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SUMMARY

The world’s climate is to a large extent driven by the transport of heat and fresh water in the oceans. Regular
monitoring, studying, understanding and forecasting of temperature and salinity at different depths of the oceans
are a great scientific challenge. Temperature at the ocean surface can be measured from space. However salinity
cannot yet be measured by satellites, and space-based measurements can only ever give us values at the surface.
Until recently temperature and salinity measurements within the oceans have had to come from expensive research
ships. The Argo float program has been funded by various nations to collect actual measurements and rectify this
problem.

A Bayesian hierarchical model is proposed in this paper describing the spatio-temporal behavior of the joint
distribution of temperature and salinity levels. The model is obtained as a kernel-convolution effect of a single
latent spatio-temporal process. Additional terms in the mean describe non-stationarity arising in time and space.
Predictive Bayesian model selection criteria have been used to validate the models using data for the year 2003.
Illustrative annual prediction maps along with their uncertainty maps are also obtained. The Markov chain Monte
Carlo methods are used throughout in the implementation. Copyright © 2007 John Wiley & Sons, Ltd.

key words: hierarchical model; Markov chain Monte Carlo; non-stationary spatio-temporal process; North At-
lantic; oceanography

1. INTRODUCTION

The Argo float program, see for example www.argo.ucsd.edu, is designed to measure the tempera-
ture and salinity of the upper 2000 m of the ocean globally. Eventually it is planned to have 3000
floats deployed across all ocean basins and during 2006 that number should have been deployed.
The North Atlantic already has the planned number, while more distant oceans such as the South
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Pacific have until recently been under-represented. Each float is programmed to sink to a depth of
1000 m drifting at that depth for about 10 days. After this period the float sinks a further kilome-
ter to a depth of 2000 m and adjusting its buoyancy rises to the surface, measuring temperature and
conductivity (from which we derive salinity) on the way. Once at the surface, the data and the po-
sition of the float are transmitted via a satellite, this gives scientists access to near real-time data.
After transmitting the data the float sinks back to its ‘resting’ depth of 1000 m and drifts for an-
other 10 days before measuring another temperature and salinity profile at a different location. Argo
data are freely available via the international Argo project office, see the above website. The fo-
cus of this paper is modeling and analysis of temperature and salinity data obtained from the Argo
floats.

In recent years there has been a tremendous growth in the statistical models and techniques to
analyze spatio-temporal data. Such data arise in many contexts for example, air pollution monitor-
ing, disease mapping, economic data monitoring, and so on. Often the primary interests in analyzing
such data are to smooth and predict time evolution of some response variables over a certain spa-
tial domain. Typically, such predictions are made from data observed on a large number of variables
which themselves vary over time and space. Wikle (2003) provides a review of space-time modeling
and related issues in environmental science. More recently Gelfand et al. (2004, 2005) describe spa-
tial process modeling for univariate and multivariate spatial data. See also Sahu and Mardia (2005a),
Sahu et al. (2006, 2007), and the references therein for a recent snapshot of research activities in this
area.

The recently developed techniques of space-time modeling have not yet been applied to the joint
modeling of temperature and salinity levels observed in world oceans. Indeed, we are not aware of any
such empirical model describing both spatial and temporal variation in the literature. Higdon (1998)
models only temperature data obtained from research vessels (not Argo floats). Ferrari and Polzin (2005)
explore the role of different air–sea fluxes which influence the relationships between temperature and
salinity at the surface using data from the North Atlantic, see also other research papers co-authored by
Ferrari including Ferrari and Rudnick (2000).

The main difficulty in the modeling problem here lies in the fact that any particular location in the
ocean is never re-sampled. The Argo data are not typical examples of some number of time series
observed in fixed monitoring stations. Thus the statistical techniques often used for analyzing multiple
time series data from environmental and other land based sources, see, for example, Sahu and Mardia
(2005b), Sahu et al. (2007), are no longer useful for modeling Argo data. Analysis methods based on
some sort of spatial aggregation, for example, averaging over some grid-areas, are also unlikely to work
here since we may have only a few (much less than 10) data points observed in any particular day (the
basic time unit we work with) in the North Atlantic. Aggregation over time may also create unavoidable
problems such as heterogeneity. Moreover, such aggregation will completely mis-align the one-to-one
relationship between temperature and salinity.

The primary objective of this paper is to build models for high resolution space-time multivariate data
on ocean temperature and salinity. Toward this end we adopt a kernel-convolution approach initially
discussed by Ver Hoef and Barry (1998). In a series of papers Higdon and his co-authors have popularized
the approach by considering a discrete version of the approach, see for example Higdon (1988). We
extend his approach in several ways as we jointly model daily temperature and salinity data from the
Argo floats.

The remainder of this paper is organized as follows. Section 2 presents some important exploratory
analyses of the data in order to facilitate model development. The proposed model is developed in
Section 3. Bayesian prediction methods and development of trend analysis are detailed in Section 4.
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Model based analyses are provided in Section 5. A brief summary and future issues to explore are
given in Section 6. An appendix contains the joint and conditional posterior distributions needed for
computations.

2. DATA DESCRIPTION

Let Z1(s, t) and Z2(s, t) denote the temperature and salinity levels observed at location s and at time t.
Assume that there are N such pairs of observations. The time points at which data are observed are not
equi-lagged and we do not assume this in our modeling endeavor. Moreover, it is also possible that all
the N locations where data have been observed are different because of the moving floats. Thus every
observation is associated with a particular location s identified by the latitude (s1) and longitude (s2)
pair and a time t which is a particular day. For convenience, we shall use p = 1, . . . , N to index the
N observations so that a particular value of p is associated with a particular value of s for the spatial
locations and a particular value of t for the time points.

We consider the data observed in the North Atlantic ocean between the latitudes 20◦ and 60◦ north
and 10◦ and 50◦ west. We model all valid data observed in the year 2003. Three data sets are created
for three different layers of the ocean.

Our first data set consists of 2374 data points observed in the top layer of depth less than 50 m. We call
this the surface data set. Our second data set of 2726 observations is composed of all the observations
in between the depths of 475 and 525 m. This is the mid-layer data. The third data set consists of 2628
observations in between the depths of 975 and 1025 m. We set aside 250 randomly chosen observations
from each of the three data sets for validation purposes. Exploratory analysis has shown that there is
only negligible variation in the data due to differences of depths upto 50 m, as a result we ignore such
variation in our subsequent modeling.

2.1. Data at the surface

The spatial locations of the N = 2374 observations at the surface are plotted as points in Figure 1.
Note that there is exactly one recording of observation at each of the location. The scatter plot of the
temperature against salinity levels is given in the top panel (left) of Figure 2. This sort of quadratic
relationship between temperature and salinity is well known in the literature, see for example, Ferrari
and Rudnick (2000). There are, however, a few outlying points which can arise for various reasons
including data taken from near the mouth of a river (low salinity) and possible errors in data collection.
The first row of Figure 3 shows monthly seasonal variability in temperature and salinity. The temperature
levels vary more than the salinity levels from month to month.

2.2. Data at the mid-layer

The spatial locations for the N = 2726 observations at the mid-layer are different from those at the
surface. However, the location plot had many similar characteristics as Figure 1 and is omitted for
brevity. The scatter plot of the temperature against salinity levels is given in the top panel (right)
of Figure 2. This plot again shows the same type of quadratic relationship between temperature and
salinity as seen in the top panel (left) for the ocean surface. However, as expected the variability in both
temperature and salinity has decreased greatly, see also the range of the X-axis in each plot. The points
concentrate mainly near a theoretical quadratic relationship and there are only a few possible outliers.
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Figure 1. A map of the North Atlantic Ocean showing the 2374 observation locations at the surface layer. The spatial locations
of 36 grid points are plotted as triangles

Figure 2. Scatter plots of temperature and salinity at: the surface (top panel); mid-layer (middle panel), and the deep ocean
(bottom panel)
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Figure 3. The boxplot of the temperature and salinity levels for 12 months, at the surface (first row) and at the mid-layer (second
row). psu stands for practical salinity units

The second row of Figure 3 shows almost negligible seasonal effects in temperature and salinity as
expected. In our modeling we do not include the seasonal terms.

2.3. Data at the deep layer

As in the mid-layer we have omitted the plot showing the spatial locations of the N = 2628 observations
at the deep layer. The scatter plot of the temperature against salinity levels is given in the bottom panel
of Figure 2. This plot again shows the same type of quadratic relationship between temperature and
salinity as seen previously for the surface and mid-layer. There were not much seasonal variability either
in temperature or in salinity. The average temperature and salinity levels, however, in the months of
January and February were slightly lower than the same for the other months. As in the mid-layer there
would not be much seasonal variation at the deep ocean and we do not include the seasonal terms in
our modeling approach.

3. MODELS

We first assume the hierarchical structure:

Zj(s, t) = Yj(s, t) + εj(s, t), j = 1, 2 (1)

where Yj(s, t), j = 1, 2 are space-time processes (described below) and the error terms εj(s, t) are
independent white noise processes assumed to follow N(0, σ2

j ). Each space-time process Yj(s, t) is
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modeled as the sum of a mean process, µj(s, t), and a spatio-temporal process, vj(s, t), that is

Yj(s, t) = µj(s, t) + vj(s, t), j = 1, 2. (2)

These processes are described below.

3.1. Modeling the mean process

Ocean temperature and salinity are both affected by several factors including the latitude and longitude
of the location where those are measured. Further, as we have seen in Section 2 those may also be
affected by seasonality. Lastly, there is a quadratic relationship to be modeled between temperature and
salinity. These considerations lead to the following models.

In general we suppose that:

µj(s, t) =
nj∑
i=1

β
(j)
i u

(j)
i (s, t), j = 1, 2

where u
(j)
i (s, t) is the value of the ith regressor observed at location s and at time t; nj is the total number

of regressors for the response Zj(s, t). Specifically, we assume that the mean level for temperature is
given by:

µ1(s, t) = β
(1)
1 + β

(1)
2 s1 + β

(1)
3 s2 + β

(1)
4 s1s2 +

15∑
i=5

β
(1)
i u

(1)
i−3(s, t)

where the monthly seasonal indicators are given by

u
(j)
i (s, t) =

{
1 if time t is in the ith month

0 otherwise.

The mean process for the salinity levels is modeled conditionally on temperature as follows:

µ2(s, t) = β
(2)
1 + β

(2)
2 s1 + β

(2)
3 s2 + β

(2)
4 s1s2 +

15∑
i=5.

β
(2)
i u

(2)
i−3(s, t) + β

(2)
16 z1(s, t) + β

(2)
17 z2

1(s, t).

The above quadratic model has been justified previously in Section 2.

3.2. Kernel-convolution effects

The spatio-temporal process vj(s, t), for both j = 1 and 2 is thought to be induced by kernel-convolution
effects of a single latent spatio-temporal process x(ω, τ) where ω denotes a spatial location and τ denotes
a time point. The same latent process x(ω, τ) used in both v1(s, t) and v2(s, t) induces dependence
between the data pairs Z1(s, t) and Z2(s, t).
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Let Kj(ds, dt), j = 1, 2 denote the joint kernel in space and time where ds and dt are the distances
in space and in time, respectively. Let ωl, l = 1, . . . , L denote the grid locations where the spatial
smoothing kernels will be centered; similarly let τm, m = 1, . . . , M denote the equi-spaced time points
where the temporal kernels will be centered. Now we write:

vj(s, t) =
L∑

l=1

M∑
m=1

Kj(‖s − ωl‖, |t − τm|) x(ωl, τm) (3)

where ‖s − ωl‖ denotes the geodetic distance between the locations s and ωl. In this paper we work
with

Kj(ds, dt) = Cj(ds) Rj(dt)

where Cj(ds) is a kernel in space and Rj(dt) is a kernel in time for each j = 1, 2. Let φ
(j)
s > 0, φ(j)

t > 0
denote the decay parameters in the jth spatial and temporal kernel, respectively. Although other choices
are possible we illustrate with

Cj(ds) = exp{−φ
(j)
s ds} and Rj(dt) = exp{−φ

(j)
t dt}

corresponding to exponential covariance functions. The parameters φ’s determine the decay rate of the
associated spatial and temporal correlations.

The latent process x(ω, τ) is assumed to have zero mean with a separable covariance structure (see
e.g., Mardia and Goodall, 1993). That is,

Cov
{
x(ωl, τm), x(ωl′ , τm′ )

} = σ2
x ρs(‖ωl − ωl′ ‖; φsx)ρt(‖τm − τm′ ‖; φtx). (4)

In addition, the two ρs are taken to be exponential covariance functions, that is, ρ(d; φ) = exp(−φd).
After some preliminary investigation and tuning by using many runs of the Gibbs sampler we take
φtx = 1 and φsx = 0.001 which correspond to an assumption of a smooth process with a spatial range
of 3000 km and a temporal range of 3 days approximately. (The range is defined as the approximate value
of the distance, d ≈ − log(0.05)/φ where φ is the decay parameter.) These values provide adequate
model validation, see Subsection 5.1 and imply a smooth latent process x(ω, τ).

Ideally, φ = (
φ

(1)
s , φ(1)

t , φ
(2)
s , φ(2)

t

)′ should be estimated within the Bayesian model as well. However,
in a classical inference setting it is not possible to consistently estimate all the parameters φ and σ2 in
a typical model for spatial data with a covariance function belonging to the Matèrn family, see Zhang
(2004). Moreover, Stein (1999) shows that spatial interpolation is sensitive to the product σ2φ but not
to either one individually. In our Bayesian inference setup using Gibbs sampling joint estimation is
often poorly behaved due to weak identifiability and extreme slow mixing of the associated Markov
chains under vague prior distributions for φ. In addition, the full conditional distribution for any of the
decay parameters is not conjugate and sampling those in a Gibbs sampler requires expensive likelihood
evaluations in each iteration. These difficulties are exacerbated by the large number of locations–time
point combinations we work with here as well as the desire to do spatial prediction over the large
rectangular box in Figure 1 covering most of the North Atlantic Ocean. In Section 5 we shall choose
optimal values of φ using a validation mean-square error criterion and estimate the variances conditional
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on those values. Note that the full conditional distributions of the variances are conjugate under the
assumption of conjugate prior distributions.

In our implementation we have taken L = 36 and M = 12, although we have experimented with
other choices with both smaller and larger values. The points ωl are taken as the co-ordinates (latitude
and longitude) of the grid points. The τm values are chosen to be 12 equidistant time points between 1
to 365 days. These choices provided acceptable predictions and validations without making the MCMC
algorithm too slow, see Subsection 5.1. The spatial locations of the 36 grid points are shown as triangles
in Figure 1.

Let � denote the vector of unknown regression coefficients β
(j)
i , i = 1, . . . , nj, j = 1, 2. Denote

the unknown parameters by θ = (
�, σ2

x , σ2
1 , σ2

2

)′
. We assume that, a priori, the βs are independent

with distribution N(0, A2). We take A2 to be large for vague prior specification. For the three vari-
ance parameters σ2

x , σ2
1 , and σ2

2 we assume independent inverse gamma prior distributions, IG(a, b)
(with mean b/(a − 1)) setting a = 2 and b = 1 to have proper prior distributions with mean 1 and
infinite variance. Let π(θ) denote the product of the prior densities for �, σ2

x , σ2
1 , and σ2

2 . The joint
posterior distribution is the product of the likelihood and prior specifications and is provided in the
appendix.

4. PREDICTION DETAILS

4.1. Prediction at any given time point

The modeling in Section 3 allows us to interpolate the spatial surface at any time point t′ which can be
in the past or the future. More precisely, using Equations (1) and (2), for a new location s′ at time t′,
Zj(s′, t′) is conditionally independent of z given vj(s′, t′) with its distribution given by

Zj(s′, t′) ∼ N
(
µj(s′, t′) + vj(s′, t′), σ2

j

)
. (5)

The posterior predictive distribution of Zj(s′, t′) is obtained by integrating over the unknown parameters
in Equation (5) with respect to the joint posterior distribution, that is,

π
(
Zj(s′, t′)|z) =

∫
π

(
Zj(s′, t′)|x, θ

)
π (θ, x|z) dx dθ, j = 1, 2 (6)

where x denotes the collection of all the x(ωl, τm) values. When using MCMC methods to draw samples
from the posterior, the predictive distribution (6) is sampled by composition; draws from the posterior,
π(θ, x|z) enable draws for Z1(s′, t′) and subsequently Z2(s′, t′).

4.2. Annual predictions

It is of interest to develop methodology for average annual prediction surfaces both for temperature and
salinity. The annual predictions are to be obtained using the predictive distributions similar to Equation
(6) with the following modifications. The annual averages should be obtained by averaging the model
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for daily data, specifically for a new location s′ the annual average is given by:

Zj(s′) = 1

T

T∑
t=1

Zj(s′, t)

where T is the number of days in a year, either 365 or 366 depending on whether the year is a leap year.
From model (5) we have that:

Zj(s′) ∼ N

(
µ̄j(s′) + v̄j(s′),

σ2
j

T

)
(7)

where

µ̄j(s′) = 1

T

T∑
t=1

µj(s′, t) and v̄j(s′) = 1

T

T∑
t=1

vj(s′, t)

Note that

v̄j(s′) = 1

T

T∑
t=1

vj(s′, t)

= 1

T

T∑
t=1

L∑
l=1

M∑
m=1

Kj(‖s − ωl‖, |t − τm|) x(ωl, τm)

=
L∑

l=1

M∑
m=1

Cj(‖s − ωl‖) x(ωl, τm)
1

T

T∑
t=1

Rj(|t − τm|).

Thus it is straightforward to calculate v̄j(s′) for j = 1, 2. The calculation of µ̄1(s′) is also straightforward,
since it is given by:

µ̄j(s′) = β
(1)
1 + β

(1)
2 s1 + β

(1)
3 s2 + β

(1)
4 s1 s2 +

15∑
i=5

β
(1)
i ū

(1)
i (s′)

where ū
(1)
i (s′) = 1

T

∑T
t=1 u

(1)
i (s′, t). Now

µ̄2(s′) = β
(2)
1 + β

(2)
2 s1 + β

(2)
3 s2 + β

(2)
4 s1 s2 +

15∑
i=5

β
(2)
i ū

(2)
i−3(s) + β

(2)
16 z̄1(s′) + β

(2)
17

1

T

T∑
t=1

z2
1(s′, t).

The quantity
∑T

t=1 z2
1(s′, t) can only be calculated exactly, if we have the predictions for each s′ and

t = 1, . . . , T . However, due to the large number of spatial prediction locations s′ and large value of T this
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is a huge computational burden. Instead, following Sahu et al. (2006) we shall use an approximation.
In particular, we shall use

1

T

T∑
t=1

{
z1(s′, t) − z̄1(s′)

}2 ≈ 1

B

∑
j=1

{
z1(s′, tj) − z̄1B(s′)

}2

where B is a number much less than T and the sequence tj is an equally spaced sub-sequence of
{1, . . . , T } and z̄1B(s′) = ∑B

j=1 z1(s′, tj)/B. In our implementation we take B = 4 and take the 4 days
equally spaced in the year. See Sahu et al. (2006) for more details in this regard.

Once the parameters in Equation (7) have been sampled we use the predictive distribution, analogous
to Equation (6), given by:

π
(
Zj(s′)|z) =

∫
π

(
Zj(s′)|x, θ

)
π (θ, x|z) dx dθ, j = 1, 2.

5. SUMMARY OF ANALYSIS

5.1. Model choice and validation

As mentioned in Section 3 the four decay parameters in φ = (
φ

(1)
s , φ

(1)
t , φ

(2)
s , φ

(2)
t

)′ are to be chosen by
cross validation. For this we consider the validation mean-square error

VMSE = 1

250

250∑
p=1

(
Zp − Ẑp

)2

Table 1. The optimal decay parameters and the associated approximate range values in kilometers

Temperature Salinity

φ(1)
s Range φ(2)

s Range

Surface 0.008 375 0.005 600
Mid-layer 0.004 750 0.003 1000
Deep 0.0005 6000 0.001 3000

Table 2. The proportion of 250 validation observations lying within the 95% prediction intervals

Temperature Salinity

Surface 0.94 0.97
Mid-layer 0.92 0.94
Deep 0.95 0.97
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Table 3. The estimates of the parameters for surface temperature

Mean SD 95% interval

β
(1)
1 23.043 0.781 (21.547, 24.538)

β
(1)
2 (latitude) −0.152 0.012 (−0.179, −0.134)

β
(1)
3 (longitude) −0.439 0.016 (−0.463, −0.407)

β
(1)
4 (interaction) 0.011 0.0004 ( 0.010, 0.011)

β
(1)
5 (February) −1.353 0.597 (−2.618, −0.255)

β
(1)
6 (March) −1.777 0.506 (−2.909, −0.850)

β
(1)
7 (April) −1.636 0.507 (−2.768, −0.712)

β
(1)
8 (May) −0.841 0.506 (−1.985, 0.085)

β
(1)
9 (June) 0.870 0.508 (−0.279, 1.795)

β
(1)
10 (July) 2.744 0.506 (1.582, 3.666)

β
(1)
11 (August) 4.137 0.503 (2.996, 5.053)

β
(1)
12 (September) 4.086 0.504 (2.953, 4.992)

β
(1)
13 (October) 2.870 0.504 (1.728, 3.787)

β
(1)
14 (November) 1.072 0.506 (−0.088, 1.998)

β
(1)
15 (December) −0.053 0.649 (−1.189, 0.873)

σε 1.699 0.026 (1.649, 1.752)
σx 0.847 0.372 (0.404, 1.907)

Table 4. The estimates of the parameters for surface salinity

Mean SD 95% interval

β
(2)
1 35.982 0.151 (35.707, 36.316)

β
(2)
2 (latitude) −0.004 0.003 (−0.010, 0.002)

β
(2)
3 (longitude) −0.001 0.006 (−0.011, 0.013)

β
(2)
4 (interaction) 0.001 0.0001 (0.0, 0.0006)

β
(2)
5 (February) −0.021 0.122 (−0.287, 0.198)

β
(2)
6 (March) −0.082 0.102 (−0.311, 0.076)

β
(2)
7 (April) −0.083 0.102 (−0.315, 0.073)

β
(2)
8 (May) −0.173 0.102 (−0.406, −0.020)

β
(2)
9 (June) −0.358 0.103 (−0.600, −0.202)

β
(2)
10 (July) −0.592 0.104 (−0.838, −0.435)

β
(2)
11 (August) −0.789 0.104 (−1.039, −0.636)

β
(2)
12 (September) −0.837 0.104 (−1.088, −0.685)

β
(2)
13 (October) −0.701 0.103 (−0.943, −0.548)

β
(2)
14 (November) −0.448 0.102 (−0.689, −0.292)

β
(2)
15 (December) −0.313 0.102 (−0.543, −0.161)

β
(2)
16 (Temperature) −0.011 0.008 (−0.024, 0.004)

β
(2)
17 (Temperature2) 0.004 0.0002 (0.0034, 0.0044)

σε 0.355 0.006 (0.344, 0.366)
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where Zp and Ẑp denote the pth datum set aside for model validation purposes (see Section 2) and its
mean predicted value respectively.

A full search for the four dimensional optimal value of φ within a grid of any reasonable size for three
different models (surface, mid-layer, and deep) is computationally prohibitive. From many preliminary
Gibbs sampling run of the models, we have found that the VMSE is not sensitive to changes in the
temporal decay parameters, φ

(1)
t and φ

(2)
t when those are fixed near 1. Henceforth, we adopt this value

which correspond to a temporal range of approximately 3 days since exp(−3) ≈ 0.05.
For the remaining two parameters, φ

(1)
s and φ

(2)
s , we search for optimal values so that the ranges are

in between 300 to 6500 km. The optimal values and the associated ranges in kilometers are presented
in Table 1. For the surface data, the optimal value of the range for temperature is about 375 km while
for salinity it is about 600 km. This may seem to be surprising since there exist nonlinear relationships
between ocean temperature and salinity. However, the relationships are not one-to-one and for observed
data the exact relationships may not hold as the observations may be noisy and are not collected always
at ‘laboratory conditions’. The optimal range values for the other two layers become large as depth

Figure 4. Validation plots at the three layers. The vertical bars represent 95% prediction intervals and the actual observations are
shown as points. A broken vertical bar shows that the corresponding observation is outside the prediction interval. The proportions

of 250 validation observations contained within the prediction intervals are also labeled on the plot
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increases and are reported in the last two rows of Table 1. These values are intuitively sensible as the
ocean characteristics change very slowly in the mid and deep ocean. Henceforth we work with these
optimal values.

We now turn to validate the models for three different depths with the optimal spatial decay parameters
chosen above. Recall that we have set aside 250 observations (temperature and salinity values) from
each of three sets of data. Figure 4 plots the validation 95% prediction intervals as vertical bars and
actual observations as points. A broken vertical line implies that the observation is not contained within
the prediction interval. The proportions of 250 validation observations contained within the prediction
intervals are labeled on the plot as well. These are also given in Table 2. The proportions are in the range
0.92–0.97 and show a better coverage provided by salinity intervals. This is expected since salinity
varies less than temperature. Overall, this shows that the models are performing adequately for out of
sample validated predictions.

Table 5. The estimates of the parameters for mid-layer temperature

Mean SD 95% interval

β
(1)
1 23.357 1.120 (21.873, 25.997)

β
(1)
2 (latitude) −0.160 0.019 (−0.209, −0.133)

β
(1)
3 (longitude) −0.429 0.025 (−0.465, −0.364)

β
(1)
4 (interaction) 0.011 0.001 ( 0.009, 0.012)

σε 1.795 0.025 (1.746, 1.845)
σx 0.938 0.312 (0.459, 1.711)

Table 6. The estimates of the parameters for mid-layer salinity

Mean SD 95% interval

β
(2)
1 35.128 0.039 (35.037, 35.185)

β
(2)
2 (latitude) −0.0011 0.0006 (−0.002, 0.0001)

β
(2)
3 (longitude) 0.004 0.0007 (0.0026, 0.0051)

β
(2)
4 (Temperature) −0.040 0.0074 (−0.047, −0.019)

β
(2)
5 (Temperature2) 0.0076 0.0004 (0.007, 0.008)

σε 0.052 0.0008 (0.051, 0.054)

Table 7. The estimates of the parameters for deep layer temperature

Mean SD 95% interval

β
(1)
1 15.228 0.117 (15.000, 15.471)

β
(1)
2 (latitude) −0.120 0.002 (−0.124, −0.116)

β
(1)
3 (longitude) 0.119 0.002 (0.115, 0.124)

σε 1.147 0.016 (1.115, 1.180)
σx 0.665 0.188 (0.404, 1.135)
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Figure 5. Annual prediction maps and their standard deviations at the surface: temperature on panel (a); salinity on panel (b);
standard deviation of temperature on panel (c); standard deviation of salinity on panel (d)

5.2. Parameter estimates

We first consider the results for the surface data. Here the seasonal components are included both for
temperature and salinity. The parameter estimates for temperature are given in Table 3 and those for
salinity are given in Table 4. As expected, ocean temperatures are seen to be significantly cooler with

Table 8. The estimates of the parameters for deep layer salinity

Mean SD 95% interval

β
(2)
1 34.931 0.038 (34.823, 34.990)

β
(2)
2 (latitude) 0.002 0.0003 (0.0018, 0.003)

β
(2)
3 (longitude) 0.003 0.0002 (0.0026, 0.0036)

β
(2)
4 (Temperature) −0.065 0.006 (−0.074, −0.048)

β
(2)
5 (Temperature2) 0.015 0.0004 (0.014, 0.016)

σε 0.067 0.001 (0.065, 0.069)
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Figure 6. Annual prediction maps and their standard deviations at the mid-layer: temperature on panel (a); salinity on panel (b);
standard deviation of temperature on panel (c); standard deviation of salinity on panel (d)

less salinity at higher latitudes. The same conclusion holds for higher longitudes as well but this effect
is somewhat negated by the positively significant interaction parameter. There is more variability in the
temperature than the salinity levels as seen by the estimates of the σ2’s.

The parameter estimates of monthly seasonal components agree with the patterns seen in Figure 3,
namely temperatures in July–October are higher than the remaining months. The salinity levels do not
vary a great deal from month to month, although the months of August, September, and October are
the months with lowest salinity levels after adjusting for temperature.

The parameter estimates for the mid-layer data set are given in Tables 5 and 6 and those for the deep
layer data set are given in Tables 7 and 8. As mentioned before, the monthly seasonal terms have not been
included for these two layers. The effect of latitude and longitude on salinity levels gets considerably
weaker at higher depths. However, these effects continue to remain significant for temperature at higher
depths. The effect of longitude at deep layer is seen to be positive where the interaction parameter
between latitude and longitude is not present since this was not significant. There is less variability in
temperature at the deep layer than the other two layers, as expected.
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5.3. Prediction

As mentioned before we have only a few data points to obtain prediction maps for a particular day.
The daily prediction maps will have a large amount of uncertainty associated with them. Besides, we
have validated a large number of site-wise daily predictions in all three layers of the ocean. That is why
we do not report the maps of daily prediction, instead we turn to the annual summaries. The annual
predictions of mean temperature and salinity are reported in Figures 5–7. The predictions show two
distinct ocean currents: the cooler polar currents and the warmer equatorial currents. The predictions for
the deep ocean, however, show that the two ocean characteristics are much less variable at this depth, as
would be expected. The associated uncertainty maps are also provided in the figures. In general these
maps show that there is less variability in predictions at the sites near to the sampling locations. Also as
expected, variability increases for the prediction sites which are further away from the sampling sites,

Figure 7. Annual prediction maps and their standard deviations at the deep ocean: temperature on panel (a); salinity on panel
(b); standard deviation of temperature on panel (c); standard deviation of salinity on panel (d)
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see the standard deviation maps around the three corners, south–west, south–east, and north–east where
there are few or no sampling sites, see Figure 1 as well.

We have not found comparable annual prediction maps from any other project. The Coriolis project
(http://www.coriolis.eu.org/) produces a 10-day near real-time analysis of the data. Their system uses
an objective analysis scheme. In essence this involves kriging on residuals from a prior mean. This is
taken from the world ocean atlas 2001. In contrast to the results presented here they do not take into
account the temporal aspects of the problem producing a separate analysis for each 10-day period.

6. DISCUSSION

In this paper we have formulated joint models for temperature and salinity levels observed at three
different depths of the North Atlantic. We have shown how to use this model to obtain annual temperature
and salinity maps along with the associated uncertainty maps. The empirical model-based techniques
have been adequately verified by validating a large number of held out data. The empirical models
are useful since salinity cannot yet be measured by satellites, and space-based measurements can only
ever give us values at the surface. In future work, we plan to investigate a joint model capturing the
space-time variation in the joint relationships between temperature and salinity levels at all three depths.
Recently developed anisotropic and non-stationary models see, for example, Fuentes and Smith (2001),
Schmidt and O’Hagan (2003), Pintore and Holmes (2004).
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Sahu SK, Mardia KV. 2005b. A Bayesian Kriged-Kalman model for short-term forecasting of air pollution levels. Journal of the
Royal Statistical Society Series C 54: 223–244.

Copyright © 2007 John Wiley & Sons, Ltd. Environmetrics 2008; 19: 509–528
DOI: 10.1002/env



526 S. K. SAHU AND P. CHALLENOR

Sahu SK, Gelfand AE, Holland DM. 2006. Spatio-temporal modeling of fine particulate matter. Journal of Agricultural, Biological,
and Environmental Statistics 11: 61–86.

Sahu SK, Gelfand AE, Holland DM. 2007. High Resolution Space-Time Ozone Modeling for Assessing Trends. Journal of the
American Statistical Association (in press).

Schmidt A, O’Hagan A. 2003. Bayesian inference for non-stationary spatial covariance structure via spatial deformations. Journal
of the Royal Statistical Society B 65: 743–758.

Stein M. 1999. Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer Verlag.
Ver Hoef JM, Barry RD. 1998. Constructing and fitting models for cokriging and multivariate spatial prediction. Journal of

Statistical Planning and Inference 69: 275–294.
Wikle CK. 2003. Hierarchical models in environmental science. International Statistical Review 71: 181–199.
Zhang H. 2004. Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. Journal of the

American Statistical Association 99: 250–261.

APPENDIX : JOINT AND CONDITIONAL POSTERIOR DISTRIBUTIONS

Let us define

XM×L =




xω1,τ1 xω2,τ1 · · · xωL,τ1

xω1,τ2 xω2,τ2 · · · xωL,τ2

...
...

...
...

xω1,τM xω2,τM · · · xωL,τM


 .

We concatenate the columns of the matrix X to obtain the vector x. Let �sx and �tx denote the spatial and
temporal correlation matrices of the x(ω, τ) process. That is, for l, l′ = 1, . . . , L and m, m′ = 1, . . . , M,
we have:

(�sx)ll′ = ρsx(ωl − ωl′ ; φsx), (�tx)mm′ = ρtx(m − m′; φtx).

Now the prior specification for the x(ω, τ) process, π
(
x|σ2

x

)
, is seen to be

x ∼ N
(

0, σ2
x �sx ⊗ �tx

)

where ⊗ denotes the Kronecker product.
The log-likelihood is written as:

l(θ, x; z) = −N

2
log(σ2

1 ) − N

2
log(σ2

2 ) − 1

2

2∑
j=1

1

σ2
j

N∑
p=1

{
zj(s, t) − µj(s, t) − vj(s, t)

}2 + C

where z denotes all the data and C is a constant free of θ and x. In the above log-likelihood recall that
we use p to index a space-time combination denoted by s and t.

The joint posterior distribution is now given by:

π(θ, x|z) ∝ exp[l(θ, x; z)]π(x|σ2
x )π(θ).
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The complete conditional distributions needed for Gibbs sampling are derived from π(θ, x|z) and
are given below. Let us define

K(s)′
jp = (

Cj(d(sp, ω1)), . . . , Cj(d(sp, ωL))
)

K(t)′
jp = (

Rj(d(tp, τ1)), . . . , Rj(d(tp, τM))
)

for j = 1, 2 and p = 1, . . . , N. For each j = 1, 2 define the N × ML matrix:

Kj =




(
K(s)

j1 ⊗ K(t)
j1

)′

...(
K(s)

jp ⊗ K(t)
jp

)′

...(
K(s)

jN ⊗ K(t)
jN

)′
.




Now Equation (3) is equivalently written as:

vj = Kjx (8)

The log-likelihood contribution for x is now given by:

−1

2

2∑
j=1

1

σ2
j

(
zj − �j − Kjx

)′ (zj − �j − Kjx
)

where zj and �j are vectors of order N with elements zj(s, t) and µj(s, t). Therefore, the complete
conditional distribution for sampling x is normal with mean ξ and covariance 	 where

ξ = 	

2∑
j=1

1

σ2
j

K′
j(zj − �j) and covariance 	−1 = 1

σ2
x

�−1
sx ⊗ �−1

tx +
2∑

j=1

1

σ2
j

K′
jKj.

The complete conditional distribution of β
(j)
i is normal with mean

ζ
(j)
i


 1

σ2
j

N∑
p=1

u
(j)
i (s, t)

{
zj(s, t) − µj(s, t) + β

(j)
i u

(j)
i (s, t) − vj(s, t))

}

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and variance

ζ
(j)
i =


 1

σ2
j

N∑
p=1

u
(j)
i (s, t)2 + 1

A2




−1

.

This sampling scheme updates the components of � one after another. However, � can be sampled in
a single block as well to obtain faster convergence at additional programming cost.

We also obtain the following complete conditional distributions by straightforward calculations:

1

σ2
j

∼ G


N

2
+ a, b + 1

2

N∑
p=1

{
zj(s, t) − µj(s, t) − vj(s, t)

}2


 ,

1

σ2
x

∼ G

(
LM

2
+ a, b + x′�−1

sx ⊗ �−1
tx x

)

where G(a, b) denotes the gamma distribution with mean a/b.
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