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1.1 Summary

Bayesian forecasting in time and interpolation in space ishallenging task due to
the complex nature of spatio-temporal dependencies thed t@ be modeled for better
understanding and description of the underlying proce3gesproblem exacerbates further
when the geographical study region, such as the one in thergddnited States considered
in this chapter, is vast and the training data set for fot@ugsand modelling, is rich
in both space and time. This chapter develops forecastinthade for three recently
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proposed hierarchical Bayesian models for spatio-tenipdeita sets. The chapter also
develops Markov chain Monte Carlo based computation matfardestimating a number of
relevant forecast calibration measures that facilitatgsrous comparisons of the Bayesian
forecasting methods. The methods are illustrated with tidat set on daily maximum
eight hour average ozone concentration levels observedaostudy region in the Eastern
United States. Forecast validations, using several mowingows, find a model developed
using an approximate Gaussian predictive process to beetsieand it is the only viable
method for large data sets when computing speed is also tat@account. The methods
are implemented in a recently developed software packagjémer, which is a publicly
available contributed R package that has wider appliagbili

1.2 Introduction

Bayesian forecasting methods are very much in demand in rappjication areas in
environmental monitoring and surveillance. Consequemtipdel based forecasting has
attracted much attention in the literature, see e.g., Bauat. (2001); Damon and Guillas
(2002); Feister and Balzer (1991); Huerta et al. (2004); Kuand Ridder (2010); McMillan
et al. (2005); Sahu and Bakar (2012a); Sahu and Mardia (200%ahu et al. (2009, 2011);
Sousa et al. (2009); Stroud et al. (2001); West and Harri$687) and Zidek et al. (2012).
Some of these papers also consider space-time modellinpdopurposes of forecasting.
However, the methods proposed in these articles are nottaltlandle the computational
burden associated with large space-time data sets that @elindhis chapter for forecasting
purposes.

For point referenced spatial data from a large number otilmes, exact likelihood based
inference becomes unstable and infeasible since thatviesalomputing quadratic forms
and determinants associated with a high dimensional \@gianvariance matrix (Stein
(2008)). Besides the problem of storage (Cressie and Jelkaan 2008), matrix inversion,
at each iteration of the model fitting algorithm, such as tihé &gorithm, is of O(n?)
computational complexity, which is prohibitive, wherés a large number of modeled spatial
locations. This problem also arises in the evaluation ofi¢ive or conditional distributions
in Gaussian process based models under a hierarchical iBaystup, see e.g., Banerjee
et al. (2004). To tackle this problem, we develop a Bayesimadasting method based on
a model recently developed by Sahu and Bakar (2012b), usaug<ian predictive process
(GPP) approximation method for the underlying spatialawef see Banerjee et al. (2008).
Throughout this chapter, for convenience, we shall use ¢hengm GPP to also denote the
modelling method based on the GPP approximation.

Forecasting using hierarchical Bayesian models is futihéted by the lack of suitable
software packages. There are a few available packagesrfrafsting using variants of the
dynamic linear models (West and Harrison 1997), see e.gisleeal. (2010). However, these
packages do not allow incorporation of rich spatial covar@astructure for the modelled
data. On the other handpBayes, a recently developed spatial data analysis package,
developed by Finley et al. (2007), can model short-lengttetseries data by treating those
as multivariate spatial data, but it is not really intendechéndle large volume of spatio-
temporal data that can be analyzed usingdpd&i ner package developed by Bakar and
Sahu (2014).

This chapter develops forecasting methods for three Bagdsierarchical models that
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have been implemented &pTi ner . The first of these is an independent in time Gaussian
process (GP) based regression model that is simple to ingpieamd is often regarded as a
starting model. The second is the hierarchical auto-regresnodel developed by Sahu et
al. (2007), that has been shown to be better in out of sampiiatian than some versions of
dynamic linear models (Sahu and Bakar 2012a) and also a \adg af models (Cameletti et
al. 2011). The third and final forecasting method is the orsetd@n the GPP approximation
method mentioned above. These methodological develognsatthen used to augment
thespTi mer package with the forecasting modules that can be used in @ weidety of
applications in space-time data analysis.

Another objective of the chapter is to rigorously compaeeBlayesian forecasts obtained
from the three models. Towards this end we develop Markonckimnte Carlo (MCMC)
implementation methods for several forecast calibrati@asures and diagnostic plots that
have been proposed to compare the skills of the Bayesiandstralistributions, see e.g.,
Gneiting et al. (2007). The measures include: the contiawanked probability score which
is an integrated distance between the forecasts and thespomding observations, the hit
and false alarm rates and the nominal coverage. The diagmsts include the probability
integral transform and a marginal calibration plot that s&dito calibrate the equality of
the forecast and the actual observations, see Section ieseTmeasures and plots enable
us to compare the implied Bayesian forecast distributianty £ not just their specific
characteristics, e.g., the mean forecast, as would be dpsériple measures such as the
root mean square error and the mean absolute error.

A substantial application on an air pollutant, ground-l@#one, illustrates the forecasting
methods of this chapter. Ground-level ozone is a polluthat is a significant health risk,
especially for children with asthma and vulnerable adults wespiratory problems. It also
damages crops, trees and other vegetation. It is a maindiegrteof urban smog. Because
of these harmful effects, air pollution regulatory autkies are required by law to monitor
ozone levels and they also need to forecast in advance, satthak population can take
necessary precaution in reducing their exposure. In theedi8tates (US), a part of which is
our study region in this chapter, the forecasts are issugh,aip to 24-hours in advance by
various mass-media, e.g. newspapers and also the welbsiteow. gov. However, ozone
concentration levels, and also other air pollutants, agelegly monitored by only a finite
number of sites. Data from these sparse network of mongasites need to be processed
for developing accurate forecasts. In this chapter, we esethe forecasts of ground-level
ozone, based on three models using a three-week test dada sketily maximum ozone
concentration levels observed over a large region in théeeEas)S.

The rest of this chapter is organized as follows: SectiondeS8cribes the validation
data set we use in this chapter with some summary stati$ticSection 1.4 we develop
forecasting methods based on three recently proposed Raysgatio-temporal models.
Section 1.5 discusses several useful and important fareakisration methods and develops
their MCMC implementation techniques. These are used tgepathe forecasting methods
with a smaller subset of the full validation data set in Secfi.6. This investigation finds that
the GPP model is fast and it performs the best. Subsequtndlynodel is used in Section 1.7
to analyze and forecast for the full eastern US data setll¥sissction 1.8 concludes with a
few summary remarks.
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1.3 Test Data Set

The forecasting models proposed in this chapter will beetkstising daily ozone
concentration data for the 3-week period, June 24 to Julyn12D10. A daily observation,
measured in units of parts per billion (ppb), is the maximur@déaverages in a day where
each average is based on hourly ozone concentration reaffimg 8 consecutive hours.
In this chapter, we use daily data from 639 monitoring sitethe eastern US. We aim to
perform forecast validation for completely out of sampléadiaom sites that we do not use
for modelling at all. Hence, we set aside data from 62 rangiambsen sites (roughly 10%)
for validation purposes. Figure 1.1 provides a map of thefidation sites and the remaining
577 sites, data from which are used for modelling.

We perform forecast validation for seven moving windows atiadfrom July 8 to July 14.
July 8 is taken to be the earliest day for forecast validattiar allows modelling of data for
14 days from June 24 to July 7. We also compare the next dagdstebased on modelling
data from just seven previous days that complete a weeklie ciftus, for example, for
forecasting for July 8 we use data from July 1 to 7.

Often, see, e.qai r now. gov, a deterministic model, known as the community multi-
scale air quality (CMAQ) model, is used for forecasting lsvaf ozone concentration and
other air pollutants such as particulate matter. The CMA@ehim forecasting mode, known
as Eta CMAQ, is based on emission inventories, meteorabgiformation, and land use,
and it produces gridded forecasts, up to two days in advéoicayerage ozone concentration
levels at each cell of a 12 square-kilometer grid coverireggvitmole of the continental US
(Ching and Byun, 1999). However, these output are well-kmtproduce biased forecasts
and to reduce this bias, in this chapter, we develop stistiodels that are able to improve
the Eta CMAQ forecasts by refining those in the light of theestied monitoring data.
Incorporation of gridded CMAQ forecasts in a spatial modeldoint referenced monitoring
data poses a spatial misalignment problem that is well knowthe literature, see for
example, Fuentes and Raftery (2005); Jun and Stein (2004¢nice (1986). To incorporate
the Eta CMAQ output, the hierarchical models are set up asosfmmporal downscaler
models, first implemented by Sahu et al. (2009), and thenrgksed by Berrocal et al.
(2010a,b), and Zidek et al. (2012). We use the forecastsdity thaximum 8-hour average
CMAQ ozone concentration for the grid cell covering the ntoring site as the single co-
variate, following Sahu et al. (2009).

Many meteorological variables such as the daily maximumptmature are important
predictors of ozone levels, see e.g., Sahu et al. (2007) eMexvthe meteorological variables
no longer remain significant if the model for ozone level® ateludes output of the CMAQ
model, see e.g., Sahu and Bakar (2012a). Moreover, direletsion of the meteorological
variables in an ozone concentration forecasting model alélb require forecasting of the
meteorological variables in the first place. The models gsed in this chapter avoid
this, although we note that the CMAQ forecasts already ohelfuture values of the
meteorological variables that have been used as modekinput

Out of the 13,419 observations from 639 sites for 21 days(299.23%) are missing. Our
Bayesian models automatically estimate those using stdrdathods. Table 1.1 provides
the summary statistics for ozone levels and Eta CMAQ outphgre it is seen that the Eta
CMAQ forecasts are upwardly biased, although the mediaeside be close. Figure 1.2
investigates this further by providing side by side boxpliar each of 21 days for both the
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observed and the Eta CMAQ forecasted ozone levels. Thisfigisp shows that the data set
includes an episode of high ozone levels during days 12-h&hcorresponds to July 5-9,
just after the 4th of July celebrations in the US. This epésofihigh ozone levels provides
an opportunity to model and forecast when their demand éhfito be higher than usual.

1.4 Forecasting Methods

1.4.1 Prdiminaries

We first define the generic notations that we need and useghoo the chapter. Let
denote the time where=1,...,7 andT is the total number of time units. Lé&f(s;, )
denote the observed point referenced data at locatiand at timet fori = 1,...,n where

n is the total number of locations. Modelling the data on thiginal scale, as noted by
many authors, see e.g., Sahu et al. (2007) is prohibitivaaltiee instability in variance that
often leads to negative forecasts. In this chapter, we mddi on the square-root scale,
denoted byZ(s;, t), that encourages symmetry and normality, see e.g., SaHu(80a7),
but report all forecasts and predictions on the originalescd, for ease of interpretation
by practitioners, although this may increase the mean sceraor of the forecasts. We also
note that other variance stabilizing transformations saglog and the more general Box-
Cox transformation can also be adopted depending on theenaitthe problem, and finally,
the methods we describe below can also be used if a variaab#ishg transformation is
not needed in the first place. MCMC methods enable us to egtitha uncertainties of the
forecasts on the original scale.

Let O(s;,t) be the true value corresponding Xis;, t) at sites;, i = 1,...,n at timet.
LetZ, = (Z(s1,t),..., Z(sn,t)) andO; = (O(sy,t), ..., O(sn, t))’. We shall denote all the
observed data by, andz* will denote all the missing data. Similarl@ will denote allOy,
fort =1,...,T. Let N = nT be the total number of observations to be modeled.

For forecasting purposes it is of interest to obtain the step-ahead forecast distribution
for noisy dataY (sg,7 + 1) on the original scale, and not faP(sg, 7 + 1), since our
objective is to compare the forecasting methods by vabdadf the noisy data itself, where
so denotes any particular, monitored or un-monitored, sitatefrest. In the sequel, we shall
obtain the marginal one-step ahead forecasts at a numbiesfsaymn. The joint one-step
ahead forecast distribution for theforecasts can also be developed for the models described
below, but are not of interest here.

We also assume that, in general, therepatevariates, including the intercept, denoted by
then x p matrix X;. Some of these covariates may vary in both space and timendta&on
B = (b1, ..., Bp)" will be used to denote the x 1 vector of regression coefficients. We shall
use the generic notatighto denote all the parameters.

1.4.2 Forecasting Using GP Models

The spatio-temporal linear regression model is defined by:

Z; = Oy + €, (1.1)
Ot = Xt/@ + un (12)
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wheree; = (e(s1,1),...,e(sp, 1)) ~ N(0,02%1,) is the independently distributed white noise
error with variancer? also known as the nugget effect, ahglis then x n identity matrix.
The termn, = (n(s1,t),...,n(sn, t)) is an independent, over time, realization of a spatial
Gaussian process with zero mean and the correlation fumetit ¢, v), often assumed to be
a member of the M&trn family, see e.g., Banerjee et al. (2004), is allowed fzedd on two
unknown parametersg andy describing the correlation at distangeln effect, this implies
that the smooth proces9ys, t) is assumed to be isotropic and stationary. Note that this doe
not necessarily imply the same assumptions for the unfoemed noisy datay” since other
hierarchical model components will contribute to the ollespace-time correlation function.
Thus we assume thg ~ N(0,,), whereX, = 075, and(S,)i; = x(||s; — s;ll; ¢, v),
i,7=1,..,n; cr% is the site invariant common variance af(d, ¢, ) is the spatial correlation
that depends on spatial decay,and smoothness;,, parameters. For convenience, in this
chapter we use the exponential covariance function to nemigtial dependence as:

¥, =008, = o2 exp(—¢,D)

where, ¢, > 0 is a spatial correlation decay parameter, andis the matrix that has
elementsd;;, that is the distance between sitgsands;, 7,7 = 1, ...,n. Here, and in the
sequel, the matrix exponential is used to mean elementexpenentiation, i.e(3,);; =
0727 exp(—o¢ndi;),i,j = 1,...,n. ThespTi mer package provides options to implement using
the full Matern family. The error distributions af, andn, are assumed to be independent
of each other. For future reference, &denote all the parameters, o2, af,, and¢. We
assume independent normal prior distribution with zerommaad a large variancé0'°,
to achieve vague prior specification, for the component8.ofhe inverse of the variance
componentsr? U% are given independent gamma distribution with megh and variance
a/b%. Although any suitable values far andb can be chosen, we have choses 2 and
b =1 to have a proper prior distribution for any variance comparibat will guarantee a
proper posterior distribution. We assume uniform priotriisition for the correlation decay
parametersp, although many other choices are possible. Full detailspasgided in the
spTi ner package, see Bakar and Sahu (2014).

To obtain the 1-step ahead forecast distributionZif,, 7 + 1) at any un-observed

locations at timeT" + 1, we first note that:

Z(s0, T+1)=0(sg, T+ 1)+ ¢€(sg, T+ 1),
O(so, T +1) =x'(s0, T + 1)3 + n(so, T + 1).

The 1-step ahead forecast distribution is the posterialigtige distribution ofZ(sg, T + 1)
givenz and is given by:

m(Z(s0, T+ 1)|z) = /W(Z(So,T +1)|6,0,0(s0, T+ 1),2)7(O(so, T + 1)|0, z)
7(0,0|z)dO(so, T + 1)dOd#, (1.3)
wherer (6, O|z) denotes the joint posterior distribution 6f and. Note thatr(Z(so, T +

1)]6,0,0(so, T+ 1),z) = 7(Z(sp,T + 1)|6,0,0(sp,T + 1)) due to the conditional
independence o¥ (sq, T + 1) and Z given O. Similarly, O(sy, T + 1) does not depend
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on Z given 8, hence in the following development we replacéO(so, T + 1)|6,z) by
m(O(so, T +1)|0).

Now the 1-step ahead forecast distribution (1.3) is contdiby composition sampling
as follows. Assume that, at thigh MCMC iteration, we have posterior samplééf) and
0U). Then we first draw0(0)(so, T + 1) from N(xy,, 89,62, Finally, we draw
ZU) (5o, T + 1) from N(OW) (sg, T + 1), 027,

Note that in the above paragraph, we use the marginal difitsib instead of the
conditional distribution because we have already obtaihedonditional distribution given
observed information up to timé& at the observation locations, ..., s,,, and at the future
time T + 1 there is no further new information to condition on excepttfe new regressor
valuesx(sg, T + 1) in the model. However, the conditional distribution can Bediinstead
if it is so desired. To do this, we note that the joint disttibn of O, = (O(sy,T +
1),...,0(s,, T+ 1)) is simply given byN(Xr,18,%,), according to (1.2). Similarly,
we construct the joint distribution aP(so, T + 1) and Or,; from which we obtain the
conditional distributiont(O(sg, T + 1)|Or+1), that is Gaussian with mean

X(So, T + 1),8 + Sn712S;1(OT+1 — XT+1,3)

and variance

Jg(l - S77712S77_1577721)’

WhereS;],Ql = 577»12 = ¢ ¢di2 andd; = (||Sl — S(]H, ceey ||Sn — S()H)/.
For forecasting at any observed sitdor anyi = 1,...,n attimeT + 1 we note that:

Z(s;, T+1)=0(s;, T+ 1) +€(s;, T+ 1),
O(si, T+ 1) =x'(8;, T+ 1)B +n(si, T+ 1).

These two identities make it clear that the 1-step aheaddstalistribution ofZ(s;, T + 1)

givenz can simply be constructed by iteratively sampling from thaditional distribution
O0W(s;, T+1) ~ N(x(s;, T +1)8Y, O’?I(J)) and thenZU)(s;, T + 1) from the normal

distribution with mear0)(s;, T + 1) and variancer2”. Finally, Z0)(s;, T + 1) values
are transformed back to the original scale giving MCMC saspl\¥) (s;, T+ 1).

1.4.3 Forecasting Using AR Models

Here we briefly describe the forecasting method based on igrarbhical AR models
proposed by Sahu et al. (2007, 2009). The model equatiorgiveme by:

Zt = Ot —+ €, (14)
O; = pOs—1 + XiB+ 1, (1.5)

wheree; andn, have been previously specified, apds a scalar denoting site-invariant
temporal correlation. These auto-regressive models @sd an initialization folOy which

we assume to be independently normally distributed withrmeand the covariance matrix
%S, where the correlation matrig, is obtained using the exponential correlation function
with a new decay parametery. These additional parameters and initialization random
variables are added thandO respectively.
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The temporal correlatiory in (1.5), for the smooth proces3(s,¢), has been assumed
to be site invariant given the effects of the spatially armdgerally varying covariates and
the spatio-temporal intercepigs, t). A site specific temporal correlation will perhaps be
needed, though not pursued here, if only the last two termeaitted from the model. We
also assume, for stationarity, that < 1.

We assume the same set of prior distributions Borthe variance components and
0127, and the correlation decay parametgras previously discussed in Section 1.4.2. For the
additionalp parameter we again provide a normal prior distribution wi#éno mean and a
large variancel(0'° in our implementation), but we restrict the prior distriloutin the range
lp| < 1.

Under the AR models the predictive distribution &f(sq, 7 + 1) is determined by
O(so,T 4 1). Following (1.5), we see thaD(sy,T + 1) follows the normal distribution
with site invariant variancer; and meanpO(so, T') + x'(so, T + 1)3. This depends on
O(sp,T) and as a result, due to this auto-regressive nature, we ladetermine all
the random variable®(so, k), for Kk =0,...,T. In order to simulate, all these random
variables, we first simulate from the conditional distribntof O(sg, 0) given Og, which
is a univariate normal distribution. Then, at thth MCMC iteration we sequentially
simulateO¥) (s, k) givenOY) (sg, k — 1) fork = 1,...,T + 1 from the normal distribution

with mean p)0W) (so, k — 1) + x/(so, k)8Y) and variances2"”). For forecasting at

any observation locatios; we draw Z(j)(si,TJr 1) from the normal distribution with
meanp 0 (s;, T) + x/(s, T + 1)) and variancer>"”). For further details regarding
prediction see, Sahet al. (2007). Now these values are transformed back to the original
scale)Y as in the case of GP models.

1.4.4 Forecasting Using the GPP Model

The models described in Section 1.4.3 assume the AR modehéotrue values of the
modeled respons®,. Sahu and Bakar (2012b) modified this model so that the mddifie
version does not assume a true letkk;, t) for eachZ(s;,t) but instead assumes a space-
time random-effect denoted h)(s;, ¢). It then assumes an AR model for these space-time
random effects. For a large number of spatial locationsdpéavel space-time random effect
term will lead to the estimation problem discussed in theolhiction. Hence, we use the
predictive process approximation technique (Sahu andi33aRa2b). Here the main idea is
to define the random effectgs;, ¢) at a smaller number of locations, say, wheren << n,
called the knots, and then use kriging to predict those nanelifects at the data locations.
The top level model is written as:

Zt:Xt,B+ﬁt+€t7 t= 1,...,T (16)
wheree, has been previously specified. The space-time pragessspecified by:
1, = Awy (1.7)

with A = C'S;,! whereS,, is the correlation matrix ofy; with ijth element, that corresponds
to two locationss; ands;, is given byexp(—¢.||s; —s;||). The elements of the x m
matrix C are also calculated using this correlation function.
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In the next stage of the modelling hierarchy the AR model suiased as:
wi=pwi_1 +§, (1.8)

where¢, ~ N (0,02 S,,). Again, we assume that, ~ N(0,02Sy), where the elements of
the covariance matri, are obtained using the correlation functiesp(—¢od,;), which
is the same correlation function used previously but withfier@nt decay parametef.
The Bayesian model specification here is completed by asguthie same set of prior
distributions as noted in the previous two sub-sections.

At an un-observed locatiasy, the 1-step ahead Bayesian forecast is given by the preglicti
distribution of Z(sg, T + 1), that we determine from equation (1.6) replacingith 7" + 1.
Thus, the 1-step ahead forecast distribution has variagcand meanx’(so, 7'+ 1)3 +
N(so, T + 1), wheref(so, T + 1) is obtained analogous to (1.7) as:

n(so, T +1) = Sw,12S;1WT+1

whereS,, 12 = e~ %wdiz andwy ; is obtained from (1.8).

Thus, at each MCMC iteration, we draw a forecast vaii& (so, 7' + 1) from this normal
distribution. Forecasting at the observation sies...,s, is performed by noting that,
according to (1.6),

Zryr = Xr41B + Npyq + €741,

with 9,1 = Awriq anderyy ~ N(0,021,). Thus, as before/r ; is obtained from (1.8)
and MCMC sampling from the forecast distribution 8fs;, T + 1) fori=1,...,n is
straightforward. Again thesg& samples are transformed back to the original s&glevhich
we use for forecast calibration purposes.

1.5 Forecast Calibration Methods

The three model based forecasting methods discussed in réhgoys section must

be compared using suitable methods. Predictive Bayesiafelnselection methods are
appropriate for comparing Bayesian models, see e.g., eHad Ghosh (1998). However,
the main objective of this chapter is forecasting and henee@mpare the models on the
basis of their forecasting performance. There is a largealitre on forecast comparison
and calibration methods, see e.g., Gneiting et al. (200d) the references therein. In
the Bayesian context of this chapter, we need to compare rtiee dorecast predictive

distribution, not just summaries like the mean, since fastiag is the primary goal here.

To simplify notation, suppose that,i =1,...,m denote them hold-out validation
observations that have not been used in model fitting. Natewe use a single indexed
notationy;, instead of the more elaboratés, t) used previously. Clearly, some of these
validation observations may be future observations at tbealiing sites or completely
at new sites — what's important here is that those must no¢ teeen used for model
fitting. Let F;(y) denote the model based forecast predictive distributiorctfan of Y7,
the random variable whose realized valueyjs Thus, F;(y) is one of the three forecast
predictive distributions, corresponding to one of the¢hredels: GP, AR and GPP, described
previously in Section 1.4. Lef;(y) be the true unknown forecast predictive distribution
function, which theF;(y) is trying to estimate. The problem here is to calibraiéy) for
G;(y),i=1,...,m, conditional on the modeled dagapr equivalently its transformed value
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z. Let §j; be the intended forecast fgy, i.e., ; mean or median of the forecast distribution
F;(y), estimated using the mean or median of the MCMC sanyél’ésj =1,...,J,where

J is a large number. In our implementation in Sections 1.6 ande have takery =
15,000 after discarding first 5000 iterations, that was deemed @degjuate, to mitigate the
effect of initial values. Below, we describe seven poputae€ast calibration and diagnostic
methods and develop their computation methods using MCMC.

1. The Root Mean Square Error (RMSE) is defined by:

It is perhaps the most popular forecast comparison criteaitd the method with the
smallest RMSE value is preferred.

2. Sometimes the Mean Absolute Error, defined by,

m

1 N
MAE = EZM — 9il
i=1

is preferred to the RMSE. Both the RMSE and the MAE are on tiggrad unit of the
data and they provide a quick check on the magnitude of tloeseim the forecasts.

3. The continuous ranked probability score (CRPS) is a praqaring rule for comparing
forecasts, (Gneitingt al., 2007) and is defined by:

1
crps(Fly) = Ep|Y —y| — §EF|Y -Y/|

whereY andY’ are independent copies of a random variable with distdiouftinction
F and finite first moment. Withn hold-out observations, we calculate the overall
measure, given by

1 m
P - F17 1)
CRPS ™ ; 1 crps(Fy, yi)

We estimate the CRPS usidgUlCMC samplea;;?%j =1,...,J,asfollows. We first
obtain,

J J J
~ ]- ] 1 ; k .
CTPS(mei):j E |y§])—yi|—ﬁ E E |yi(])—y§ )\,z:l,...,m,
Jj=1 j=1k=1

and then the overall average CRPS is estimated as:
CEPS = L3 cxps(Fiy)
= r iy Yi)-

m Crps Y

Again, the model with the smallest CRPS value is the prefechmice.
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4. The nominal coverage is defined by

m

1
N = — 1 <y <wuy
COV =—3 1(li <y <)

=1

wherel; andw; are, respectively, the lower and upper limits of a given jotac
interval fory; and1(A) = 1 if A is true and 0 otherwise. Good forecasting methods
must have the nominal coverage close to their true valueagdhh uncertainties in the
forecast distributions are correct, not only their ceneadencies as measured by the
RMSE or the MAE. In practice, the limifs andu; are estimated using the appropriate
guantiles of the MCMC sample;;:(ﬂ),j =1,...,J. For example, for 95% prediction
intervals, these are estimated to be the 2.5th and 97.5thpée Ofyl(j),j =1,...,J,
respectively.

5. The concentration of the forecast distribution is coragarsing the sharpness diagram.
A sharpness diagram plots the widths of the) (forecast intervals as side-by-side
boxplots where each boxplot is for a particular forecastimegthod. The forecasting
method that produces narrower width forecast intervald, vbith good nominal
coverages, is preferred.

6. The hit and false alarm rates are also considered by mathoraufor forecast
comparison purposes, see e.g., Sahu et al. (2009). Thesearat defined for a given
threshold valueyy, which is often the value beyond which the pollutant is cdesed
to be very dangerous. Hit is defined as the event where bothatltation observation,
y; and the forecastj;, for it are either both greater or less than the threshgldrhe
false alarm, on the other hand, is defined as the event wheracthal observation is
less thany, but the forecast is greater thgn Thus we define:

m

. 1 . N
Hit rate(yo) = — > 1w > vo&eiii > o) + 1 (yi < yo&eiii <wo)},
=1

1 «— X
False alarrtyy) = oy 51 Wy < yo&gi > yo)-
i—

Forecasting methods with high hit rates and low false alatesrare preferred.

7. Many authors have proposed the probability integralsfiezim (PIT) diagram as a
necessary diagnostic tool for comparing forecasts. Fan eatd-out observatio;,
the PIT value is calculated as

pTZFZ(yz)ﬂ:l,,m

If the forecasts are ideal, arfd is continuous, thep, has a uniform distribution. The
PIT diagram is simply an histogram of thgs, 1,...,m. Using MCMC samplesp;

is estimated by:
1 J
Az jz ((j)gyl)vl:]-vvm
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8. A marginal calibration plot (MCP) is used to calibrate #gpiality of the forecast and
the actual value, and is constructed as follows. First, &adged, yi, k = 1,. .., K, say,
covering the domain of the forecast distribution. For eddhasey; values, calculate

. 1 m
G(yx) = Ezl(yi < Yr).
=1

Now calculate

_ 1 .
F ) — FZ : )
(yr) m; (Yx)
where

J
. 1 . _
Fi(yk):jzl(ygj) Syk>, i=1,...,m.
j=1

Now, the plot of the differences’ () — é(yk) againstyy, for k =1,..., K is the
desired MCP. If the forecasts are good, only minor fluctuegtiabout O are expected.
Thus, a forecast distribution whose MCP stays closest tdl®athe preferred choice.

1.6 Resaultsfrom a Smaller Data Set

The computation of all the forecast calibration methodstfier whole eastern US data set
is prohibitive because of the big-n problem as mentionedhénlbtroduction, see also the
next section. Due to this reason, we compare all three fetegamethods using a subset of
the whole eastern US data, consisting of four states: Iffinmdiana, Ohio and Kentucky.
There are 147 ozone monitoring sites in these states, saeeHd@. We set aside data from
20 randomly selected sites for validation purposes. As imeed in Section 1.3 we validate
for seven days from July 8 to 14.

For the GPP model the knot size is taken as 107, that has besercfrom a sensitivity
analysis similar to the ones reported in Sahu and Bakar {201%e also have performed
a number of different sensitivity analysis with respecthe thoice of the hyper-parameter
values in the prior distribution, tuning of the MCMC algbwits and also have monitored
convergence using trace plots and the package CODA (Pluratredr 2006). We omit all
those details for brevity.

All three models are fitted using the MCMC code developediwitiiespTi mer package.
As mentioned in Section 1.5, MCMC algorithms are run for altof 20,000 iterations of
which first 5,000 are discarded to mitigate the effect oftstgrvalues. The algorthms run
very fast taking only about 9, 16 and 3 minutes for the GP, AR@RP models respectively
in a 2.6Ghz personal computer with 4GB of RAM running 32 bindéws operating system.
Thus it is quite fast to fit the models and produce the forsaasing all the models.

The RMSE and the MAE for the seven validation days are ploiteffigure 1.4. As
expected, the RMSE and the MAE are very similar (compare themns). But we do
not see a large difference between modelling seven andefaurdays data (compare the
rows). The RMSE and MAE of the GP and AR models are very sindlad they both
have worse performance than the GPP model. This is also emdiby the CRPS values,
see Table 1.2. The nominal coverages, of the 50% and 95%saftretervals, provided in
Table 1.3, however, are not able to compare the forecastethods; but those show that
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all three methods are adequate. The average widths of thedstrintervals, see Table 1.4,
clearly shows that the GPP model is the best. This is alsorooedi by the sharpness diagram,
see Figure 1.5.

The hit and false alarm rates using all seven validation daye are provided in Table 1.5.
All three models perform very well. The hit rate increaseshasthreshold value increases
and it is actually 100% when we use the threshold value of BB.false alarm rate decreases
to zero as the threshold value is increased from 65 to 75 ppdsd rates, however, do not
discriminate between the three different forecasting wagh

The PIT diagrams for all three forecasting methods for thdays data modelling case are
provided in Figure 1.6. Here also the GPP model is the prdferhoice since its histogram is
more uniform than the other two. The same diagrams based dallimy 7-days data showed
similar patterns and hence have been omitted.

Figure 1.7 provides the marginal calibration plots of alleh models using data for 7
and 14 days. Here also the GPP model performs better thamdts and the performance
is differentiated better in the case of modelling data fordb§s. In addition, calibration
improves towards the upper tail of the distribution thatuass that the models are able to
forecast high levels of ozone concentration quite acclyrdte conclusion, we find that the
GPP model is best for forecasting among the three methodsd=yed here.

A further remark regarding the performances of the AR and @G®Bels is appropriate.
As with any approximation it can be expected that the appnate GPP model to perform
worse than the full AR model. However, the GPP model in Sactid.4 cannot be seen as
a true approximation for the AR model in Section 1.4.3 dueh® ihclusion of the auto-
regressive term in two very different manners: one at théeegl O, in (1.5) and the other at
the random effect levak; in (1.7). Thus the AR and GPP models are very different argl it i
not surprising that we do not see any strict one-way perfonaardering in our examples.

1.7 Analysisof the Full Eastern US Data Set

As mentioned in Section 1.3, we use data from 577 sites to fitrmdels and the data from
62 sites are set aside for validation purposes. The impl&tien of the GPP model requires
the selection of the number of knots. Using a similar serisitstudy that we have used in
Sahu and Bakar (2012b), but with the forecast RMSE, as theriom we compare the GPP
model with 68, 105, 156 and 269 knots which were all insiddahd boundary of the United

States. The forecast RMSE improved with the increasing kizefs, but only slightly when

the size increased to 269 from 156. Henceforth, we adopt §56eaknot size that implies a
much smaller computational burden.

For the model fitting (a data set with 14 days data) and fotawpasing 20,000 iterations,
using the same personal computer as in the previous seatiohave estimated that the GP
model will take about 40 hours, while the AR model will takenab66 hours to run. This
excludes the use of GP and AR models for forecasting next dageolevels, which must be
produced within 24 hours of computing time. The GPP modetherother hand, takes only
about 50 minutes to run the same experiment on the same pérsonputer and is the only
feasible method that we henceforth adopt.

We compare the performance of the GPP model based with thmaamed from a non-
Bayesian linear regression model with the Eta CMAQ outpuhasnly covariate, which is
a simple method that does not require advanced modellingamgutation techniques. We
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also illustrate parameter estimation and maps providingcfast surfaces.

We report the parameter estimates and their standard aeganh Table 1.6 for the model
fitting cases with 14 days data. The estimates are broadlyasifor different subsets of
fitted data. The Eta CMAQ output always remains a significaatistor with very small
standard deviation relative to the mean. The temporal ladiwa remained always near 20%.
The random effect variancg?, is always estimated to be larger than the nugget efféct
The estimate of the spatial decay parameter is 0.0024, tingsponds to an effective range
of 1250 kilometers. A similar table based on model fittingtir@ days data is omitted for
brevity.

We now compare the GPP model based forecasts with those Frerintar regression
model using the RMSESs based on validation data both from2He8&l out sites. The RMSE
values, provided in Table 1.7, are smaller for the GPP mddel the linear regression model.
Moreover, the RMSE values are smaller when the forecastimdgtris trained with 14 days
data than the same with 7 days data. The RMSE values for teedsts made by the Eta
CMAQ model are considerably higher, which justifies thisitiddal statistical modelling
effort.

The nominal coverages of the 95% forecast intervals, pealid Table 1.8, show that the
uncertainty in the forecasts based on the GPP model are agbtitHowever, the nominal
coverages for the linear model based forecasts are clog€l0&h, which shows that these
forecast intervals are too wide and this method fails to cedincertainty in the forecasts.

Table 1.8 also provides the CRPS values which turn out to igétll higher than the
values presented in Table 1.2 for the four states data. $imistisurprising since it is usually
more difficult to extrapolate in larger spatial domains. Viigdalso obtained the false alarm
and hit rates of the forecasts from the GPP model which arel®&183, respectively, when
the threshold value is 75 ppb. Clearly, the GPP model is vecyrate for forecasting and
hence, we do not consider the other diagnostics such as Thdi®iram and the marginal
calibration plots. Instead, we proceed to illustrate thredasts.

Figure 1.8 illustrates the forecast maps based on the GPEIralmthg with their standard
deviations for the the 3 days, 8th, 9th and 10th of July. Hemeh forecast map has their own
color scheme that enables us to show the full spatial variaif the forecasts. In addition,
the maps of standard deviations reveal that higher ozorasl@re associated with higher
uncertainty levels, which is a common phenomenon in ozoneartration modelling.

1.8 Conclusion

This chapter has developed Bayesian forecasting methadg thgee recently published
Bayesian hierarchical models for spatio-temporal dataM¥@CGnethods have been developed
to compute the Bayesian forecast distributions based aye lapace-time data. These
methodological developments have enabled us to add the sliforecasting routines in
the contributedR software packagespTi mer which is available fronCRAN (http://cran.r-
project.org/) and allows modelling of large space-timeadsats.

The contribution of the chapter also includes developménthethods for estimating
several forecast calibration measures using output froeniriplemented Markov chain
Monte Carlo algorithms. We have demonstrated that thesesumes are able to compare
different Bayesian forecasting methods rigorously andchaively. A forecasting method
based on a space-time model developed using a Gaussiantegrocess approximation
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has been shown to be fast and the best for the illustrativaeozoncentration forecasting
problem of the chapter.
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Tablel.l Summaries of the daily maximum ozone concentration
levels and Eta CMAQ output for the test data set described in

Section 1.3.

Minimum Mean Median Maximum
Ozone levels 0.00 50.62 50.99 113.00
CMAQ output  16.50 59.19 60.36 145.50

Tablel.2 CRPS values from modelling data from four states during July 8
(denoted as 7/8) to 14.

Values from modelling 7 days data
Models 7/8 719 7/10 7/11 7/12 7/13 7/14 7/(8-14)

GP 6.12 10.22 5.04 505 478 570 6.95 6.27
AR 6.19 1012 495 531 485 438 431 573
GPP 495 10.02 4.89 533 487 433 413 552

Values from modelling 14 days data

GP 6.14 982 533 542 521 564 6.29 6.27
AR 591 9.83 456 527 519 443 590 5.87
GPP 532 956 437 530 515 428 526 5.60
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Table1.3 Nominal coverages of the 50% and 95%
forecast intervals for the one-step ahead forecasts at the 20
randomly chosen validation sites.

Intervals

Using 7 Days Datg Using 14 Days Data
‘ 50% 95% ‘ 50% 95%
GP ‘ 51.43 95.71 ‘ 55.00 95.71
AR |50.71 9429 |50.71 93.43
GPP|50.71 94.95 | 49.71 94.00

Table1.4 Average width of the forecast intervals for the four
states data set.

Using 7 Days Datd Using 14 Days Data

Models 50%  90% ‘ 50% 90%
GP 12.76  30.95 12.57 30.69
AR 1351 32.95 13.36 32.28

GPP 1154 28.11 9.58  23.47

Table1.5 False alarm and hit rates for ozone threshold values of 65 and 75 for the
four states data set.

Using 7 days data \ Using 14 days data

Ozone levels Model Falsealarm Hit raFeFaIse alarm Hitrate

GP 092 91.67 | 0.92 91.67
65 ppb AR 459 92.50 | 1.83 92.50
GPP  3.67 91.67 | 2.75 91.67
GP 00 95.83 | 0.0 95.83
75 ppb AR 0.0 95.83 | 0.0 95.83
GPP 0.0 96.67 | 0.0 97.50
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Table1.6 Parameter estimates (mean and sd) for the models based on GPP

approximation fitted with 14 days observations for the period June 241gén

as 6/24) to July 13, 2010 from the 577 modelling sites in the whole eastern US.

Fitted Days Bo p o? ol ¢
6/24-717 Mean 4.13 0.37 040 0.24 0.49 0.0046
sd 0.20 0.03 0.04 0.005 0.04 0.0005
6/25-7/8 Mean 434 0.36 0.39 0.25 0.53 0.0042
sd 0.23 0.02 0.03 0.004 0.04 0.0004
6/26-7/9 Mean 4.68 0.33 0.39 0.25 0.57 0.0041
sd 0.33 0.03 0.04 0.006 0.05 0.0007
6/27-7/10 Mean 3.40 0.33 0.39 0.25 0.52 0.0046
sd 0.22 0.03 0.04 0.005 0.04 0.0005
6/28-7/11 Mean 474 031 035 0.25 0.60 0.0031
sd 0.17 0.02 0.04 0.005 0.05 0.0007
6/29-7/12 Mean 466 0.31 0.36 0.25 0.54 0.0037
sd 0.20 0.02 0.04 0.005 0.04 0.0003
6/30-7/13 Mean 492 0.29 0.35 0.26 0.60 0.0032
sd 0.30 0.03 0.04 0.005 0.07 0.0006

Table1.7 Values of the RMSE of the forecasts at the hold-out

sites for the simple linear model and the GPP model based on
modelling 7 and 14 days data for the whole of Eastern US. The
corresponding RMSE values for the Eta CMAQ output are also

shown.
Forecast| CMAQ | 7Days | 14 Days
\ | Linear ~ GPP| Linear GPP
7/8| 2052| 12.16 10.34| 10.97 10.30
7/9| 19.68| 1225 10.79] 1159 10.04
7/10| 16.36| 9.87 859 949 8.13
711| 1551 855 817| 869 7.98
7112 ‘ 13.12 ‘ 8.99 8.67‘ 8.44  8.17
7/13| 20.36| 12.70 10.85/ 13.95 9.83
7/14| 18.10| 964 9.20| 1025 9.05




Bayesian Forecasting Using Spatio-temporal Models with Applications to®©@oncentration
Levels in the Eastern United States 19

Table1.8 Nominal coverages of the 95% forecast intervals using the linear afdn@flels
and the CRPS values for the hold out data for the GPP model for the whstlere US data set.

Forecast 7/8 7/9 7/10 7/11 7/12 7/13  7/14  7/(8-14)
Nominal coverage of the 95% forecast intervals using thealirmodel

7Days 99.94 99.80 99.44 100.00 100.00 99.07 98.15 099.11
14 Days 99.94 98.50 97.59 100.00 100.00 97.50 98.15 98.64

Nominal coverage of the 95% forecast intervals using the Béel

7Days 9355 93.75 9496 9516 9496 93.75 9556 94.53
14 Days 94.62 94.30 94.84 95.05 94.62 9484 09484 94.74

CRPS values
7 Days 10.05 798 6.52 6.79 7.12 718 7.11 754
14 Days 9.43 7.25 589 6.80 6.93 6.94 6.74 7.5

* Fitted locations
+ Validation locations

Figurel.l A plot of the 639 (62 validation and 577 model fitting) ozone monitoring sitethén
eastern US.
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Figure1l.2 Side by side box-plots of the observed daily maximum ozone concentteviels and Eta
CMAQ output for 21 days from all 639 sites in the eastern US.

Figure1.3 Map of the four states, Ohio, Indiana, lllinois and Kentucky. 147 ozomaitoring
locations are superimposed.



Bayesian Forecasting Using Spatio-temporal Models with Applications to®©@oncentration
Levels in the Eastern United States 21

RMSE
1

RMSE

Figure1.4 Plots of RMSE and MAE based on modelling 7 days data (top row) and 14 dzty
(bottom row).
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Figure 1.5 Sharpness diagram using: (a) 7 days data (b) 14 days data.
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Figure1.6 PIT diagrams for (a) GP, (b) AR and (c) GPP models using 14 daydatataodelling.
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Figure 1.7 Marginal calibration plots for all the models using (a) 7 days data (b) ¥4 data for
modelling.
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Figure1.8 Maps showing the forecasts and their standard deviations for July & 9@Gin 2010.
Observed ozone levels are also superimposed on the forecast mapa telected number of sites
only, to avoid clutter.



