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Summary. Motivated by the problem of predicting chemical deposition in eastern USA at weekly,
seasonal and annual scales, the paper develops a framework for joint modelling of point- and
grid-referenced spatiotemporal data in this context. The hierarchical model proposed can
provide accurate spatial interpolation and temporal aggregation by combining information from
observed point-referenced monitoring data and gridded output from a numerical simulation
model known as the ‘community multi-scale air quality model’.The technique avoids the change-
of-support problem which arises in other hierarchical models for data fusion settings to combine
point- and grid-referenced data. The hierarchical space–time model is fitted to weekly wet
sulphate and nitrate deposition data over eastern USA. The model is validated with set-aside
data from a number of monitoring sites. Predictive Bayesian methods are developed and
illustrated for inference on aggregated summaries such as quarterly and annual sulphate and
nitrate deposition maps. The highest wet sulphate deposition occurs near major emissions
sources such as fossil-fuelled power plants whereas lower values occur near background mon-
itoring sites.

Keywords: Change-of-support problem; Hierarchical model; Markov chain Monte Carlo
sampling; Measurement error model; Spatial interpolation; Stochastic integrals

1. Introduction

The combustion of fossil fuel produces a wide variety of chemicals, including such gases as
sulphur dioxide and nitrogen oxides. These gases are emitted to the air, transformed to acidic
compounds and then returned to the Earth. Most of the acid deposition in eastern USA can be
attributed to the release of sulphur dioxide and nitrogen oxides from large fossil-fuelled power
plants. When delivered by precipitation, such as rain, snow or fog, the process is called wet
sulphate and nitrate deposition. Wet deposition is responsible for damage to lakes, forests and
streams.

The primary objective of this study is to develop a high resolution model for wet chemical
deposition that offers better inference than is currently possible by using just National Atmos-
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pheric Deposition Program (NADP) (nadp.sws.uiuc.edu) wet deposition measurements
and classical interpolation techniques. The model proposed uses deposition and precipitation
data from NADP monitoring sites and output from a computer simulation model that is known
as the ‘community multi-scale air quality (CMAQ) model’ (epa.gov/asmdnerl/CMAQ) on a
12 km × 12 km grid. The CMAQ model uses variables, such as power station emission volumes,
meteorological information and land use, to predict average levels of deposition. However, it
is well known that these predictions are biased; the monitoring data provide more accurate
deposition information. The mismatch in the spatial domains for the point- and grid-referenced
computer output is often alluded to as the ‘change-of-support problem’ and creates challenges
in modelling and model fitting; see later for more details. Combining information from disparate
sources is a relatively new activity in modelling air and deposition data, but it is fundamental to
providing improved information for environmental decisions and enabling greater understand-
ing of the processes that underlie deposition.

The contribution of this paper is the development of a joint model by combining a condi-
tionally auto-regressive (CAR) model for the gridded CMAQ data and a space–time process
model for observed point level data. Model components are linked by using latent space–time
processes in a Bayesian hierarchical modelling set-up. All predictive inference is performed by
using the point level model. A key feature of our strategy is avoidance of stochastic integration
of the observed point level monitoring process to a grid level process.

More precisely, the average deposition level in a grid cell Aj at time t, which is denoted by
Z.Aj, t/, need not be the level that is observed at any particular site si in Aj, which is denoted
by Z.si, t/. The change-of-support problem in this context addresses converting the point level
Z.si, t/ to the grid level Z.Aj, t/ through the stochastic integral,

Z.Aj, t/= 1
|Aj|

∫
Aj

Z.s, t/ds, .1/

where |Aj| denote the area of the grid cell Aj. Fusion modelling, working with block averaging
as in equation (1), has been considered by, for example, Fuentes and Raftery (2005).

Our approach introduces a latent point level atmospheric process which is centred, in the form
of a measurement error model (MEM), on a grid-cell-based latent atmospheric process. The
latent processes are introduced to capture point masses at zero with regard to deposition whereas
the MEM circumvents the stochastic integration. In particular, the point level observed data
represent ‘ground truth’ whereas gridded CMAQ output is expected to be biased. As a result,
the MEM enables calibration of the CMAQ model. The opposite problem of disaggregation, i.e.
converting the grid level computer output denoted by Z.Aj, t/ to point level outputs Z.si, t/, is
not required. The only assumption is that Z.Aj, t/ is a reasonable surrogate for Z.si, t/ if the site
si is within the grid cell Aj. (This is confirmed by empirical evidence; see the discussion about
Fig. 5 in Section 2.)

The amount of wet deposition is directly related to precipitation—there can be no deposition
without precipitation. Hence, accurate predictions here require utilization of precipitation
information. Note that both the precipitation and the deposition data have atomic distributions,
i.e. they are continuous random variables with positive mass at zero. Our proposal is to build a
model for deposition based on precipitation which can handle these atoms. We introduce a con-
ceptual latent space–time atmospheric process which drives both precipitation and deposition
as assumed in the mercury deposition modelling of Rappold et al. (2008). However, Rappold
et al. (2008) did not address the fusion problem with modelled output. Rather, they used a
point level joint process model, specified conditionally for the atmospheric, precipitation and
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deposition processes. We incorporate a huge amount of CMAQ numerical model output data
at 12-km-grid scale.

The wet deposition model is applied separately to the wet sulphate and wet nitrate deposition.
There is high positive correlation between the compounds because of their dependence on
precipitation but our interest here is to predict the sulphate and nitrate depositions separately.
The model is fitted at point level spatial resolution and weekly temporal resolution, enabling
spatial interpolation and temporal prediction of deposition as well as aggregation in space or
time to facilitate seeing patterns and trends in deposition.

Our fully model-based approach removes many of the shortcomings of inverse distance
weighting (IDW), which was used by the NADP to predict annual spatial patterns of wet
deposition; see nadp.sws.uiuc.edu/isopleths/annualmaps.asp. The IDW method
interpolates a deposition value at a new site by taking weighted means of depositions at data sites;
the weights are inversely proportional to the square of the distance between the interpolation
site and the data sites. Hence, these interpolations are most accurate near the data sites. However,
IDW has serious limitations:

(a) it cannot accommodate covariate information;
(b) handling of missing observations by simple averaging of available observations is ad hoc

and fails to take account of variability in these observations;
(c) it is not possible to associate any sort of uncertainty with estimated quarterly or annual

totals, i.e. to provide uncertainty maps for the region;
(d) it does not recognize the problem of point mass at 0 (ordinary kriging suffers similar prob-
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Fig. 1. Map of the study region: �, modelled NADP sites; A–H, the eight validation sites



80 S. K. Sahu, A. E. Gelfand and D. M. Holland

50

100

150

200

Fig. 2. Map of total annual precipitation in 2001

lems and, by ignoring uncertainty in model parameters, tends to underestimate predictive
variability);

(e) modelling at an annual scale is possible but sacrifices process understanding that is
available at a weekly resolution.

In recent years there has been a surge of interest in developing methods for modelling space–
time data. Hierarchical Bayesian approaches for spatial prediction of air pollution have been
developed; see, for example, Brown et al. (1994), Huerta et al. (2004), Le and Zidek (1992), Sahu
and Mardia (2005), Sahu et al. (2006, 2007, 2009) and Wikle (2003). However, there are only
a handful of references which have discussed models for wet deposition. Haas (1990a, b, 1995,
1996) used statistical methods including moving window regression, kriging and co-kriging
and spatiotemporal modelling to study various aspects of depositions. Oehlert (1993) used a
spatiotemporal model to estimate trend in annual sulphate depositions. Bilonick (1985) used
classical geostatistical methods to model the space–time covariance structure of wet sulphate
deposition. Grimm and Lynch (2004) developed a high resolution model for wet sulphate and
nitrate deposition using precipitation and many topographic variables observed over a dense
grid. Rappold et al. (2008) modelled wet mercury deposition data. Fuentes and Raftery (2005)
offered the only fusion of data work in this area. However, their analysis is not dynamic and
fitting their model with a large number of grid cells becomes computationally infeasible, as we
clarify below.

The remainder of this paper is organized as follows. In Section 2 we describe the available
data. Modelling developments are presented in Section 3. Prediction details are discussed in
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Fig. 3. Box plots of weekly depositions: (a) wet sulphate; (b) wet nitrate

Section 4. Section 5 provides the modelling results and analyses. A few summary remarks
are provided in Section 6 and Appendix A contains the computational details for Gibbs sampling.

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss

2. Exploratory analysis

We have weekly deposition and precipitation data for the 52 weeks in the year 2001 from 128
sites in eastern USA; see Fig. 1 for their locations. We use data from n = 120 sites for model
estimation and prediction and the data for the remaining eight sites are used for validation.
The validation sites are marked as A–H in Fig. 1 and have been chosen on the basis of several
considerations. The eight sites are spread across the study region without forming clusters. The
validation sites are some distance away from nearest data sites; in fact the distance between a
validation site and its nearest data site ranges from 40 km to 186 km. More specifically, sites
A and D are chosen because they fall in a high precipitation area (see Fig. 2 for the annual
precipitation map). Site H is chosen because it is in an area where annual deposition is higher
than average. There are nine missing observations (out of a total of 416 = 8×52) in the validation
data set, most of which are for week 52, the end of the year holiday period in the USA.

There are 6240 .=120×52/ observations in our modelling data set in total. For precipitation
and deposition, 536 .≈8:6%/ of these were missing. The precipitation and deposition values in
507 location–week combinations (out of the remaining 5704) were 0. The deposition values in
additional 119 location–week combinations were also recorded as missing. Hence, there are 655
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Fig. 4. Deposition against precipitation on the log-scale: (a) wet sulphate; (b) wet nitrate

location–week combinations (≈10:5%) where deposition values were missing. We note that at
each location and week combination either both the two types of deposition values are positive
or both are 0, i.e. one cannot be 0 without the other being 0 as well. We also note that positive
precipitation necessarily implies positive deposition (which sometimes can be very small).

The boxplots of the weekly sulphate and nitrate depositions in units of kilograms per hectare
are plotted in Fig. 3. The labels on the horizontal axes are the last week of the months. Fig. 3
confirms the well-known fact that depositions levels are higher on average for the wetter spring
and summer months than the dryer winter months; see for example, Brook et al. (1995). Strong
linear relationships between deposition and precipitation on the log-scale are seen in Fig. 4.

We model weekly CMAQ output from J =33390 grid cells covering our study region yielding
1736280 modelled values for the year. There is some evidence of a linear relationship on the
log-scale between observed deposition and CMAQ model output for the cell containing the
observation location, especially for higher values; see Fig. 5. The association between the two is
degraded towards the lower end of the scale owing to zero values which have been replaced by
a small positive number to avoid taking the logarithm of 0. This is done for data presentation
purposes only.

For spatial prediction we have weekly precipitation data from 2827 predictive sites covering
our study region. A map of the annual total precipitation (in centimetres) is provided in Fig. 2.
Areas in the south-west corner of the map received more precipitation than others. However, in
the model fitting we used only the precipitation data from the 120 NADP monitoring sites where
we have deposition data. In principle, we could attempt to introduce the full set of precipitation
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Fig. 5. Deposition at the NADP sites against the CMAQ values in the grid cell covering the corresponding
NADP site on the log-scale: (a) wet sulphate; (b) wet nitrate

data into our modelling but this will add substantially to the computation (see expression (6) in
Section 3.2) with little expected gain.

We have examined empirical variograms and their smoothed fits for many different versions
of aggregated data as well as for residuals after fitting regression models for log-deposition
values on log-precipitation and log-CMAQ values. The variograms revealed clear evidence of
spatial dependence and suggested ranges between 500 and 1500 km. In our model fitting we
choose optimal values of the range parameters by using validation methods. Throughout the
paper we use the geodetic distance (see, for example, Banerjee et al. (2004), chapter 1) between
two locations with given latitudes and longitudes.

3. Modelling wet deposition

We develop the wet deposition model in two stages described in Sections 3.1 and 3.2 respectively
and provide a directed acyclic graph in Fig. 6. At the end of Section 3.2 we briefly discuss what
a fusion model using block averaging (as in equation (1)) would look like, with an associated
directed acyclic graph in Fig. 7. Section 3.3 discusses the prior distributions and records the
joint posterior distribution.

3.1. First-stage specification
Let P.si, t/ and Z.si, t/ denote the observed precipitation and deposition (either sulphate or



84 S. K. Sahu, A. E. Gelfand and D. M. Holland

MEM

Q (Aki, t)

(CMAQ model output)

(point)
Regional atmospheric driver 

centring process (areal)
Regional atmospheric

P (si, t) Z (si, t)

U (si, t)

d  (si, t)
V (si, t)

b (si)
h (si, t)

V (Aki, t)

Y (si, t) X (Aki, t)

(observed precipitation) (observed deposition)

Fig. 6. Graphical representation of the model (the MEM handles Q.Aki
, t/ >0, Z.si , t/ D0 or Q.Aki

, t/ D0,
Z.si , t/ > 0): , , point level random variable; �, , areal level random variable; , , observed random
variables; , �, latent unobserved variable

nitrate) respectively at a site si, i=1, . . . , n, in week t, t =1, . . . , T . We suppose that P.si, t/ and
Z.si, t/ are driven by a conceptual point level latent atmospheric process, denoted by V.si, t/, and
both take the value 0 if V.si, t/ < 0 to reflect that there is no deposition without precipitation,
i.e.

P.si, t/=
{

exp{U.si, t/} if V.si, t/> 0,
0 otherwise,

.2/

and

Z.si, t/=
{

exp{Y.si, t/} if V.si, t/> 0,
0 otherwise.

.3/

The random variables U.si, t/ and Y.si, t/ are thus taken as log(observed precipitation) and
log(observed deposition) respectively when V.si, t/ > 0: The models that are described below
will specify their values when V.si, t/�0 and/or the corresponding P.si, t/ or Z.si, t/ are missing.
Introduction of the V.si, t/ process is made to accommodate the point masses; a model without
the V s, e.g. setting P.si, t/ = exp{U.si, t/} if and only if U.si, t/ > 0, implies a discontinuity in
P.si, t/ at U.si, t/=0.

Let Q.Aj, t/ denote the CMAQ model output at grid cell Aj for week t, j =1, . . . , J . Similarly
to expression (3) we suppose that Q.Aj, t/ is positive if a conceptual areal level latent atmospheric
process, denoted by Ṽ .Aj, t/, is positive,

Q.Aj, t/=
{

exp{X.Aj, t/} if Ṽ .Aj, t/> 0,
0 otherwise.

.4/
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h (si, t) V (si, t)
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Y (si, t)

Z (si, t)

P (si, t)

Q (Aki, t)

X (Aki, t)

a (si)

V (Aki, t)

Y (true)(si, t)

Z (true)(si, t)

Fig. 7. Graphical representation of a fusion model: block averaging avoids the need for MEM; there is no
QV .Aki

, t/ process

The values of X.Aj, t/ when Ṽ .Aj, t/�0 will be given by the model that is described below. As
computer model output, there are no missing values in the Q.Aj, t/.

Let P, Z and Q denote all the precipitation values, wet deposition values and the CMAQ
model output respectively. Similarly define the vectors U, Y and X collecting all the elements
of the corresponding random variable for i=1, . . . , n and t =1, . . . , T . Let V and Ṽ denote the
vectors collecting the elements V.si, t/, i = 1, . . . , n, and Ṽ .Aj, t/, j = 1, . . . , J , respectively, for
t =1, . . . , T .

The first-stage likelihood that is implied by the definitions (2)–(4) is given by

f.P, Z, Q|U, Y, X, V, Ṽ/=f.P|U, V/f.Z|Y, V/f.Q|X, Ṽ/ .5/

which takes the form
T∏

t=1

(
n∏

i=1
[1exp{u.si,t/}1exp{y.si,t/}I{v.si, t/> 0}]

J∏
j=1

[1exp{x.Aj ,t/}I{ṽ.Aj, t/> 0}]
)

where 1x denotes a degenerate distribution with point mass at x and I.·/ is the indicator function.

3.2. Second-stage specification
In the second stage of modelling we begin by specifying a spatially coloured regression model
for log-precipitation based on the latent process V.si, t/. In particular, we assume the model

U.si, t/=α0 +α1V.si, t/+ δ.si, t/, .6/
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where δt = .δ.s1, t/, . . . , δ.sn, t//′ for t =1, . . . , T is an independent Gaussian process following the
N.0, Σδ/ distribution; Σδ has elements σδ.i, j/=σ2

δ exp.−φδdij/, which is the usual exponential
covariance function, where dij is the geodetic distance between sites si and sj. Using vector
notation, this specification is equivalently written as

Ut ∼N.α01+α1Vt , Σδ/

where Ut = .U.s1, t/, . . . , U.sn, t//′ and Vt = .V.s1, t/, . . . , V.sn, t//′ and 1 denotes a vector with all
elements 1 (of appropriate order).

To model Y.si, t/, we assume that

Y.si, t/=β0 +β1U.si, t/+β2V.si, t/+{b0 +b.si/}X.Aki , t/+η.si, t/+ ".si, t/, .7/

for i = 1, . . . , n and t = 1, . . . , T where, unless otherwise mentioned, Aki is the grid cell which
contains the site si.

The error terms ".si, t/ are assumed to follow N.0,σ2
" / independently, providing the so-called

nugget effect. The reasoning for the rest of the specification in equation (7) is as follows. The
term β1U.si, t/ is included because of the strong linear relationships between log-deposition and
log-precipitation; see Fig. 4. The term β2V.si, t/ captures any direct influence of the atmospheric
process V.si, t/ on Y.si, t/ in the presence of precipitation.

The exploratory analyses that were presented earlier also provided evidence for possible
linear relationships between log-deposition and log-CMAQ values. To specify a rich class of
locally linear models we may think of a spatially varying slope for the regression of Y.si, t/ on
log-CMAQ values X.Aj, t/, which is specified as {b0 + b.si/}X.Aki , t/ in equation (7). Writing
b = .b.s1/, . . . , b.sn//′ we propose a mean 0 Gaussian process for b, i.e.

b ∼N.0, Σb/

where Σb has elements σb.i, j/=σ2
b exp.−φbdij/.

The term η.si, t/ provides a spatially varying intercept which can also be interpreted as a
spatiotemporal adjustment to the overall intercept parameter β0. We assume that

ηt ∼N.0, Ση/, t =1, . . . , T ,

independently where ηt = .η.s1, t/, . . . , η.sn, t//′ and Ση has elements ση.i, j/=σ2
η exp.−φηdij/.

We can consider replacing η.si, t/ with η.si/. The pure spatial term will fail to capture the
between-week variability in the intercept; see Carroll et al. (1997) for a related discussion.
However, it does provide a common term for all weekly predictions yielding possibly appropriate
increased uncertainty in long-term averaging; see Stein’s discussion to Carroll et al. (1997).

The regression model (7) is now equivalently written as

Yt ∼N.ϑt ,σ2
" In/

where Yt = .Y.s1, t/, . . . , Y.sn, t//′ and ϑt =β01+β1Ut +β2Vt +b0Xt +Xtb +ηt where Xt is the
n-dimensional vector with ith element given by X.Aki , t/ and Xt is a diagonal matrix whose ith
diagonal entry is X.Aki , t/, i=1, . . . , n, and In is the identity matrix of order n.

The CMAQ output X.Aj, t/ is modelled by using the latent process Ṽ .Aj, t/ as follows:

X.Aj, t/=γ0 +γ1Ṽ .Aj, t/+ψ.Aj, t/, j =1, . . . , J , .8/

where ψ.Aj, t/∼N.0,σ2
ψ/ independently for all j =1, . . . , J , t =1, . . . , T and σ2

ψ is unknown. In
vector notation, this is given by

Xt ∼N.γ01+γ1Ṽt ,σ2
ψIJ /
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where Xt = .X.A1, t/, . . . X.AJ , t//′ and Ṽt = .Ṽ .A1, t/, . . . Ṽ .AJ , t//′; see the partitioning of Ṽt

below equation (9) regarding the order of the grid cell indices 1, . . . , J .
We now turn to specification of the latent processes V.si, t/ and Ṽ .Aj, t/. Note that it is possible

to have Z.si, t/ > 0 and Q.Aki , t/= 0 and vice versa since Q.Aki , t/ is the output of a computer
model which has not used the actual observation Z.si, t/. This implies that V.si, t/ and Ṽ .Aki , t/

can be of different signs. To accommodate this flexibility and to distinguish between the point
and areal processes we assume the simple measurement error model:

V.si, t/∼N{Ṽ .Aki , t/,σ2
v}, .9/

for i = 1, . . . , n and t = 1, . . . , T , where σ2
v is unknown. Without loss of generality we write

Ṽt = .Ṽ.1/
t , Ṽ.2/

t /′ where the n-dimensional vector Ṽ
.1/

t contains the values for the grid cells
where the n observation sites are located and Ṽ

.2/

t contains the values for the remaining J −n

grid cells. The specification (9) can now be written equivalently as

Vt ∼N.Ṽ
.1/

t ,σ2
vIn/, t =1, . . . , T:

The latent process Ṽ .Aj, t/ is assumed to follow a first-order auto-regressive process in time
and a CAR process in space, i.e.

Ṽ .Aj, t/=ρ Ṽ .Aj, t −1/+ ζ.Aj, t/ .10/

for j = 1, . . . , J and t = 1, . . . , T . The ζ.Aj, t/ are independent improper CAR models (see for
example Banerjee et al. (2004)) over t, i.e.

ζ.Aj, t/∼N

{
J∑

i=1
hji ζ.Ai, t/,

σ2
ζ

mj

}
.11/

where

hji =
{

1=mj if i∈ @j,
0 otherwise

and @j defines the mj neighbouring grid cells of the cell Aj.
We initiate the process (10) with

Ṽ .Aj, 0/= 1
T

T∑
t=1

X.Aj, t/,

the mean of the observed X.Aj, t/ values. Now we have the temporally vectorized auto-regressive
and spatially CAR specification:

f.Ṽt|Ṽt−1,ρ,σ2
ζ /∝ exp{− 1

2 .Ṽt −ρṼt−1/′D−1.I −H/.Ṽt −ρṼt−1/} .12/

where D is diagonal with the jth diagonal entry given by σ2
ζ=mj. In summary, the second-stage

specification is given by
T∏

t=1
{f.Yt|Ut , Vt , Xt , ηt , b, θ/f.ηt|θ/f.Ut|Vt , θ/f.Vt|Ṽ.1/

t , θ/

×f.Xt|Ṽt , θ/f.Ṽt|Ṽt−1, θ/}f.b|θ/

where θ denote the parameters α0, α1, β0, β1, β2, b0, γ0, γ1, ρ, σ2
δ , σ2

b , σ2
η , σ2

" , σ2
ψ, σ2

v and σ2
ζ .

Fig. 6 provides a directed graphical model for our entire specification, noting the measurement
error specification.

As noted in Section 1, hierarchical modelling for fusion between monitoring data and model
output data has been proposed in Fuentes and Raftery (2005). Their approach introduces a
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model for latent true deposition Z.true/.si, t/. In our setting the true deposition would be driven
by a regional atmospheric process as in Section 3.1. To connect the process to the grid cell model
output data, block averaging is required. Fig. 7 shows the analogue of our modelling using this
approach. The key point is the direction arrow linking the V.si, t/ and the Ṽ.Aki , t/, an MEM
versus block averaging. Hence, the infeasibility of fitting the model in Fig. 7 in the case of a
large number of grid cells emerges. For the CMAQ output that we use, 33390 block averages are
required, and, in fact, these are required for each t =1, . . . , 52 weeks. (We note further that the
fusion model of Fuentes and Raftery (2005) has not actually been implemented in a dynamic
setting.) The advantage of the model in Fig. 6 is clear. We must only fit the measurement error
model to the 120 monitoring sites while doing cheap CAR updates for the Ṽ s. Generally, our
approach will be preferred for environmental data settings since there will always be many more
grid cells than monitoring stations, and this will be further exacerbated by computer models
seeking higher spatial resolution.

We attempt further clarification of the V - and Ṽ -processes as well as justification for the
measurement model (9). Again, our specification does not view Ṽ.Aki , t/ as a block average of
V.si, t/ over Aki . Rather, it views V.si, t/− Ṽ.Aki , t/ as a deviation from the areal average and we
assume that these are independent across the si where V and Ṽ are two distinct mean 0 spatial
processes operating at different spatial scales. Careful algebraic calculation, using the models in
expressions (6)–(10), shows that .U.si, t/, Y.si, t// given V.si, t/ and X.Aki , t/ is a bivariate space–
time Gaussian process which is captured through point level space–time random effects, δ.si, t/

and η.si, t/. But, under the models for V.si, t/|Ṽ.Aki , t/ and X.Aki , t/|Ṽ.Aki , t/, we can margin-
alize over V and X to obtain a marginal bivariate Gaussian process, .U.si, t/, Y.si, t// given Ṽ .
In other words, the Ṽ.Aki , t/ introduces spatial random effects at the areal unit scale. So, the
overall specification is a multiscale space–time process with uncorrelated effects introduced in
an additive manner. Such specifications have a long history in geostatistics (see, for example,
Goulard and Voltz (1992) and Gotway and Young (2002)). Adopting such a specification is a
familiar device for avoiding block averaging.

3.3. Prior and posterior distributions
We now complete the Bayesian model specification by assuming prior distributions for all the
unknown parameters. We assume that, a priori, each of α0, α1, β0, β1, β2, b0, γ0, γ1, and ρ is
normally distributed with mean 0 and variance 104, which is essentially a flat prior specification.
The inverse of the variance components 1=σ2

δ , 1=σ2
b , 1=σ2

η , 1=σ2
" , 1=σ2

ψ, 1=σ2
v and 1=σ2

ζ are all as-
sumed to follow the gamma distributionG.ν,λ/having meanν=λ. In our implementation we take
ν=2 andλ=1, implying that these variance components have prior mean 1 and infinite variance.

The logarithm of the likelihood times the prior in the second stage conditional on the decay
parameter values and up to an additive constant is given by

− nT

2
log.σ2

" /− 1
2σ2

"

T∑
t=1

.yt −ϑt/
′.yt −ϑt/− nT

2
log.σ2

η/− 1
2σ2

η

T∑
t=1

η′
tS

−1
η ηt

− nT

2
log.σ2

δ /− 1

2σ2
δ

T∑
t=1

.ut −α01−α1vt/
′S−1
δ .ut −α01−α1vt/

− nT

2
log.σ2

v/− 1
2σ2

v

T∑
t=1

.vt − ṽ.1/
t /′.vt − ṽ.1/

t /′

− JT

2
log.σ2

ψ/− 1

2σ2
ψ

T∑
t=1

.xt −γ01−γ1ṽt/
′.xt −γ01−γ1ṽt/
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− JT

2
log.σ2

ζ /− 1
2

T∑
t=1

.ṽt −ρṽt−1/′D−1.I −H/
(
ṽt −ρṽt−1

)

− n

2
log.σ2

b/− 1

2σ2
b

b′S−1
b b + log{f.θ/}

where f.θ/ is the prior distribution of θ and Σδ =σ2
δSδ, Σb =σ2

bSb and Ση =σ2
ηSη. The choice

of the decay parameters is discussed below.

3.4. Choice of the decay parameters
Ideally, φ= .φδ,φb,φη/ should be estimated within the Bayesian model as well. However, in a
classical inference setting it is not possible to estimate both φ and σ2 consistently in a typical
model for spatial data with a covariance function belonging to the Matérn family; see Zhang
(2004). Moreover, Stein (1999) showed that spatial interpolation is sensitive to the product σ2φ
but not to either parameter individually. In our Bayesian inference set-up using Gibbs sampling,
joint estimation is often poorly behaved because of weak identifiability and extremely slow
mixing of the associated Markov chains under vague prior distributions for φ. In addition, the
full conditional distribution for each of the decay parameters is not conjugate so sampling them
in a Gibbs sampler requires expensive likelihood evaluations in each iteration. These difficulties
are exacerbated by the large volume of data that we model here. See, for example, Sahu et al.
(2006, 2007) and references therein for more in this regard.

Thus, with little interest in the φ and with little ability for the data to inform about them, and
in the interest of well-behaved model fitting, we use an empirical Bayes approach based on the
set-aside validation data from eight stations to select φ. We search for optimal values of φ in a
three-dimensional grid by using the validation mean-square error VMSE given by

VMSE= 1
nv

8∑
i=1

T∑
t=1

{Z.sÅi , t/− Ẑ.sÅi , t/}2 I{Z.sÅi , t/} .13/

where Ẑ.sÅi , t/ denotes the model-based validation prediction estimate (see Section 4 for details)
for Z.sÅi , t/; sÅi denotes the ith validation site; I{Z.sÅi , t/} equals 1 if Z.sÅi , t/ has been observed
and 0 otherwise, and nv is the total number of available observations at the eight validation
sites. For our data set nv =407 since there were nine missing observations; see Section 2.

We searched for the optimal values of φη, φδ and φb in a three-dimensional grid formed
of the values 0:002, 0:003, 0:006, 0:012 and 0.06 corresponding to spatial ranges of 1500,
1000, 500, 250 and 50 km, separately for the sulphate and nitrate deposition models. (The data
cannot be expected to inform about the range to a finer resolution.) The combination of values
φη=0:006,φδ=0:003 and φb =0:006 provided the best VMSE-values for both the sulphate and
the nitrate model. The corresponding optimal ranges are 500, 1000 and 500 km respectively.
VMSE is not at all sensitive to the choice of the decay parameters near these best values. As a
result, although it is possible to refine the grid in a neighbourhood of the best value further we do
not explore beyond our grid here. In fact, this insensitivity is also supported by our investigation
of the empirical variograms that were discussed in Section 2. Estimation of the remaining
parameters proceeds conditionally on the optimal choice of φ.

4. Predicting deposition at a new location

The models that were developed in Section 3 allow us to interpolate the spatial deposition surface
at any given week in the year. Consider the problem of predicting Z.s′, t′/ in week t′ at any new
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location s′ falling on the grid cell A′. The prediction is performed by constructing the posterior
predictive distribution of Z.s′, t′/ which in turn depends on the distribution of Y.s′, t′/ as
specified by equation (7) along with the associated V.s′, t′/. We estimate the posterior predictive
distribution by drawing samples from it.

Several cases arise depending on the nature of information that is available at the new site
s′ at week t′. If precipitation information is available and there is no positive precipitation,
i.e. p.s′, t′/=0, then we have Z.s′, t′/=0 and no further sampling is needed, since there can be
no deposition without precipitation. Now suppose that there is positive precipitation, i.e.
p.s′, t′/> 0; then set u.s′, t′/= log{p.s′, t′/}. We need to generate a sample Y.s′, t′/. We first gen-
erate V.s′, t′/∼N{Ṽ .A′, t′/,σ2

v} following the measurement error model (9). Note that Ṽ .A′, t′/
is already available for any grid cell A′ (within the study region) and week t′ (in the current year)
from model fitting; see equation (10). Similarly, X.A′, t′/ is also available either as the logarithm
of the CMAQ output, log{Q.A′, t′/}, if Q.A′, t′/ > 0 or from the Markov chain Monte Carlo
(MCMC) imputation when Q.A′, t′/=0; see Appendix A. To sample η.s′, t′/ we note that(

η.s′, t′/
ηt′

)
∼N

{(
0
0

)
,σ2

η

(
1 Sη,12

Sη,21 Sη

)}
,

where Sη,12 is 1×n with the ith entry given by exp{−φη d.si, s′/} and Sη,21 =S′
η,12. Therefore,

η.s′, t′/|ηt′ , θ∼N{Sη,12S−1
η ηt′ ,σ

2
η.1−Sη,12S−1

η Sη,21/}: .14/

If the term b.s/ is included in the model we need to simulate b.s′/ conditional on b and model
parameters. To do this we note that(

b.s′/
b

)
∼N

{(
0
0

)
,σ2

b

(
1 Sb,12

Sb,21 Sb

)}
,

where Sb,12 is 1×n with the ith entry given by exp{−φη d.si, s′/} and Sb,21 =S′
b,12. Therefore,

b.s′/|θ∼N{Sb,12S−1
b b,σ2

b.1−Sb,12S−1
b Sb,21/}: .15/

If it is desired to predict Z.s′, t′/ where P.s′, t′/ is not available, we proceed as follows. We gen-
erate V.s′, t′/∼N{Ṽ .A′, t′/,σ2

v} following the measurement error model (9). If this V.s′, t′/ < 0,
then we set both p.s′, t′/ and Z.s′, t′/ to 0. If, however, V.s′, t′/> 0 we need additionally to draw
U.s′, t′/ by using the precipitation model (6). For this we note that(

U.s′, t′/
Ut′

)
∼N

{(
α0 +α1V.s′, t′/
α01+α1Vt′

)
,σ2

δ

(
1 Sδ,12

Sδ,21 Sδ

)}
,

where Sδ,12 is 1×n with the ith entry given by exp{−φδ d.si, s′/} and Sδ,21 =S′
δ,12. Therefore,

U.s′, t′/|Ut′ , θ∼N{μ.s′, t′/,σ2
δ .1−Sδ,12S−1

δ Sδ,21/}, .16/

where

μ.s′, t′/=α0 +α1 V.s′, t′/+Sδ,12S−1
δ .Ut′ −α01−α1vt′/:

If Z.s′, t′/ is not inferred to be 0 then we set it to be exp{Y.s′, t′/}. If we want the predictions of
the smooth deposition surface without the nugget term we simply ignore the nugget term ".s′, t′/
in generating Y.s′, t′/. Annual and quarterly predictions at a location s′ are obtained by forming
sums of Z.s′, t′/ appropriately; for example the annual deposition is g.s′/=ΣT

t′=1Z.s′, t′/. Thus
at each MCMC iteration j we have Z.j/.s′, t′/ and g.j/.s′/. We use the median of the accumulated
MCMC samples and the lengths of the 95% intervals to summarize the predictions. The median
as a summary measure preserves the one-to-one relationships between summaries for Y and
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Fig. 8. b.s/ surface for sulphate, (b) b.s/ surface for nitrate, (c) standard deviations of the b.s/ surface for
sulphate and (d) standard deviations of the b.s/ surface for nitrate

Z. Exploratory data analyses of the MCMC output showed rapid convergence for the models
adopted. For making inference, we used 10000 MCMC iterations after discarding the first 5000
iterations.

5. Analysis

5.1. Model choice and validation
For model choice we compared several possible models by using the predictive Bayesian model
selection criterion of Gelfand and Ghosh (1998). The additional term b.si/ X.Aki , t/ did not
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improve model fitting greatly. Only a few b.si/ were significant; see Fig. 8 where the estimated
b.s/ surfaces along with their standard deviation surfaces have been plotted. Fig. 8 shows that
the b.s/ values are very small in absolute value relative to the standard deviations. Moreover, the
Gelfand and Ghosh criterion was much smaller for the model without the b.si/X.Aki , t/ term.
Henceforth, we worked with the submodel corresponding to b.s/=0. This is also explained by
the fact that, after accounting for the very large influence of precipitation and a spatiotemporally
varying intercept term, the model cannot detect a significant spatially varying contribution of
the CMAQ output towards explaining deposition. This, however, does not mean that there
is no spatiotemporal bias in the CMAQ output—such biases can simply be recovered by the
differences between the model-based predictions and the CMAQ output. If the intention is to
recover the bias by using a parametric form then a model omitting the most significant regressor,
i.e. precipitation, must be specified.

For the purposes of model checking Fig. 9 provides predictions at the validation sites versus
the observed values along with the validation prediction intervals on the original scale for all the
407 available observations in the eight validation sites. Note that more than one observation can
assume the same value owing to truncation. Some negative bias is seen in sulphate prediction
for very few (two or three out of 407) extreme large values which are very far out in the tail. This
is not a major concern, however, since the corresponding predictive intervals are larger than the
remaining intervals showing more uncertainty. Note also that these predictive intervals include
the 45

◦
line which shows that the bias is not statistically significant.
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Fig. 9. Validations versus the observed values at the eight reserved sites (j, validation prediction interval):
(a) wet sulphate; (b) wet nitrate
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The overall VMSE is 0.035 for sulphate and 0.015 for nitrate, and 95% and 96% of the nominal
95% validation prediction intervals contain the true sulphate and nitrate depositions respectively.
Overall, the validation analysis indicates that the model does not appear to introduce any bias
in prediction and performs very well for out-of-sample predictions.

5.2. Results and interpretation
Table 1 provides the parameter estimates. There is a very strong effect of precipitation since the
parameter β1 is significant for both sulphate and nitrate. Note that β2 is not significant (for both
models), which is probably attributable to the fact that the regional atmospheric driver process
influences deposition directly through precipitation. Although small, the significant estimates
of b0 indicate that the point level data and the gridded CMAQ output are strongly correlated,
corroborating the exploratory analysis in Fig. 5. As expected the parameters α1 and γ1 are
significant, showing that the point level atmospheric process is strongly related to precipitation
and the areal level atmospheric process is a very good predictor of CMAQ output. There is strong
temporal dependence between the CMAQ output in successive weeks (estimates of ρ= 0:7688
and ρ=0:7492 for sulphate and nitrate respectively with standard deviation 0.0012 and 0.0013).
The estimates of the variance components show that the magnitude of the nugget effect σ2

" is
the smallest. Hence more variation is explained by the spatiotemporal intercept process η.s, t/

than the pure error process ".s, t/.
Maps of annual depositions are provided in Figs 10(a) and 11(a). For sulphate deposition the

VMSE for the annual totals from the eight reserved sites for the IDW method is 20.4 whereas
the same for our model is 8.1. The corresponding statistics for the nitrate deposition are 3.5
and 1.3. These show better performance by our model both for the sulphate and for the nitrate
depositions. The highest wet sulphate deposition occurs near major emissions sources such
as fossil-fuelled power plants (which are concentrated in the Ohio River Valley) and mobile

Table 1. Estimation of the parameters for the sulphate and nitrate models†

Parameter Results for sulphate deposition Results for nitrate deposition

Mean Standard 95% CI Mean Standard 95% CI
deviation deviation

α0 −0.4497 0.0871 (−0.6189, −0.2733) −0.3548 0.0596 (−0.4695, −0.2369)
α1 0.1787 0.0379 (0.1017, 0.2499) 0.1522 0.0336 (0.0843, 0.2161)
β0 −1.9414 0.0196 (−1.9784, −1.9012) −1.9976 0.0192 (−2.0344, −1.9605)
β1 0.9103 0.0067 (0.8972, 0.9240) 0.8412 0.0070 (0.8274, 0.8553)
β2 0.0029 0.0062 (−0.0091, 0.0151) 0.0040 0.0060 (−0.0078, 0.0159)
b0 0.0490 0.0053 (0.0386, 0.0599) 0.0535 0.0062 (0.0409, 0.0652)
γ0 −3.0768 0.0035 (−3.0836, −3.0700) −3.2177 0.0033 (−3.2242, −3.2112)
γ1 0.8957 0.0034 (0.8891, 0.9025) 0.7368 0.0033 (0.7303, 0.7433)
ρ 0.7688 0.0012 (0.7664, 0.7712) 0.7492 0.0013 (0.7468, 0.7517)
σ2
δ 2.6438 0.0602 (2.5254, 2.7631) 1.8694 0.0387 (1.7942, 1.9476)
σ2
η 0.2812 0.0101 (0.2616, 0.3010) 0.3354 0.0105 (0.3149, 0.3564)
σ2

" 0.0718 0.0057 (0.0607, 0.0832) 0.0727 0.0074 (0.0588, 0.0878)
σ2
ψ 2.5062 0.0033 (2.4997, 2.5127) 2.2148 0.0028 (2.2092, 2.2203)

σ2
v 0.8087 0.0259 (0.7601, 0.8620) 0.7821 0.0237 (0.7366, 0.8290)
σ2
ζ 0.4345 0.0011 (0.4322, 0.4367) 0.4340 0.0012 (0.4316, 0.4363)

†CI stands for equal-tailed credible intervals.
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(a)

(b)

Fig. 10. Analyses for sulphate: (a) annual model-predicted map (the observed annual totals are labelled; a
larger size of fount is used for the validation sites); (b) lengths of the prediction intervals
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(a)

(b)

Fig. 11. Analyses for nitrate: (a) annual model-predicted map (the observed annual totals are labelled; a
larger size of fount is used for the validation sites); (b) lengths of the prediction intervals
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(a) (b)

(c) (d)

Fig. 12. Sulphate prediction maps on four quarters: (a) January–March; (b) April–June; (c) July–September;
(d) October–December

sources in major population centres. Lower values occur near background monitoring sites.
These 2001 patterns are similar to those reported by Brook et al. (1995) for eastern North
America.

The lengths of the prediction intervals are provided as maps in Figs 10(d) and 11(d). As
expected, the lengths are smaller for the predictive sites near the modelling sites and also for
sites in the regions of low depositions.

The quarterly prediction maps are provided in Figs 12 and 13. Increased depositions are seen
during the spring and summer months April–September analogously to the summary Fig. 3.
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Fig. 13. Nitrate prediction maps on four quarters: (a) January–March; (b) April–June; (c) July–September;
(d) October–December

The lengths of the predictions intervals, which are plotted in Figs 14 and 15, show that the
uncertainties in quarterly maps are reasonably consistent over the seasons.

6. Discussion

The paper has developed a data fusion approach using a measurement error specification to
combine gridded CMAQ output and point level monitoring data. Model components have been
linked by using latent processes in a Bayesian hierarchical framework. We use this approach
to investigate space–time wet deposition patterns over eastern USA. Compared with the current
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(a) (b)

(c) (d)

Fig. 14. Maps showing the lengths of the 95% credible intervals for the sulphate predictions on four quarters:
(a) January–March; (b) April–June; (c) July–September; (d) October–December

practice of predicting wet deposition from the monitoring data alone by using IDW, a significant
reduction in mean-squared error, calculated over a set of validation sites, has been achieved.
Inclusion of the significant covariate precipitation improves the predictive ability of our model,
and these predictions can be expected to be better than the predictions that are based on the
IDW method since that ignores the significant covariate.

The model was initially developed for sulphate deposition, but its success led us to consider
nitrate deposition as well. The performance of the model for both sulphate and nitrate deposition
encourages its application to other constituents of wet deposition.
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(a) (b)

(c) (d)

Fig. 15. Maps showing the lengths of the 95% credible intervals for the nitrate predictions on four quarters:
(a) January–March; (b) April–June; (c) July–September; (d) October–December

It is also of interest to estimate dry deposition, which is defined as the exchange of gases,
aerosols and particles between the atmosphere and Earth’s surface. Future analyses will focus
on predicting total (wet plus dry) sulphur and nitrogen deposition. Using the total predictive
surface it will be possible to estimate deposition ‘loadings’ as the integrated volume of total
deposition over ecological regions of interest. For this, a new model for dry deposition must
be developed. If successful, this effort will lead to the first ever estimation of total deposition
loading, which is perhaps the most critical quantity for ecological assessments. Future work will
also address trends in deposition to assess whether regulation has been successful.
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Appendix A: Distributions for Gibbs sampling

A.1. Handling of the missing values
Note that the transformation equation (3) does not define a unique value of Y.si, t/ and, in addition, there
will be missing values corresponding to the missing values in Z.si, t/. Any missing value of YÅ.si, t/ is
sampled from the model value N{ϑ.si, t/,σ2

"} for i=1, . . . , n and t =1, . . . , T .
The sampling of the missing UÅ.si, t/ for the precipitation process is a little more involved. The sampling

of the missing values must be done by using model (6) conditionally on all the parameters. Since this
model is a spatial model we must use the conditional distribution of UÅ.si, t/ given all the U.sj , t/ values
for j =1, . . . , n and j �= i. This conditional distribution is obtained by using the covariance matrix Σδ of δt

and has been omitted for brevity.
Similarly, equation (4) does not define unique values of X.Aj , t/ when Q.Aj , t/=0. Those values, which

are denoted by XÅ.Aj , t/, are sampled by using model (8); XÅ.Aj , t/ is sampled from N{γ0 +γ1 ṽ.Aj , t/,σ2
ψ}.

A.2. Conditional posterior distributions of θ
Straightforward calculation yields the following complete conditional distributions:
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t /′.vt − ṽ.1/
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mj{ζ.Aj , t/− ζ̄.Aj , t/}2

]

where ζ̄.Aj , t/=ΣJ
i=1hji ζ.Ai, t/.

Let β= .β0,β1,β2/ and Gt = .1, ut , vt / so that Gt is an n×3 matrix. The full conditional distribution of
β is N.Λχ, Λ/ where

Λ−1 = 1
σ2

"

T∑
t=1

G′
tGt +10−3I3,

χ= 1
σ2

"

T∑
t=1

G′
t .yt −b0xt +Xtb +ηt /:
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The full conditional distribution of b0 is N.Λχ, Λ/ where

Λ−1 = 1
σ2

"

T∑
t=1

x′
txt +10−3,

χ= 1
σ2

"

T∑
t=1

x′
t .yt −β01−β1ut −β2vt −Xtb −ηt /:

The full conditional distribution of b is N.Λχ, Λ/ where

Λ−1 = 1
σ2

"

T∑
t=1

X′
tXt +Σ−1

b ,

χ= 1
σ2

"

T∑
t=1

X′
t .yt −β01−β1ut −β2vt −b0xt −ηt /:

The full conditional distribution of ηt for t =1, . . . , T is N.Λtχt , Λt / where

Λ−1
t = In

σ2
"

+Σ−1
η ,

χt =
1
σ2

"

.yt −β01−β1ut −β2vt −b0xt −Xtb/:

Let Gt = .1, vt / so that Gt is an n×2 matrix. The full conditional distribution of α= .α0,α1/ is N.Λχ, Λ/
where

Λ−1 =
T∑

t=1
G′

tΣ
−1
δ Gt +10−3I2,

χ=
T∑

t=1
G′

tΣ
−1
δ ut :

Let Gt = .1, ṽt / so that Gt is a J ×2 matrix. The full conditional distribution of γ = .γ0, γ1/ is N.Λχ, Λ/
where

Λ−1 = 1
σ2
ψ

T∑
t=1

G′
tGt +10−3I2,

χ=
T∑

t=1
G′

txt :

The full conditional distribution of ρ is N.Λχ, Λ/ where

Λ−1 = 1
σ2
ζ

T∑
t=1

J∑
j=1

mje
2
j, t−1 +10−3,

χ= 1
σ2
ζ

T∑
t=1

J∑
j=1

mjejtej, t−1

where ejt = ṽ.Aj , t/− v̄.Aj , t/ and v̄.Aj , t/=ΣJ
i=1hjiṽ.Ai, t/, restricted in the interval (0,1).

A.3. Conditional posterior distributions of Vt
Owing to the missing and zero precipitation values the full conditional distribution of Vt will be in a
restricted space. First, the unrestricted full conditional distribution of vt is N.Λtχt , Λt / where

Λ−1
t =β2

2

In

σ2
"

+α2
1Σ

−1
δ + In

σ2
v

,

χt =
β2

σ2
"

at +α1Σ−1
δ .ut −α01/+ 1

σ2
v

ṽ.1/
t ,
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where at = yt − β01 − β1ut − b0xt − Xtb − ηt . From this n-dimensional joint distribution we obtain the
conditional distribution V.si, t/ ∼ N.μit , Ξit /, say. If the precipitation value p.si, t/ is missing then there
will be no constraint on V.si, t/ and we sample V.si, t/ unrestricted from N.μit , Ξit /. If, however, the
observed precipitation value is zero, p.si, t/=0, we must sample V.si, t/ to be negative, i.e. we sample from
N.μit , Ξit /I{V.si, t/<0}. Corresponding to non-zero precipitation value p.si, t/>0 we sample V.si, t/ from
N.μit , Ξit /I{V.si, t/> 0}.

A.4. Conditional posterior distributions of QVt
The full conditional distribution of Ṽt = .Ṽ

.1/

t , Ṽ
.2/

t / for any t is N.Λtχt , Λt / where

Λ−1
t =

(
In=σ2

v 0
0 0

)
+γ2

1

IJ

σ2
ψ

+{1+ I.t<T/ρ2}D−1.I −H/,

χt =
(

.1=σ2
v/vt

0

)
+ γ1

σ2
ψ

.xt −γ01/+ρD−1.I −H/{ṽt−1 + I.t<T/ṽt+1}

where I.t<T/=1 if t =1, . . . , T −1 and I.t<T/=0 otherwise.
This full conditional distribution is a J -variate normal distribution where J is possibly very high

(33390 in our example) and simultaneous update is computationally prohibitive. In addition, we need
to incorporate the constraints that are implied by the first-stage likelihood specification (5). The partition
of Ṽt , however, suggests an immediate univariate sampling scheme as follows.

The conditional prior distribution for Ṽ .Aj , t/, for each j and t, from the vectorized specification (12),
as calculated above, is given by N.ξjt ,ω2

jt/ where

ω2
jt =σ2

ζ

1
mj{1+ I.t<T/ρ2} ,

ξjt = rjt +
J∑

i=1
hji{ṽ.Ai, t/− rit}

where rjt is the jth element of

rt = ρ

1+ I.t<T/ρ2
{ṽt−1 + I.t<T/ṽt+1}:

The form of the likelihood contribution for Ṽ .Aj , t/ will depend on whether Ṽ .Aj , t/ is one of Ṽ
.1/

t or
one of Ṽ

.2/

t . For each component Ṽ .Aj , t/ of Ṽt
.1/ we extract the full conditional distribution to be viewed

as the likelihood contribution from the joint distribution N.Λ.1/, tχ.1/, t , Λ.1/, t / where

Λ−1
.1/, t =

In

σ2
v

+γ2
1

In

σ2
ψ

,

χ.1/, t =
1
σ2

v

vt + γ1

σ2
ψ

.xt −γ01/:

This conditional likelihood contribution is given by N.μjt , Ξ2/ where

μjt =Ξ2

[
ṽ.Aj , t/

σ2
v

+ γ1{x.Aj , t/−γ0}
σ2
ψ

]
,

Ξ2 = 1
1=σ2

v +γ2
1 =σ2

ψ

:

For each component Ṽ .Aj , t/ of Ṽ
.2/

t the likelihood contribution is also denoted by the normal distribution
N.μjt , Ξ2/ where

μjt = x.Aj , t/−γ0

γ1
,

Ξ2 =σ2
ψ=γ2

1 :
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Now the unconstrained full conditional distribution of Ṽ .Aj , t/, according to the second-stage likeli-
hood and prior specification, is obtained by combining the likelihood contribution N.μjt , Ξ2/ and the prior
conditional distribution N.ξjt ,ω2

jt/ and is given by N.Λjtχjt , Λjt/ where

Λ−1
jt =Ξ−2 +ω−2

jt ,
χjt =Ξ−2μjt +ω−2

jt ξjt :

To respect the constraints that are implied by the first-stage specification we simulate the Ṽ .Aj , t/ to be
positive if X.Aj , t/> 0 and negative otherwise.
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