes output of the CMAQ
model, see e.g., Sahu and Bakar (2012a). Moreover, direct inclusion of the meteorological
variables in an ozone concentration forecasting model willalso require forecasting of the
meteorological variables in the first place. The models proposed in this chapter avoid
this, although we note that the CMAQ forecasts already include future values of the
meteorological variables that have been used as model inputs.

Out of the 13,419 observations from 639 sites for 21 days, 299(≈ 2.23%) are missing. Our
Bayesian models automatically estimate those using standard methods. Table 1.1 provides
the summary statistics for ozone levels and Eta CMAQ output,where it is seen that the Eta
CMAQ forecasts are upwardly biased, although the medians seem to be close. Figure 1.2
investigates this further by providing side by side boxplots for each of 21 days for both the
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observed and the Eta CMAQ forecasted ozone levels. This figure also shows that the data set
includes an episode of high ozone levels during days 12-16, which corresponds to July 5-9,
just after the 4th of July celebrations in the US. This episode of high ozone levels provides
an opportunity to model and forecast when their demand is likely to be higher than usual.

1.4 Forecasting Methods

1.4.1 Preliminaries

We first define the generic notations that we need and use throughout the chapter. Lett
denote the time wheret = 1, . . . , T andT is the total number of time units. LetY (si, t)
denote the observed point referenced data at locationsi and at timet for i = 1, . . . , n where
n is the total number of locations. Modelling the data on the original scale, as noted by
many authors, see e.g., Sahu et al. (2007) is prohibitive dueto the instability in variance that
often leads to negative forecasts. In this chapter, we modeldata on the square-root scale,
denoted byZ(si, t), that encourages symmetry and normality, see e.g., Sahu et al. (2007),
but report all forecasts and predictions on the original scale, Y , for ease of interpretation
by practitioners, although this may increase the mean square error of the forecasts. We also
note that other variance stabilizing transformations suchas log and the more general Box-
Cox transformation can also be adopted depending on the nature of the problem, and finally,
the methods we describe below can also be used if a variance stabilising transformation is
not needed in the first place. MCMC methods enable us to estimate the uncertainties of the
forecasts on the original scale.

Let O(si, t) be the true value corresponding toZ(si, t) at sitesi, i = 1, ..., n at time t.
Let Zt = (Z(s1, t), ..., Z(sn, t))′ andOt = (O(s1, t), ..., O(sn, t))′. We shall denote all the
observed data byz, andz∗ will denote all the missing data. Similarly,O will denote allOt,
for t = 1, . . . , T. Let N = nT be the total number of observations to be modeled.

For forecasting purposes it is of interest to obtain the one-step ahead forecast distribution
for noisy dataY (s0, T + 1) on the original scale, and not forO(s0, T + 1), since our
objective is to compare the forecasting methods by validation of the noisy data itself, where
s0 denotes any particular, monitored or un-monitored, site ofinterest. In the sequel, we shall
obtain the marginal one-step ahead forecasts at a number of sites, saym. The joint one-step
ahead forecast distribution for them forecasts can also be developed for the models described
below, but are not of interest here.

We also assume that, in general, there arep covariates, including the intercept, denoted by
then × p matrixXt. Some of these covariates may vary in both space and time. Thenotation
β = (β1, ..., βp)

′ will be used to denote thep × 1 vector of regression coefficients. We shall
use the generic notationθ to denote all the parameters.

1.4.2 Forecasting Using GP Models

The spatio-temporal linear regression model is defined by:

Zt = Ot + ǫt, (1.1)

Ot = Xtβ + ηt (1.2)
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whereǫt = (ǫ(s1, t), ..., ǫ(sn, t))′ ∼ N(0, σ2
ǫ In) is the independently distributed white noise

error with varianceσ2
ǫ also known as the nugget effect, andIn is then × n identity matrix.

The termηt = (η(s1, t), ..., η(sn, t))′ is an independent, over time, realization of a spatial
Gaussian process with zero mean and the correlation function κ(d;φ, ν), often assumed to be
a member of the Matérn family, see e.g., Banerjee et al. (2004), is allowed to depend on two
unknown parametersφ andν describing the correlation at distanced. In effect, this implies
that the smooth process,O(s, t) is assumed to be isotropic and stationary. Note that this does
not necessarily imply the same assumptions for the un-transformed noisy data,Y since other
hierarchical model components will contribute to the overall space-time correlation function.

Thus we assume thatηt ∼ N(0,Ση), whereΣη = σ2
ηSη and(Sη)ij = κ(||si − sj ||;φ, ν),

i, j = 1, ..., n; σ2
η is the site invariant common variance andκ(.;φ, ν) is the spatial correlation

that depends on spatial decay,φ, and smoothness,ν, parameters. For convenience, in this
chapter we use the exponential covariance function to modelspatial dependence as:

Ση = σ2
ηSη = σ2

η exp(−φηD)

where, φη > 0 is a spatial correlation decay parameter, andD is the matrix that has
elementsdij , that is the distance between sitessi and sj , i, j = 1, ..., n. Here, and in the
sequel, the matrix exponential is used to mean element-wiseexponentiation, i.e.(Ση)ij =
σ2

η exp(−φηdij), i, j = 1, ..., n. ThespTimer package provides options to implement using
the full Mat́ern family. The error distributions ofǫt andηt are assumed to be independent
of each other. For future reference, letθ denote all the parameters,β, σ2

ǫ , σ2
η, andφ. We

assume independent normal prior distribution with zero mean and a large variance,1010,
to achieve vague prior specification, for the components ofβ. The inverse of the variance
componentsσ2

ǫ σ2
η are given independent gamma distribution with meana/b and variance

a/b2. Although any suitable values fora andb can be chosen, we have chosena = 2 and
b = 1 to have a proper prior distribution for any variance component that will guarantee a
proper posterior distribution. We assume uniform prior distribution for the correlation decay
parametersφ, although many other choices are possible. Full details areprovided in the
spTimer package, see Bakar and Sahu (2014).

To obtain the 1-step ahead forecast distribution ofZ(s0, T + 1) at any un-observed
locations0 at timeT + 1, we first note that:

Z(s0, T + 1) = O(s0, T + 1) + ǫ(s0, T + 1),

O(s0, T + 1) = x′(s0, T + 1)β + η(s0, T + 1).

The 1-step ahead forecast distribution is the posterior predictive distribution ofZ(s0, T + 1)
givenz and is given by:

π(Z(s0, T + 1)|z) =

∫

π(Z(s0, T + 1)|θ,O, O(s0, T + 1), z)π(O(s0, T + 1)|θ, z)

π(θ,O|z)dO(s0, T + 1)dOdθ, (1.3)

whereπ(θ,O|z) denotes the joint posterior distribution ofO andθ. Note thatπ(Z(s0, T +
1)|θ,O, O(s0, T + 1), z) = π(Z(s0, T + 1)|θ,O, O(s0, T + 1)) due to the conditional
independence ofZ(s0, T + 1) and Z given O. Similarly, O(s0, T + 1) does not depend
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on Z given θ, hence in the following development we replaceπ(O(s0, T + 1)|θ, z) by
π(O(s0, T + 1)|θ).

Now the 1-step ahead forecast distribution (1.3) is constructed by composition sampling
as follows. Assume that, at thejth MCMC iteration, we have posterior samples,θ(j) and
O(j). Then we first draw,O(j)(s0, T + 1) from N(x′

T+1β
(j), σ2

η

(j)
). Finally, we draw

Z(j)(s0, T + 1) from N(O(j)(s0, T + 1), σ2
ǫ

(j)
).

Note that in the above paragraph, we use the marginal distribution instead of the
conditional distribution because we have already obtainedthe conditional distribution given
observed information up to timeT at the observation locationss1, ..., sn, and at the future
time T + 1 there is no further new information to condition on except for the new regressor
valuesx(s0, T + 1) in the model. However, the conditional distribution can be used instead
if it is so desired. To do this, we note that the joint distribution of OT+1 = (O(s1, T +
1), ..., O(sn, T + 1))′ is simply given byN(XT+1β,Ση), according to (1.2). Similarly,
we construct the joint distribution ofO(s0, T + 1) andOT+1 from which we obtain the
conditional distributionπ(O(s0, T + 1)|OT+1), that is Gaussian with mean

x(s0, T + 1)β + Sη,12S
−1
η (OT+1 − XT+1β)

and variance
σ2

η(1 − Sη,12S
−1
η Sη,21),

whereS′
η,21 = Sη,12 = e−φ d12 andd12 = (||s1 − s0||, . . . , ||sn − s0||)

′.
For forecasting at any observed sitesi for anyi = 1, . . . , n at timeT + 1 we note that:

Z(si, T + 1) = O(si, T + 1) + ǫ(si, T + 1),

O(si, T + 1) = x′(si, T + 1)β + η(si, T + 1).

These two identities make it clear that the 1-step ahead forecast distribution ofZ(si, T + 1)
givenz can simply be constructed by iteratively sampling from the conditional distribution
O(j)(si, T + 1) ∼ N(x′(si, T + 1)β(j), σ2

η

(j)
) and thenZ(j)(si, T + 1) from the normal

distribution with meanO(j)(si, T + 1) and varianceσ2
ǫ

(j)
. Finally, Z(j)(si, T + 1) values

are transformed back to the original scale giving MCMC samplesY (j)(si, T + 1).

1.4.3 Forecasting Using AR Models

Here we briefly describe the forecasting method based on the hierarchical AR models
proposed by Sahu et al. (2007, 2009). The model equations aregiven by:

Zt = Ot + ǫǫǫt, (1.4)

Ot = ρOt−1 + Xtβ + ηt (1.5)

whereǫǫǫt andηηηt have been previously specified, andρ is a scalar denoting site-invariant
temporal correlation. These auto-regressive models also need an initialization forO0 which
we assume to be independently normally distributed with mean µ and the covariance matrix
σ2S0 where the correlation matrixS0 is obtained using the exponential correlation function
with a new decay parameterφ0. These additional parameters and initialization random
variables are added toθ andO respectively.
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The temporal correlation,ρ in (1.5), for the smooth processO(s, t), has been assumed
to be site invariant given the effects of the spatially and temporally varying covariates and
the spatio-temporal interceptsη(s, t). A site specific temporal correlation will perhaps be
needed, though not pursued here, if only the last two terms are omitted from the model. We
also assume, for stationarity, that|ρ| < 1.

We assume the same set of prior distributions forβ, the variance componentsσ2
ǫ and

σ2
η, and the correlation decay parametersφ as previously discussed in Section 1.4.2. For the

additionalρ parameter we again provide a normal prior distribution withzero mean and a
large variance (1010 in our implementation), but we restrict the prior distribution in the range
|ρ| < 1.

Under the AR models the predictive distribution ofZ(s0, T + 1) is determined by
O(s0, T + 1). Following (1.5), we see thatO(s0, T + 1) follows the normal distribution
with site invariant varianceσ2

η and meanρO(s0, T ) + x′(s0, T + 1)β. This depends on
O(s0, T ) and as a result, due to this auto-regressive nature, we have to determine all
the random variablesO(s0, k), for k = 0, . . . , T . In order to simulate, all these random
variables, we first simulate from the conditional distribution of O(s0, 0) given O0, which
is a univariate normal distribution. Then, at thejth MCMC iteration we sequentially
simulateO(j)(s0, k) givenO(j)(s0, k − 1) for k = 1, . . . , T + 1 from the normal distribution
with mean ρ(j)O(j)(s0, k − 1) + x′(s0, k)β(j) and varianceσ2

η

(j)
. For forecasting at

any observation locationsi we draw Z(j)(si, T + 1) from the normal distribution with
meanρ(j)O(j)(si, T ) + x′(s, T + 1)β(j) and varianceσ2

ǫ

(j)
. For further details regarding

prediction see, Sahuet al. (2007). Now theseZ values are transformed back to the original
scale,Y as in the case of GP models.

1.4.4 Forecasting Using the GPP Model

The models described in Section 1.4.3 assume the AR model forthe true values of the
modeled responseOt. Sahu and Bakar (2012b) modified this model so that the modified
version does not assume a true levelO(si, t) for eachZ(si, t) but instead assumes a space-
time random-effect denoted byη(si, t). It then assumes an AR model for these space-time
random effects. For a large number of spatial locations the top level space-time random effect
term will lead to the estimation problem discussed in the Introduction. Hence, we use the
predictive process approximation technique (Sahu and Bakar, 2012b). Here the main idea is
to define the random effectsη(si, t) at a smaller number of locations,m say, wherem << n,
called the knots, and then use kriging to predict those random effects at the data locations.

The top level model is written as:

Zt = Xtβ + η̃t + ǫt, t = 1, ..., T (1.6)

whereǫt has been previously specified. The space-time processη̃t is specified by:

η̃t = Awt (1.7)

with A = CS−1
w whereSw is the correlation matrix ofwt with ijth element, that corresponds

to two locationssi and sj , is given byexp(−φw||si − sj ||). The elements of then × m
matrixC are also calculated using this correlation function.
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In the next stage of the modelling hierarchy the AR model is assumed as:

wt = ρwt−1 + ξt, (1.8)

whereξt ∼ N(0, σ2
wSw). Again, we assume thatw0 ∼ N(0, σ2S0), where the elements of

the covariance matrixS0 are obtained using the correlation function,exp(−φ0dij), which
is the same correlation function used previously but with a different decay parameterφ0.
The Bayesian model specification here is completed by assuming the same set of prior
distributions as noted in the previous two sub-sections.

At an un-observed locations0, the 1-step ahead Bayesian forecast is given by the predictive
distribution ofZ(s0, T + 1), that we determine from equation (1.6) replacingt with T + 1.
Thus, the 1-step ahead forecast distribution has varianceσ2

ǫ and meanx′(s0, T + 1)β +
η̃(s0, T + 1), whereη̃(s0, T + 1) is obtained analogous to (1.7) as:

η̃(s0, T + 1) = Sw,12S
−1
w wT+1

whereSw,12 = e−φw d12 andwT+1 is obtained from (1.8).
Thus, at each MCMC iteration, we draw a forecast valueZ(j)(s0, T + 1) from this normal

distribution. Forecasting at the observation sitess1, . . . , sn is performed by noting that,
according to (1.6),

ZT+1 = XT+1β + η̃T+1 + ǫT+1,

with η̃T+1 = AwT+1 andǫT+1 ∼ N(0, σ2
ǫ In). Thus, as beforewT+1 is obtained from (1.8)

and MCMC sampling from the forecast distribution ofZ(si, T + 1) for i = 1, . . . , n is
straightforward. Again theseZ samples are transformed back to the original scaleY , which
we use for forecast calibration purposes.

1.5 Forecast Calibration Methods

The three model based forecasting methods discussed in the previous section must
be compared using suitable methods. Predictive Bayesian model selection methods are
appropriate for comparing Bayesian models, see e.g., Gelfand and Ghosh (1998). However,
the main objective of this chapter is forecasting and hence we compare the models on the
basis of their forecasting performance. There is a large literature on forecast comparison
and calibration methods, see e.g., Gneiting et al. (2007) and the references therein. In
the Bayesian context of this chapter, we need to compare the entire forecast predictive
distribution, not just summaries like the mean, since forecasting is the primary goal here.

To simplify notation, suppose thatyi, i = 1, . . . ,m denote them hold-out validation
observations that have not been used in model fitting. Note that we use a single indexed
notationyi, instead of the more elaboratey(s, t) used previously. Clearly, some of these
validation observations may be future observations at the modelling sites or completely
at new sites – what’s important here is that those must not have been used for model
fitting. Let Fi(y) denote the model based forecast predictive distribution function of Yi,
the random variable whose realized value isyi. Thus,Fi(y) is one of the three forecast
predictive distributions, corresponding to one of the three models: GP, AR and GPP, described
previously in Section 1.4. LetGi(y) be the true unknown forecast predictive distribution
function, which theFi(y) is trying to estimate. The problem here is to calibrateFi(y) for
Gi(y), i = 1, . . . ,m, conditional on the modeled data,y or equivalently its transformed value
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z. Let ŷi be the intended forecast foryi, i.e., ŷi mean or median of the forecast distribution
Fi(y), estimated using the mean or median of the MCMC samplesy

(j)
i , j = 1, . . . , J , where

J is a large number. In our implementation in Sections 1.6 and 1.7, we have takenJ =
15, 000 after discarding first 5000 iterations, that was deemed to beadequate, to mitigate the
effect of initial values. Below, we describe seven popular forecast calibration and diagnostic
methods and develop their computation methods using MCMC.

1. The Root Mean Square Error (RMSE) is defined by:

RMSE =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)2.

It is perhaps the most popular forecast comparison criterion and the method with the
smallest RMSE value is preferred.

2. Sometimes the Mean Absolute Error, defined by,

MAE =
1

m

m
∑

i=1

|yi − ŷi|

is preferred to the RMSE. Both the RMSE and the MAE are on the original unit of the
data and they provide a quick check on the magnitude of the errors in the forecasts.

3. The continuous ranked probability score (CRPS) is a proper scoring rule for comparing
forecasts, (Gneitinget al., 2007) and is defined by:

crps(F, y) = EF |Y − y| −
1

2
EF |Y − Y ′|

whereY andY ′ are independent copies of a random variable with distribution function
F and finite first moment. Withm hold-out observations, we calculate the overall
measure, given by

CRPS =
1

m

m
∑

i=1

crps(Fi, yi).

We estimate the CRPS usingJ MCMC samplesy(j)
i , j = 1, . . . , J , as follows. We first

obtain,

ˆcrps(Fi, yi) =
1

J

J
∑

j=1

|y
(j)
i − yi| −

1

2J2

J
∑

j=1

J
∑

k=1

|y
(j)
i − y

(k)
i |, i = 1, . . . ,m,

and then the overall average CRPS is estimated as:

ˆCRPS =
1

m

m
∑

i=1

ˆcrps(Fi, yi).

Again, the model with the smallest CRPS value is the preferred choice.
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4. The nominal coverage is defined by

NCOV =
1

m

m
∑

i=1

1 (li ≤ yi ≤ ui)

where li and ui are, respectively, the lower and upper limits of a given predictive
interval foryi and1(A) = 1 if A is true and 0 otherwise. Good forecasting methods
must have the nominal coverage close to their true value so that the uncertainties in the
forecast distributions are correct, not only their centraltendencies as measured by the
RMSE or the MAE. In practice, the limitsli andui are estimated using the appropriate
quantiles of the MCMC samplesy(j)

i , j = 1, . . . , J . For example, for 95% prediction
intervals, these are estimated to be the 2.5th and 97.5th percentile ofy(j)

i , j = 1, . . . , J ,
respectively.

5. The concentration of the forecast distribution is compared using the sharpness diagram.
A sharpness diagram plots the widths of the (m) forecast intervals as side-by-side
boxplots where each boxplot is for a particular forecastingmethod. The forecasting
method that produces narrower width forecast intervals, but with good nominal
coverages, is preferred.

6. The hit and false alarm rates are also considered by many authors for forecast
comparison purposes, see e.g., Sahu et al. (2009). These rates are defined for a given
threshold valuey0, which is often the value beyond which the pollutant is considered
to be very dangerous. Hit is defined as the event where both thevalidation observation,
yi and the forecast,̂yi, for it are either both greater or less than the thresholdy0. The
false alarm, on the other hand, is defined as the event where the actual observation is
less thany0 but the forecast is greater thany0. Thus we define:

Hit rate(y0) =
1

m

m
∑

i=1

{1 (yi > y0 & ŷi > y0) + 1 (yi < y0 & ŷi < y0)} ,

False alarm(y0) =
1

m

m
∑

i=1

1(yi < y0 & ŷi > y0).

Forecasting methods with high hit rates and low false alarm rates are preferred.

7. Many authors have proposed the probability integral transform (PIT) diagram as a
necessary diagnostic tool for comparing forecasts. For each hold-out observationyi,
the PIT value is calculated as

pi = Fi(yi), i = 1, . . . ,m.

If the forecasts are ideal, andFi is continuous, thenpi has a uniform distribution. The
PIT diagram is simply an histogram of thepi’s, 1, . . . ,m. Using MCMC samples,pi

is estimated by:

p̂i =
1

J

J
∑

j=1

1
(

y
(j)
i ≤ yi

)

, i = 1, . . . ,m.
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8. A marginal calibration plot (MCP) is used to calibrate theequality of the forecast and
the actual value, and is constructed as follows. First, takea grid,yk, k = 1, . . . ,K, say,
covering the domain of the forecast distribution. For each of thoseyk values, calculate

Ĝ(yk) =
1

m

m
∑

i=1

1 (yi ≤ yk) .

Now calculate

F̄ (yk) =
1

m

m
∑

i=1

F̂i(yk),

where

F̂i(yk) =
1

J

J
∑

j=1

1
(

y
(j)
i ≤ yk

)

, i = 1, . . . ,m.

Now, the plot of the differences̄F (yk) − Ĝ(yk) againstyk, for k = 1, . . . ,K is the
desired MCP. If the forecasts are good, only minor fluctuations about 0 are expected.
Thus, a forecast distribution whose MCP stays closest to 0 will be the preferred choice.

1.6 Results from a Smaller Data Set

The computation of all the forecast calibration methods forthe whole eastern US data set
is prohibitive because of the big-n problem as mentioned in the Introduction, see also the
next section. Due to this reason, we compare all three forecasting methods using a subset of
the whole eastern US data, consisting of four states: Illinois, Indiana, Ohio and Kentucky.
There are 147 ozone monitoring sites in these states, see Figure 1.3. We set aside data from
20 randomly selected sites for validation purposes. As mentioned in Section 1.3 we validate
for seven days from July 8 to 14.

For the GPP model the knot size is taken as 107, that has been chosen from a sensitivity
analysis similar to the ones reported in Sahu and Bakar (2012b). We also have performed
a number of different sensitivity analysis with respect to the choice of the hyper-parameter
values in the prior distribution, tuning of the MCMC algorithms and also have monitored
convergence using trace plots and the package CODA (Plummeret al. 2006). We omit all
those details for brevity.

All three models are fitted using the MCMC code developed within thespTimer package.
As mentioned in Section 1.5, MCMC algorithms are run for a total of 20,000 iterations of
which first 5,000 are discarded to mitigate the effect of starting values. The algorthms run
very fast taking only about 9, 16 and 3 minutes for the GP, AR and GPP models respectively
in a 2.6Ghz personal computer with 4GB of RAM running 32 bit Windows operating system.
Thus it is quite fast to fit the models and produce the forecasts using all the models.

The RMSE and the MAE for the seven validation days are plottedin Figure 1.4. As
expected, the RMSE and the MAE are very similar (compare the columns). But we do
not see a large difference between modelling seven and fourteen days data (compare the
rows). The RMSE and MAE of the GP and AR models are very similarand they both
have worse performance than the GPP model. This is also confirmed by the CRPS values,
see Table 1.2. The nominal coverages, of the 50% and 95% forecast intervals, provided in
Table 1.3, however, are not able to compare the forecasting methods; but those show that
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all three methods are adequate. The average widths of the forecast intervals, see Table 1.4,
clearly shows that the GPP model is the best. This is also confirmed by the sharpness diagram,
see Figure 1.5.

The hit and false alarm rates using all seven validation daysdata are provided in Table 1.5.
All three models perform very well. The hit rate increases asthe threshold value increases
and it is actually 100% when we use the threshold value of 85. The false alarm rate decreases
to zero as the threshold value is increased from 65 to 75 ppb. These rates, however, do not
discriminate between the three different forecasting methods.

The PIT diagrams for all three forecasting methods for the 14days data modelling case are
provided in Figure 1.6. Here also the GPP model is the preferred choice since its histogram is
more uniform than the other two. The same diagrams based on modelling 7-days data showed
similar patterns and hence have been omitted.

Figure 1.7 provides the marginal calibration plots of all three models using data for 7
and 14 days. Here also the GPP model performs better than its rivals and the performance
is differentiated better in the case of modelling data for 14days. In addition, calibration
improves towards the upper tail of the distribution that assures that the models are able to
forecast high levels of ozone concentration quite accurately. In conclusion, we find that the
GPP model is best for forecasting among the three methods considered here.

A further remark regarding the performances of the AR and GPPmodels is appropriate.
As with any approximation it can be expected that the approximate GPP model to perform
worse than the full AR model. However, the GPP model in Section 1.4.4 cannot be seen as
a true approximation for the AR model in Section 1.4.3 due to the inclusion of the auto-
regressive term in two very different manners: one at the toplevelOt in (1.5) and the other at
the random effect levelwt in (1.7). Thus the AR and GPP models are very different and it is
not surprising that we do not see any strict one-way performance ordering in our examples.

1.7 Analysis of the Full Eastern US Data Set

As mentioned in Section 1.3, we use data from 577 sites to fit our models and the data from
62 sites are set aside for validation purposes. The implementation of the GPP model requires
the selection of the number of knots. Using a similar sensitivity study that we have used in
Sahu and Bakar (2012b), but with the forecast RMSE, as the criterion we compare the GPP
model with 68, 105, 156 and 269 knots which were all inside theland boundary of the United
States. The forecast RMSE improved with the increasing knotsizes, but only slightly when
the size increased to 269 from 156. Henceforth, we adopt 156 as the knot size that implies a
much smaller computational burden.

For the model fitting (a data set with 14 days data) and forecasting using 20,000 iterations,
using the same personal computer as in the previous section,we have estimated that the GP
model will take about 40 hours, while the AR model will take about 66 hours to run. This
excludes the use of GP and AR models for forecasting next day ozone levels, which must be
produced within 24 hours of computing time. The GPP model, onthe other hand, takes only
about 50 minutes to run the same experiment on the same personal computer and is the only
feasible method that we henceforth adopt.

We compare the performance of the GPP model based with those obtained from a non-
Bayesian linear regression model with the Eta CMAQ output asthe only covariate, which is
a simple method that does not require advanced modelling andcomputation techniques. We
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also illustrate parameter estimation and maps providing forecast surfaces.
We report the parameter estimates and their standard deviations in Table 1.6 for the model

fitting cases with 14 days data. The estimates are broadly similar for different subsets of
fitted data. The Eta CMAQ output always remains a significant predictor with very small
standard deviation relative to the mean. The temporal correlation remained always near 20%.
The random effect varianceσ2

w is always estimated to be larger than the nugget effectσ2
ǫ .

The estimate of the spatial decay parameter is 0.0024, that corresponds to an effective range
of 1250 kilometers. A similar table based on model fitting from 7 days data is omitted for
brevity.

We now compare the GPP model based forecasts with those from the linear regression
model using the RMSEs based on validation data both from the 62 hold out sites. The RMSE
values, provided in Table 1.7, are smaller for the GPP model than the linear regression model.
Moreover, the RMSE values are smaller when the forecasting model is trained with 14 days
data than the same with 7 days data. The RMSE values for the forecasts made by the Eta
CMAQ model are considerably higher, which justifies this additional statistical modelling
effort.

The nominal coverages of the 95% forecast intervals, provided in Table 1.8, show that the
uncertainty in the forecasts based on the GPP model are aboutright. However, the nominal
coverages for the linear model based forecasts are closer to100%, which shows that these
forecast intervals are too wide and this method fails to reduce uncertainty in the forecasts.

Table 1.8 also provides the CRPS values which turn out to be slightly higher than the
values presented in Table 1.2 for the four states data. This is not surprising since it is usually
more difficult to extrapolate in larger spatial domains. We have also obtained the false alarm
and hit rates of the forecasts from the GPP model which are 0 and 95.33, respectively, when
the threshold value is 75 ppb. Clearly, the GPP model is very accurate for forecasting and
hence, we do not consider the other diagnostics such as the PIT diagram and the marginal
calibration plots. Instead, we proceed to illustrate the forecasts.

Figure 1.8 illustrates the forecast maps based on the GPP model along with their standard
deviations for the the 3 days, 8th, 9th and 10th of July. Here,each forecast map has their own
color scheme that enables us to show the full spatial variation of the forecasts. In addition,
the maps of standard deviations reveal that higher ozone levels are associated with higher
uncertainty levels, which is a common phenomenon in ozone concentration modelling.

1.8 Conclusion

This chapter has developed Bayesian forecasting methods using three recently published
Bayesian hierarchical models for spatio-temporal data. MCMC methods have been developed
to compute the Bayesian forecast distributions based on large space-time data. These
methodological developments have enabled us to add the suite of forecasting routines in
the contributedR software package,spTimer which is available fromCRAN (http://cran.r-
project.org/) and allows modelling of large space-time data sets.

The contribution of the chapter also includes development of methods for estimating
several forecast calibration measures using output from the implemented Markov chain
Monte Carlo algorithms. We have demonstrated that these measures are able to compare
different Bayesian forecasting methods rigorously and conclusively. A forecasting method
based on a space-time model developed using a Gaussian predictive process approximation
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has been shown to be fast and the best for the illustrative ozone concentration forecasting
problem of the chapter.
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Table 1.1 Summaries of the daily maximum ozone concentration
levels and Eta CMAQ output for the test data set described in
Section 1.3.

Minimum Mean Median Maximum

Ozone levels 0.00 50.62 50.99 113.00

CMAQ output 16.50 59.19 60.36 145.50

Table 1.2 CRPS values from modelling data from four states during July 8
(denoted as 7/8) to 14.

Values from modelling 7 days data

Models 7/8 7/9 7/10 7/11 7/12 7/13 7/14 7/(8-14)

GP 6.12 10.22 5.04 5.05 4.78 5.70 6.95 6.27
AR 6.19 10.12 4.95 5.31 4.85 4.38 4.31 5.73
GPP 4.95 10.02 4.89 5.33 4.87 4.33 4.13 5.52

Values from modelling 14 days data

GP 6.14 9.82 5.33 5.42 5.21 5.64 6.29 6.27
AR 5.91 9.83 4.56 5.27 5.19 4.43 5.90 5.87
GPP 5.32 9.56 4.37 5.30 5.15 4.28 5.26 5.60
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Table 1.3 Nominal coverages of the 50% and 95%
forecast intervals for the one-step ahead forecasts at the 20
randomly chosen validation sites.

Intervals

Using 7 Days Data Using 14 Days Data

50% 95% 50% 95%

GP 51.43 95.71 55.00 95.71

AR 50.71 94.29 50.71 93.43

GPP 50.71 94.95 49.71 94.00

Table 1.4 Average width of the forecast intervals for the four
states data set.

Using 7 Days Data Using 14 Days Data

Models 50% 90% 50% 90%

GP 12.76 30.95 12.57 30.69
AR 13.51 32.95 13.36 32.28
GPP 11.54 28.11 9.58 23.47

Table 1.5 False alarm and hit rates for ozone threshold values of 65 and 75 for the
four states data set.

Using 7 days data Using 14 days data

Ozone levels Model False alarm Hit rateFalse alarm Hit rate

65 ppb
GP 0.92 91.67 0.92 91.67
AR 4.59 92.50 1.83 92.50
GPP 3.67 91.67 2.75 91.67

75 ppb
GP 0.0 95.83 0.0 95.83
AR 0.0 95.83 0.0 95.83
GPP 0.0 96.67 0.0 97.50
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Table 1.6 Parameter estimates (mean and sd) for the models based on GPP
approximation fitted with 14 days observations for the period June 24 (denoted
as 6/24) to July 13, 2010 from the 577 modelling sites in the whole eastern US.

Fitted Days β0 β1 ρ σ2
ǫ σ2

w φ

6/24–7/7 Mean 4.13 0.37 0.40 0.24 0.49 0.0046
sd 0.20 0.03 0.04 0.005 0.04 0.0005

6/25–7/8 Mean 4.34 0.36 0.39 0.25 0.53 0.0042
sd 0.23 0.02 0.03 0.004 0.04 0.0004

6/26–7/9 Mean 4.68 0.33 0.39 0.25 0.57 0.0041
sd 0.33 0.03 0.04 0.006 0.05 0.0007

6/27–7/10 Mean 3.40 0.33 0.39 0.25 0.52 0.0046
sd 0.22 0.03 0.04 0.005 0.04 0.0005

6/28–7/11 Mean 4.74 0.31 0.35 0.25 0.60 0.0031
sd 0.17 0.02 0.04 0.005 0.05 0.0007

6/29–7/12 Mean 4.66 0.31 0.36 0.25 0.54 0.0037
sd 0.20 0.02 0.04 0.005 0.04 0.0003

6/30–7/13 Mean 4.92 0.29 0.35 0.26 0.60 0.0032
sd 0.30 0.03 0.04 0.005 0.07 0.0006

Table 1.7 Values of the RMSE of the forecasts at the hold-out
sites for the simple linear model and the GPP model based on
modelling 7 and 14 days data for the whole of Eastern US. The
corresponding RMSE values for the Eta CMAQ output are also
shown.

Forecast CMAQ 7 Days 14 Days

Linear GPP Linear GPP

7/8 20.52 12.16 10.34 10.97 10.30

7/9 19.68 12.25 10.79 11.59 10.04

7/10 16.36 9.87 8.59 9.49 8.13

7/11 15.51 8.55 8.17 8.69 7.98

7/12 13.12 8.99 8.67 8.44 8.17

7/13 20.36 12.70 10.85 13.95 9.83

7/14 18.10 9.64 9.20 10.25 9.05



Bayesian Forecasting Using Spatio-temporal Models with Applications to Ozone Concentration
Levels in the Eastern United States 19

Table 1.8 Nominal coverages of the 95% forecast intervals using the linear and GPP models
and the CRPS values for the hold out data for the GPP model for the whole eastern US data set.

Forecast 7/8 7/9 7/10 7/11 7/12 7/13 7/14 7/(8-14)

Nominal coverage of the 95% forecast intervals using the linear model

7 Days 99.94 99.80 99.44 100.00 100.00 99.07 98.15 99.11
14 Days 99.94 98.50 97.59 100.00 100.00 97.50 98.15 98.64

Nominal coverage of the 95% forecast intervals using the GPPmodel

7 Days 93.55 93.75 94.96 95.16 94.96 93.75 95.56 94.53
14 Days 94.62 94.30 94.84 95.05 94.62 94.84 94.84 94.74

CRPS values

7 Days 10.05 7.98 6.52 6.79 7.12 7.18 7.11 7.54

14 Days 9.43 7.25 5.89 6.80 6.93 6.94 6.74 7.15
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Figure 1.1 A plot of the 639 (62 validation and 577 model fitting) ozone monitoring sites inthe
eastern US.



20 Bayesian Forecasting Using Spatio-temporal Models with Applications to Ozone Concentra-
tion Levels in the Eastern United States

Days

O3

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Values

Observed

CMAQ

Figure 1.2 Side by side box-plots of the observed daily maximum ozone concentrationlevels and Eta
CMAQ output for 21 days from all 639 sites in the eastern US.
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Figure 1.3 Map of the four states, Ohio, Indiana, Illinois and Kentucky. 147 ozone monitoring
locations are superimposed.
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Figure 1.4 Plots of RMSE and MAE based on modelling 7 days data (top row) and 14 days data
(bottom row).
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Figure 1.5 Sharpness diagram using: (a) 7 days data (b) 14 days data.
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Figure 1.6 PIT diagrams for (a) GP, (b) AR and (c) GPP models using 14 days datafor modelling.
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Figure 1.7 Marginal calibration plots for all the models using (a) 7 days data (b) 14 days data for
modelling.
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Figure 1.8 Maps showing the forecasts and their standard deviations for July 8, 9 and 10 in 2010.
Observed ozone levels are also superimposed on the forecast maps from a selected number of sites
only, to avoid clutter.


