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SUMMARY

Statistical methods are needed for evaluating many aspects of air pollution regulations increasingly adopted by
many different governments in the European Union. The atmospheric particulate matter (PM) is an important air
pollutant for which regulations have been issued recently. A challenging task here is to evaluate the regulations based
on data monitored on a heterogeneous network where PM has been observed at a number of sites and a surrogate
has been observed at some other sites. This paper develops a hierarchical Bayesian joint space–time model for the
PM measurements and its surrogate between which the exact relationship is unknown, and applies the methods to
analyse spatio-temporal data obtained from a number of sites in Northern Italy. The model is implemented using
MCMC techniques and methods are developed to meet the regulatory demands. These enable full inference with
regard to process unknowns, calibration, validation, predictions in time and space and evaluation of regulatory
standards. Copyright © 2008 John Wiley & Sons, Ltd.

key words: Bayesian inference; hierarchical model; Markov chain Monte Carlo; separable spatio-temporal pro-
cess; stationarity

1. INTRODUCTION

In order to improve the air quality and to protect the human health, the European community has
defined some regulations on limit values of air pollutants, including PM10 concentration levels (pollution
particles measuring 10 micron or less in diameter and measured in �g/m3 units). These limits are being
gradually adopted by the member states of the European Union. For example, a directive has been issued
by the Italian government in 2002 which states that

1. the daily average PM10 concentration should not be over 50,
2. the daily average should not exceed 50 for more than 7 days in a year until the year 2010,
3. the annual average should not be over 40.

Statistical space–time models for data monitored over a set of monitored sites are required to examine
compliance with respect to the above directives. Moreover, sound statistical methods, based on a suitable
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model, must be developed to evaluate the above regulatory conditions for any particular site in a study
region. The primary motivation for the current paper is the lack of development of such a model and
model-based methods since the issuance of the directives in 2002. The focus here is to develop methods
for data monitored on a heterogeneous network in North Italy over a year.

The reference sampling and measurement of PM10 concentrations are based on the collection on a
filter of the PM10 fraction of ambient particulate matter (PM) and the gravimetric mass determination
which we acronymise low volume sampler gravimetric (LVG) method and/or instrument. However, in
our study region of North Italy the local authority, due to technical, administrative and historical reasons,
use a different instrument to measure PM10. They maintain a dense network of automatic monitors based
on a tapered-element oscillating microbalance (TEOM). These monitors are known to underestimate
the true PM10 levels given by the reference LVG method. Moreover, there is heterogeneity between
the two sets of measurements. Thus there is an urgent need to correct the TEOM measurements so that
those are comparable with the LVG measurements.

This paper develops a joint space time model for data provided by the above two heterogeneous
instruments, LVG and TEOM. Except for one station, called Consolata, the LVG and TEOM were
observed at completely different sites. This gives rise to a problem of spatial misalignment. Modelling
the two measurements in each site using a bivariate distribution will not be satisfactory since such an
approach will require imputation of the unobserved measurement at each site. This requires imputation
of at least 50% missing data since the sites where only LVG has been observed will have missing TEOM
measurements and the sites where only TEOM has been observed will have missing LVG measurements.
Our modelling strategy avoids the problem by incorporating a latent space–time process common to
both types of measurements. This induces dependence between the two measurements in space and
time, and enables learning of the common underlying spatio-temporal process using the heterogeneous
measurements. The model also includes seasonality effects often found in PM10 data. The full Bayesian
model, implemented using MCMC, enables: calibration for the station where both were measured,
validation at a number of sites and spatial interpolation and forecasting of PM10.

The model for daily PM10 levels allows us to aggregate to any desired spatial and temporal summary
of PM10. In particular, the annual averages and the total number of days in a year for which the daily
average exceeded 50 and their associated uncertainties are estimated. Moreover, the probability that the
annual average is greater than 40 at any particular site is spatially interpolated in our Bayesian setup. Non-
model-based interpolation of these annual averages and the extremes encourages too much smoothing
and will lead to biased results, possibly without proper estimation of the associated uncertainties, see
for example Sahu et al. (2007).

Short term space–time statistical modelling for PM10 has also been considered by Shaddick and
Wakefield (2002) and by Sun et al. (2000) from the hierarchical Bayesian point of view. Zidek et al.
(2002) developed predictive distributions on non-monitored PM10 concentrations in Vancouver, Canada.
Cressie et al. (1999) compared Kriging and Markov Random fields models in the prediction of PM10
concentrations around Pittsburgh, USA. For the PM2.5, Smith et al. (2003) proposed a spatio-temporal
model using a nonparametric approach. Kibria et al. (2002) presented a multivariate spatial prediction
methodology in a Bayesian context for the prediction of PM2.5 in Philadelphia, USA. Sahu and Mardia
(2005) present a short-term forecasting analysis of PM2.5 data in New York City during 2002: within
a Bayesian hierarchical structure, they model the spatial structure with principal kriging functions and
the time component is modelled by a vector random-walk process. Sahu et al. (2007) develop methods
for assessing trend in ozone levels using high-resolution space–time modelling.

Hauck et al. (2004) studied the calibration problem for different measuring instruments using separate
regression models for different sites and seasons. Thus their method does not allow spatial interpolation.
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The unified spatio-temporal model presented in this paper, however, allows spatial interpolation and
temporal aggregation. McBride and Clyde (2003), Fassò and Nicolis (2005) and Fassò et al. (2007) also
consider the problem of calibration using geo-statistical state-space approaches. Our methods, however,
are fully Bayesian and in some particular cases produces better results than those from Fassò and Nicolis
(2005) when applied to the same dataset from North Italy. In addition, they did not develop methods
for making inference for the annual summaries.

Sahu et al. (2006) propose a hierarchical space-time model for PM2.5 that introduces two spatio-
temporal processes, one capturing rural or background effects, the second adding extra variability
for urban/suburban locations. By weighting these two processes using population density surfaces
they obtain models with non-stationary covariance structures. They, however, model weekly averages
obtained from a single network of monitoring sites. Thus, they did not consider the problem of modelling
data from a heterogeneous network and the associated problem of calibration. However, they also
developed methods for approximating the annual averages, but here we use exact calculations based on
MCMC.

The structure of the paper is as follows. In Section 2, we provide a description of the data with
summary tables and exploratory graphics. Section 3 develops the Bayesian spatio-temporal model that
accounts for monitor type, seasonality and random effects. Bayesian prediction methods are detailed in
Section 4. Model-based data analyses are presented in Section 5. Some concluding remarks are given
in Section 6. The Appendix contains the conditional posterior distributions needed for Gibbs sampling
and predictions.

2. THE DATASET

We consider the PM10 daily concentrations for T = 365 days in the year 2003. The study region
covers approximately an area of 400 by 200 km grid and the monitors are located in three regions
in North Italy, see Figure 1. The monitoring sites were near city centres and in rural areas covered

Figure 1. The 54 monitoring sites in North Italy. The 34 LVG sites are denoted bg ‘g’ and the 20 TEOM sites are plotted
as ‘t’. The six validation sites are marked as G1, G2 (LVG) and T1, T2, T3, T4 (TEOM). The site Consolata is denoted

by ‘C’
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by the main roads. The network of sites is characterised by instrument heterogeneity: some regions
in the north have many TEOM sites and few LVG sites whilst the opposite holds for others. The
regions covering the TEOM and LVG sites, however, are not disjoint, see, for example, the sites near
Milano and further to the east. We analyse data from n = 54 stations composed of n1 = 34 LVG
monitors and n2 = 20 TEOM monitors. Out of these 19 710 (54 × 365) observations, less than 5% are
missing.

In one of the 20 TEOM monitoring stations, Consolata, denoted by C in Figure 1, we also have the
LVG measurements, but this site has not been included among the 34 LVG sites. The LVG measurements
from this site are used for model validation since the objective of this paper is to make prediction and
inference for the LVG measurements. This is because pollution standards are calculated using LVG
measurements, as mentioned in the introduction, so it is more important to validate the model and
prediction methods for the LVG measurements.

Data from six additional stations, two LVG and four TEOM labelled respectively by G1, G2, T1,
T2, T3 and T4 in Figure 1, are used for validation of the model. The station G1 is not very close
to any data monitoring site and the station T4 is a TEOM monitoring site in the middle of several
LVG sites—the nearest modelled TEOM site, Consolata, is quite a distance away. Only 1444 (65.93%)
out of 2190 (6 × 365) observations are available from these six stations. These observations are used
for validation rather than estimation due to this high percentage of missingness caused by instrument
malfunctioning.

Figure 2 provides boxplots of the data grouped by months and instrument type. The plot shows
that both the LVG and TEOM measurements are affected similarly by strong seasonal effects.
The measurements in the five winter months, November, December, January, February and March
have higher levels with higher variability. Table 1 provides the variances of LVG and TEOM mea-
surements on the original, square root and logarithmic scales for data from two seasons: sum-
mer and winter. On the log-scale, which we shall adopt for modelling, there are no significant

Figure 2. Boxplot of the PM10 concentrations by months and instrument type. The LVG measurements in month i are denoted
by ‘ig’ and the TEOM measurements are denoted by ‘it’, i = 1, . . . , 12
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Table 1. The variances of LVG and TEOM measurements on three different scales

Original Square-root Logarithm

LVG TEOM LVG TEOM LVG TEOM

Summer 253.73 204.50 1.73 1.42 0.23 0.18
Winter 1053.30 659.16 4.50 3.46 0.39 0.36

Figure 3. Time series plot of the differences between LVG and TEOM measurements in the site Consolata

differences between the summer and winter variances (the ratio of the larger to the smaller is less than
three).

The time series plot of the difference between the LVG and TEOM measurements from the station
Consolata is given in Figure 3. The plot shows that the LVG measurements are higher in the winter
months but are lower in the three summer months. In fact, this plot shows that an ad-hoc rule, often
used in practise, that LVG measurements are on average 1.3 times the TEOM measurements is unlikely
to be true. These facts justify the separate models for mean developed in Section 3.

Inspection of the data shows that variances increase with the mean levels, see Figure 4 where the
variance for each station is plotted against the mean, using data on the original, square root and log-
arithmic scales. The log-scale is seen to be the best transformation for stabilising the variance (see
also Table 1) and removing the mean–variance relationships. Thus, we choose to model data on the
logarithmic scale, however, report all predictions and their standard deviations on the original scale for
ease of interpretation. Modelling of the data using the square-root transformation gave considerable
poorer model fit and prediction.

3. MODELLING DETAILS

Let Zg(s, t) denote the logarithm of the observed LVG measurement at a location s and at time t. Recall
that we have LVG measurements from n1 = 34 stations, s1, . . . , sn1 , at each of T = 365 days. Let
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Figure 4. The variance against the mean of PM concentration levels in each of the 54 sites. Top panel is on the original scale,
middle panel is on the square-root scale and bottom panel is on the log scale. The LVG sites are denoted by ‘g’ and the TEOM

sites are denoted ‘t’

Zh(s, t) denote the logarithm of the observed TEOM measurement at a location s and at time t. There
are TEOM data from n2 = 20 stations, sn1+1, . . . , sn1+n2 , at each of T days.

First, we assume the hierarchical models:

Zg(si, t) = Yg(si, t) + εg(si, t), i = 1, . . . , n1, t = 1, . . . , T (1)

and

Zh(si, t) = Yh(si, t) + εh(si, t), i = n1 + 1, . . . , n1 + n2, t = 1, . . . , T (2)

whereYg(s, t) andYh(s, t) are true space–time processes for LVG and TEOM measurements respectively;
εg(si, t) and εh(si, t) are independent white noise processes assumed to follow N(0, σ2

g) and N(0, σ2
h),

respectively.
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We suppose that the spatio-temporal processes Yg(s, t) and Yh(s, t) have different mean structures
but are governed by a single latent spatio-temporal PM pollution process u(s, t). This zero mean spatio-
temporal process introduces dependence between the Yg and Yh processes, and these in turn influence
dependencies between the observation processes Zg(s, t) and Zh(s, t). Thus we assume that

Yg(si, t) = µg(si, t) + u(si, t), i = 1, . . . , n1, t = 1, . . . , T (3)

and

Yh(si, t) = µh(si, t) + u(si, t), i = n1 + 1, . . . , n1 + n2, t = 1, . . . , T (4)

We model the means µg(s, t) and µh(s, t) with monthly seasonal effects. We define monthly seasonal
indicators, v(t, m) as follows:

v(t, m) =
{

1 if the time t is in the mth month

0 otherwise

for t = 1, . . . , 365, m = 1, . . . , 12. Thus we have

µg(s, t) = x′
tβg, and µh(s, t) = x′

tβh

where the p(=12)-dimensional vector x′
t is given by (1, v(t, 2), . . . , v(t, 12))′, βg = (βg(1), . . . , βg(12))′

and βh = (βh(1), . . . , βh(12))′. Note that for identifiability purposes we do not include the dummy for
January, v(t, 1), in the model. Thus, the parameters βg(1) and βh(1) represent the overall means and
βg(k) and βh(k) represent the differences between the kth month and January, k = 2, . . . , 12.

Fassò and Nicolis (2005) consider the pairs of model

Zg(si, t) = µ(si, t) + εg(si, t), Zh(si, t) = α(t) + βµ(si, t) + εh(si, t)

where α(t) is an auto-regressive process. The unobserved mean process µ(s, t) was estimated by principal
fields (components) decomposition (see e.g. Mardia et al., 1998; Wikle and Cressie, 1999). However,
prediction using this approach introduces a lot of more variability through the temporally varying
random auto-regressive intercept α(t) as we shall see in Section 5. Moreover, by assigning different
mean functions in Equations (3) and (4) we introduce more flexibility in the proposed model.

Some further remarks regarding the chosen mean function are appropriate. In an attempt to improve
the mean function we have included some linear and spline functions of site characteristics such as
the latitude and longitude. These modifications did not improve the validations and forecasting at all.
Moreover, some formal Bayesian model choice criteria selected the simpler model for the mean function
adopted.

Let U be given by

UT×n =




u(s1, 1) · · · u(sn1 , 1) u(sn1+1, 1) · · · u(sn, 1)
...

...
...

...
...

...

u(s1, T ) · · · u(sn1 , T ) u(sn1+1, T ) · · · u(sn, T )
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Let the ith column of U be denoted by ui, so that U = (u1, . . . , un). We also let u denote the vector
obtained by the stacking the columns of the matrix U.

Let �s and �t denote the spatial and temporal correlation matrices of the u(s, t) process. That is, for
i, j = 1, . . . , n and k, l = 1, . . . , T , we have

(�s)ij = ρs(si − sj; φs), (�t)kl = ρt(k − l; φt)

where we assume the exponential covariance structure ρ(d; φ) = exp(−φ|d|). Also for convenience,
we assume a separable covariance structure, see for example, Mardia and Goodall (1993), for the latent
u(s, t) process. The prior specification is given by

u ∼ N
(
0, σ2

u�s ⊗ �t

)
where ⊗ denotes the Kronecker product. Formal non-Bayesian tests of separability, see for example,
Fuentes (2006) and Mitchell et al. (2005), are available for smaller datasets with replications in both
space and time. For our large dataset (about 19 000 data points) without replications in space and time
such tests are not feasible—those may require us to store nT by nT matrices. Besides our separability
and stationarity assumptions are for the latent u(s, t) process and not for the observed data process zg(s, t)
or zh(s, t). Nevertheless, we validate the assumptions as part of the full Bayesian model specification
by a large number out of sample predictions with set-aside data in Section 5.

Ideally, φ = (φs, φt)′, should be estimated within the Bayesian model as well. However, in a classical
inference setting it is not possible to consistently estimate all the parameters φ and σ2 in a typical model
for spatial data with a covariance function belonging to the Matèrn family, see Zhang (2004). Moreover,
Stein (1999) shows that spatial interpolation is sensitive to the product σ2φ but not to either one
individually. Moreover, in our Bayesian inference setup using Gibbs sampling joint estimation is often
poorly behaved due to weak identifiability and extreme slow-mixing of the associated Markov chains
under vague prior distributions for φ. In addition, the full conditional distribution of φ is not conjugate
and sampling those in a Gibbs sampler requires expensive likelihood evaluations at each iteration. In
Section 5 we shall choose optimal values of φ using a validation mean square error criterion and estimate
the variances conditional on those values. Note that the full conditional distributions of the variances
are conjugate under the assumption of conjugate prior distributions.

Denote the unknown parameters by θ = (β′
g, β

′
h, σ

2
g, σ2

h, σ2
u)′. We assume that, a priori, the βg ∼

N(0, A2I) where I denotes the identity matrix and A2 is a large positive constant so that the prior
specification is flat. Similarly, we assume βh ∼ N(0, A2I). For the three variance parameters σ2

g , σ2
h

and σ2
u we assume independent proper inverse gamma prior distributions, IG(a, b) (with a > 1, hence,

mean b/(a − 1)) to avoid having an improper posterior distribution. In our numerical example we set
a = 2 and b = 1 so that the resulting prior distribution has mean 1 and infinite variance.

Let Z and W denote respectively the observed and missing data points. The log-likelihood is given
by

l(θ, U, W; z) ∝ −n1T

2
log(σ2

g) − 1

2σ2
g

n1∑
i=1

T∑
t=1

{zg(si, t) − µg(si, t) − u(si, t)}2

−n2T

2
log(σ2

h) − 1

2σ2
h

n∑
i=n1+1

T∑
t=1

{zh(si, t) − µh(si, t) − u(si, t)}2
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Hence the log of the joint posterior distribution is given by

log
{
π(θ, U, W|z)

} ∝ l(θ, U, W; z) + log(π(βg, βh)) + log
{
π(σ2

g, σ2
h, σ2

u)
}

−nT

2
log(σ2

u) − T

2
log |�s| − n

2
log |�t| − 1

2σ2
u

u′(�−1
s ⊗ �−1

t )u

where π(βg, βh) and π(σ2
g, σ2

h, σ2
u) denote the prior distributions.

4. PREDICTION DETAILS

4.1. Calibration

For calibration purposes we want to predict LVG (or TEOM) at one of the sampled locations,
sn1+1, . . . , sn (or s1, . . . , sn1 ). To predict the LVG at a location s at a time t we see from Equations
(1) and (3) that

Zg(s, t) ∼ N
(
µg(s, t) + u(s, t), σ2

g

)
(5)

The predictions are obtained using the distribution:

π(Zg(s, t)|z) =
∫

π(Zg(s, t)|θ, U, W)π(θ, U, W|z)dWdUdθ (6)

We perform this integration using the draws from the posterior distribution π(θ, U, W|z). In particular,
at each MCMC iteration we also sample from the distribution (5). If, instead we want to predict TEOM at
one of the LVG sites s1, . . . , sn1 , we use the above methodology with obvious modifications; in particular,
we simulate a new zh(s, t) from Zh(s, t) ∼ N(µh(s, t) + u(s, t), σ2

h) at each MCMC iteration. We then
exponentiate the realisations to obtain the values in original scale.

4.2. Prediction at new locations

Analogous to Equation (5), at a new location s′ and a time point t′, Zg(s′, t′) follows N(µg(s′, t′) +
u(s′, t′), σ2

g). The posterior predictive distribution of Zg(s′, t′) given z is

π(Zg(s′, t′)|z) =
∫

π
(
Zg(s′, t′)|θ, u(s′, t′)

)
π
(
u(s′, t′)|U, σ2

u

)
π(θ, U, W|z)du(s′, t′)dWdUdθ (7)

When using MCMC methods to draw samples from the posterior, the predictive distribution (7) is
sampled by composition; draws from the posterior, π(θ, U, W|z) enable draws from π(u(s′, t′)|U, σ2

u)
and thus draws for Zg(s′, t′). (The distribution π(u(s′, t′)|U, σ2

u) is derived in the Appendix.) As before
we exponentiate the realisations and calculate the summaries to obtain the predictions in the original
scale, denoted by Ẑg,orig(s′, t′).
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4.3. Annual summaries

Using the above details we are able to predict Zg(s, t) at any location s and any time point t. Let

Z
(j)
g,orig(s, t) denote the jth MCMC iterate of the LVG value at location s and time t. The annual average

at the jth MCMC iteration is obtained by

Z̄
(j)
g,orig(s) = 1

365

365∑
t=1

Z
(j)
g,orig(s, t)

In order to estimate the probability that the annual average is greater than 40 at a site s we simply calculate
the indicator random variables I(Z̄(j)

g,orig(s) > 40). The number of days the daily average exceeding 50
at the jth MCMC iteration is obtained by calculating

N(j)
g (s) =

365∑
t=1

I
(
Z

(j)
g,orig(s, t) > 50

)

The summaries of the MCMC iterates Z̄
(j)
g,orig(s), I(Z̄(j)

g,orig(s) > 40) and N
(j)
g (s) provide the model-based

prediction and the associated uncertainties of the annual average, the probability that the annual average
is greater than 40, and the number of days the daily average exceeding 50 at a particular location s,
respectively.

5. MODEL-BASED ANALYSIS

The decay parameters φ = (φs, φt) are selected by a validation criterion. We consider data from six sites
(see Section 2) for the validation of the model. For each pair of values of φs and φt on a two-dimensional
grid we evaluate the mean square error:

MSE = 1

k

6∑
i=1

365∑
t=1

(
Zg, orig(s∗

i , t) − Ẑg, orig(s∗
i , t)

)2
I
(
Zg, orig(s∗

i , t)
)

where I
(
Zg, orig(s∗

i , t))
) = 1 if Zg, orig(s∗

i , t) has been observed and 0 otherwise and k is the total
number of available observations for validation, 1444 for our dataset, see Section 2. The optimal values
of φs and φt are found to be 0.02 and 0.75, respectively. The MSE criterion is not very sensitive to
changes in values of φ near this optimal value. These optimal values suggest that spatial correlation
decays at a distance of about 150 km while the temporal correlation decays in about 4 days—both of
these are plausible since there may be high spatial correlation in daily data and temporal correlation may
persist for 3–5 days to account for weekend/weekday effects. See Sahu et al. (2006) for more detailed
discussions regarding the choice of the decay parameters φ.

Tables 2 and 3 show the parameter estimates, their posterior standard deviations and the associated
95% credible intervals. The estimates of the variance components σ2

g, σ2
h and σ2

u show that more variation

is explained by the spatio- temporal effects than the measurements errors. Moreover, as expected σ2
g is

estimated to be higher than σ2
h. The overall mean parameter for LVG, βg(1), is significantly higher than
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Table 2. The estimates of the variance components

Mean SD 95% interval

σ2
g 0.042 0.001 (0.040, 0.044)

σ2
h 0.003 0.001 (0.002, 0.004)

σ2
u 0.181 0.003 (0.175, 0.188)

Table 3. The estimates of βg(k) and βh(k), k = 1, . . . , 12

βg(k) βh(k) βg(k) − βh(k)

Mean SD 95%CI Mean SD 95%CI 95%CI

Overall 3.82 0.04 (3.73, 3.90) 3.47 0.04 (3.37, 3.54) (0.31, 0.36)
February 0.23 0.07 (0.11, 0.40) 0.10 0.07 (−0.03, 0.27) (0.45, 0.53)
March 0.31 0.05 (0.21, 0.43) 0.23 0.05 (0.14, 0.34) (0.40, 0.48)
April −0.24 0.06 (−0.38, −0.15) −0.12 0.06 (−0.28, −0.03) (0.19, 0.28)
May −0.36 0.05 (−0.46, −0.26) −0.03 0.05 (−0.13, 0.06) (−0.01, 0.07)
June −0.41 0.06 (−0.54, −0.31) 0.04 0.06 (−0.09, 0.14) (−0.14, −0.06)
July −0.50 0.06 (−0.59, −0.36) 0.00 0.06 (−0.08, 0.14) (−0.18, −0.10)
August −0.56 0.05 (−0.66, −0.45) 0.00 0.05 (−0.09, 0.13) (−0.25, −0.16)
September −0.40 0.05 (−0.49, −0.29) −0.07 0.04 (−0.14, 0.03) (−0.02, 0.07)
October −0.33 0.05 (−0.43, −0.22) −0.21 0.05 (−0.29, −0.10) (0.19, 0.28)
November −0.26 0.07 (−0.38, −0.10) −0.17 0.08 (−0.29, 0.00) (0.22, 0.30)
December −0.22 0.06 (−0.34, −0.11) −0.18 0.06 (−0.31, −0.09) (0.28, 0.36)

the same for TEOM, βh(1) (their 95% credible intervals do not overalap), as expected. Moreover, the
95% credible intervals for the differences, βg(k) − βh(k), are provided in the last column of Table 3.
These differences and the estimates of the parameters βg(k) and βh(k) for k = 2, . . . , 12 show the overall
pattern in LVG and TEOM levels seen in Figure 2.

To test whether any two particular months k1 and k2, say, can be collapsed in the seasonal model,
we form the contrasts β

(j)
g (k1) − β

(j)
g (k2) for LVG and β

(j)
h (k1) − β

(j)
h (k2) for TEOM at each MCMC

iteration, j ≥ 1 and test the significance at the end of the MCMC run. The results are provided in Table 4.
Since many differences are significant, a simpler summer–winter collapsed model either for LVG or
TEOM will not be suitable here.

We now consider the calibration problem for the station Consolata. As mentioned in Section 2 this
station measured both LVG and TEOM but we only modelled the TEOM measurements. Using the
calibration methods described in Section 4 we have predicted the LVG measurements, see Figure 5. The
95% prediction intervals (not shown) contain 94% of the actual observations and the sharp drop in actual
LVG values in the beginning of the summer is matched by the model. The predictions from the Fassò
and Nicolis (2005) model are plotted as dashed lines. Clearly the proposed Bayesian spatio-temporal
model shows a great deal of flexibility and perform much better than their non-Bayesian state-space
type regression model.

Next, we consider validation for the 1444 data points from the six reserved sites. The plot is provided
in Figure 6. The two plots in the top row of this figure are for two sites, G1 and G2, validating LVG
values and the remaining four plots are for the TEOM sites, T1–T4. The actual site-wise coverage
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Table 4. Significant (S) and non-significant (N) differences between the monthly contrasts formed using the
months in row and column

January February March April May June July August September October November December

January — S S S S S S S S S S S
February N — N S S S S S S S S S
March S S — S S S S S S S S S
April S S S — S S S S S N N N
May N S S S — N S S N N N S
June N N S S N — N N N N S S
July N N S S N N — N N S S S
August N N S S N N N — S S S S
September N S S N N N N N — N S S
October S S S N S S S S S — N S
November S S S N S S N S N N — N
December S S S N S S S S S N N —

The upper triangle is for the LVG monthly coefficients (βg) and the lower triangle is for the TEOM monthly coefficients (βh)

Figure 5. Calibration plot for the site Consolata. The observations are the crosses in the graph; the predictions are plotted as
solid lines; the predictions from the Fassò and Nicolis model are plotted as dashed lines

values, labelled in the plots, are all greater than 90% and the coverage for the 1444 data points is
93.24%. Thus the proposed model performs very well for out of sample predictions both for the LVG
and TEOM values. These plots also confirm the validity of the separable and exponential correlation
function assumptions made in Section 3 since departure from those assumptions would have led to
considerable poorer performance in model fit and validation.

The adopted model is now used to perform predictive inference. The maps of predicted annual
average and the predicted number of days the daily average exceeding 50 are shown in panel (a) of
Figures 7 and 8, respectively. The two maps agree qualitatively that on average the north-west part of
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Figure 6. Validation plots for the six reserved sites. The observations are the crosses in the graph; the predictions are plotted as
solid lines and the 95% prediction intervals are plotted as dotted lines
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Figure 7. (a) Map of annual predictions for 2003; points denote the LVG sites and the � denotes the TEOM sites
(b) map of standard deviations of the annual predictions. This figure is available in colour online at www.interscience.wiley.com/

journal/env

the study region has higher LVG levels than the other regions. This is likely since the model showed
very good performance in validation at the three sites T1, T2 and T3 located in this region. In addition,
we have calculated the root mean square error between the observed annual summaries at the 34 LVG
stations and the predictions in the corresponding nearest sites to be 8.1. That is, the predictions and the
data values differ by only 8.1 on the average. Thus, there is very good agreement between the annual
summaries and the model-based predictions. (However, we do recognise that due to the presence of
missing data it is not possible to compare the model-based estimates with exact observed annual values.)
The standard deviation map of the annual predictions are shown in panel (b) of Figures 7 and 8. As
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Figure 8. (a) Map of the predicted number of days in the year 2003 when LVG is greater than 50; points denote the LVG sites
and the � denotes the TEOM sites. (b) Map of standard deviations of the predictions plotted in (a). This figure is available in

colour online at www.interscience.wiley.com/journal/env
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Figure 9. The estimated probability that the annual average for 2003 is greater than 40; points denote the LVG sites and the �
denotes the TEOM sites. This figure is available in colour online at www.interscience.wiley.com/journal/env

expected standard deviations are smaller near the observation sites. It is clear that the annual average
in 2003 exceeded 40 in almost all areas and the number of days for which the daily average exceeded
50 was a great deal more than 7. In Figure 9, we plot the estimated probability that the annual average
is greater than 40. As expected, we see that the probability that the annual average exceed 40 is more
than 0.90 for most areas.

6. CONCLUSION

We have introduced a spatio temporal model for predicting daily PM10 concentrations in North Italy and
calibrating the surrogate TEOM measurements. From the results, it emerges that seasonal components
have a strong effect both on the LVG and TEOM concentrations. The common spatio temporal com-
ponent is able to improve the forecasting methods and to adjust the TEOM values. Our model and the
associated assumptions of separability, stationarity and exponential covariance structure for the latent
space–time process have been validated by a large number of out of sample predictions at the highest
(daily) level of temporal resolution.

The proposed high-resolution space–time model enables us to infer about temporal and spatial
summaries of PM10 at any desired spatial and temporal resolution. In this paper, we have developed
methods for predicting the annual summaries which are of interest to regulatory bodies. In addition,
we are able to attach uncertainty to all of these predictions, derived from the model fitting. We are also
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able to demonstrate the benefit of fitting models when predicting the annual averages as opposed to
interpolating the observations themselves. Our results show that the annual summaries for 2003 do not
comply with the European regulations currently in force.

Further work will seek to introduce some exogenous variables in order to improve the mean function.
Further information about the monitoring sites, such as urban/rural levels, the population density and
the elevation information may improve the predictions.
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APPENDIX : CONDITIONAL DISTRIBUTIONS

Straightforward calculation yields the following complete conditional distributions:

1

σ2
g

∼ G

(
n1T

2
+ a, b + 1

2

n1∑
i=1

T∑
t=1

{
zg(si, t) − µg(si, t) − u(si, t)

}2

)

1

σ2
h

∼ G


n2T

2
+ a, b + 1

2

n∑
i=n1

T∑
t=1

{zh(si, t) − µh(si, t) − u(si, t)}2




1

σ2
u

∼ G

(
nT

2
+ a, b + u′(�−1

s ⊗ �−1
t )u

)

We sample βg and βh en-bloc. Define the vectors zg = (zg(s1, 1), zg(s1, 2), . . . , zg(sn1 , T ))′ and
zh = (zh(sn1+1, 1), zh(sn1+1, 2), . . . , zh(sn, T ))′. Similarly we form the matrices Xg and Xh of or-
der n1T × p and n2T × p, respectively using the covariate dummies xt appropriately. We also define
ug = (u′

1, . . . , u′
n1

)′ and uh = (u′
n1

, . . . , u′
n)′. Now the conditional distribution of βg is normal with

mean 	ζ and covariance 	 where

	 =
(

1

σ2
g

X′
gXg + A−2I

)−1

, and ζ = 1

σ2
g

X′
g(zg − ug)

The conditional distribution of βh is normal with mean 	ζ and covariance 	 where

	 =
(

1

σ2
h

X′
hXh + A−2I

)−1

, and ζ = 1

σ2
h

X′
h(zh − uh)

We sample the spatio-temporal process u(si, t) en-bloc as follows. The prior complete conditional
distribution of uj for j = 1, . . . , n given all other columns i �= j, i = 1, . . . , n is normal with mean ζj

and covariance 	j where

ζj = −
n∑

i�=j,i=1

(�s)
−1
ij

(�s)
−1
jj

ui, and 	j = σ2
u

1

(�s)
−1
jj

�t

The likelihood contribution for uj is also normal with mean ξj and covariance χj where for
j = 1, . . . , n1, ξj = (zg(sj, 1) − µg(sj, 1), . . . , , zg(sj, T ) − µg(sj, T ))′, χj = σ2

gI, and for j = n1 +
1, . . . , n, ξj = (zh(sj, 1) − µh(sj, 1), . . . , zh(sj, T ) − µh(sj, T ))′, χj = σ2

hI. The posterior complete
conditional distribution is now seen to be normal with

mean = �j

(
χ−1

j ξj + 	−1
j ζj

)
and covariance �j =

(
χ−1

j + 	−1
j

)−1
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To derive the distribution π(u(s′, t′)|U, σ2
u)

(
u(s′, t′)

u

)
∼ N

[(
0

0

)
, σ2

u

(
1 �′

s(s − s′) ⊗ �′
t(t − t′)

�s(s − s′) ⊗ �t(t − t′) �s ⊗ �t

)]

where �s(s − s′) is an n × 1 column vector with the ith entry given by σ(si − s′) = ρs(si − s′; φs) and
�t(t − t′) is a T × 1 column vector with the kth entry given by σ(k − t′) = ρt(k − t′; φt). Hence

u(s′, t′)|U ∼ N


 n∑

j=1

T∑
k=1

bjk(s′, t′)u(sj, k), σ2
uC(s′, t′)




where

bjk(s′, t′) =
n∑

i=1

T∑
l=1

σ(si − s′)σ(l − t′)(�s)
−1
ij (�t)

−1
lk

and

C(s′, t′) = 1 −
n∑

i=1

n∑
j=1

T∑
l=1

T∑
k=1

σ(si − s′)σ(l − t′)(�s)
−1
ij (�t)

−1
lk σ(sj − s′)σ(k − t′)
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