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There is an urgent need to provide accurate air quality information and forecasts to the general public
and environmental health decision-makers. This paper develops a hierarchical space–time model for
daily 8-h maximum ozone concentration (O3) data covering much of the eastern United States. The
model combines observed data and forecast output from a computer simulation model known as the Eta
Community Multi-scale Air Quality (CMAQ) forecast model in a very flexible, yet computationally fast
way, so that the next day forecasts can be computed in real-time operational mode. The model adjusts for
spatio-temporal biases in the Eta CMAQ forecasts and avoids a change of support problem often
encountered in data fusion settings where real data have been observed at point level monitoring sites,
but the forecasts from the computer model are provided at grid cell levels. The model is validated with
a large amount of set-aside data and is shown to provide much improved forecasts of daily O3

concentrations in the eastern United States.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The most direct way to obtain accurate air quality information is
from measurements made at surface monitoring stations. However,
many areas of the eastern US are not monitored and, typically, air
monitoring sites are sparsely and irregularly spaced. As the need for
spatial prediction has become reality in the regulatory environ-
ment, it is now important to combine air monitoring data and
numerical model output, in a coherent way for better prediction of
air pollution over short time periods. High spatial resolution
numerical model outputs are now available over 12-km grids.
Numerical models such as the Eta CMAQ forecast model use
emission inventories, meteorological information, and land use to
estimate average pollution levels for gridded cells over successive
time periods, see, e.g. http://www.epa.gov/asmdnerl/CMAQ/. The
US Environmental Protection Agency’s (USEPA) AIRNow web site
(http://airnow.gov) currently displays some air quality information
such as the raw CMAQ forecasts and ground level station moni-
toring data. The Eta CMAQ forecasts often exhibit bias and simple
interpolation of monitoring data fail to take into account of spatial
and temporal dependencies present in the data. Fusion analyses
x: þ44 23 8059 5147.

All rights reserved.
must be developed to provide improved, in terms of computational
efficiency, accuracy, and precision, forecasts of next day 8-h
maximum ozone levels through the AIRNow web site.

This paper builds upon recent advances in Bayesian space–time
modeling to provide state-of-the-art forecasts maps of next day
daily maximum 8-h ozone concentration patterns in the eastern
United States. The proposed model uses the Eta CMAQ forecast data
in a regression structure avoiding the so-called ‘change of support
problem’. The method does not require integration of the observed
point level monitoring process to a grid level one, see Eq. (1) below,
unlike other data fusion methods currently available in the litera-
ture. Further, this method avoids modeling of the huge amount of
Eta CMAQ gridded data in comparison to the number of monitoring
sites. Providing a ‘data’ status to Eta CMAQ output, as often done in
data fusion methods, may have the undesired result that the
information contained in the Eta CMAQ output overwhelms the
information in the monitoring data. Note that about 10,000 CMAQ
grid cells cover our study region in the eastern US and modeling
temporal data from each of those sites would require processing of
an enormous number of data points at each iteration of an iterative
model fitting algorithm such as the Gibbs sampler. The associated
computational burden will most likely not allow fitting the model
in time to display the next day ozone levels on the AIRNow system.
Thus, we develop a modeling approach that focuses on treating Eta
CMAQ forecast output as a spatially and temporally varying

http://www.epa.gov/asmdnerl/CMAQ/
http://airnow.gov
mailto:S.K.Sahu@soton.ac.uk
www.sciencedirect.com/science/journal/13522310
http://www.elsevier.com/locate/atmosenv
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Fig. 1. The 350 data and 40 validation sites (1–40).
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covariate. We fit the model to spatially concurrent Eta CMAQ
forecast output and monitoring data, i.e. use CMAQ cells that
contain monitoring data, but use the entire Eta CMAQ output to
forecast and interpolate next day ozone levels. As a result, the
proposed modeling approach does not treat the Eta CMAQ forecasts
as data per se, rather those are taken as spatio-temporally varying
covariates.

Let Bi, i ¼ 1;.;K denote the K CMAQ grid cells. In general, there
is no guarantee that the average concentration level in a grid cell Bi

at time t denoted by U(Bi,t) is equal to the concentration level which
will be observed at any particular site sj given by a pair of latitude
and longitude values, denoted by U(sj,t), within that cell. The so-
called change of support problem in this context is the problem
associated with converting the average concentration of a grid cell
Bi to the actual concentration level which will be observed at
a particular site sj within that cell. Note that

UðBi; tÞ ¼
1
jBij

Z
Bi

Uðs; tÞ ds (1)

where jBij denotes the area of the grid cell Bi. In the modeling
development of this paper we shall respect this distinction
between the average concentration U(Bi,t) and a particular value
U(sj,t) throughout.

The modeling objective is to predict the actual ozone concen-
tration level denoted by U(s,t) at a site s at time t on the basis of the
Eta CMAQ forecast, Q(B(s),t) for the grid cell B containing s. We do
not have the actual Eta CMAQ forecasts Q(s,t) at site s at time t.
However, Q(B(s),t) can be expected to be a good regressor for U(s,t)
since Q(B(s),t) is the forecast model output for the average
concentration of the grid cell B(s) containing that particular site s at
that time t. This is also confirmed by Fig. 2 which plots both U(s,t)
and Q(B(s),t) at four randomly chosen sites. In this paper we shall
model data on the square-root scale so we let X(B(s),t) denote the
square-root of the Eta CMAQ forecast value and for convenience we
shall abbreviate this notation to be X(s,t), i.e. drop the grid-cell
notation B.

By now there is a number of publications discussing space–time
modeling of ground level ozone, see e.g. Guttorp et al. (1994), and
Carroll et al. (1997). Hierarchical Bayesian approaches for spatial
prediction of air pollution have been developed; see, e.g. Brown
et al. (1994), Huerta et al. (2004), Wikle (2003), Sahu and Mardia
(2005), Sahu et al. (2006, 2007) and references therein. McMillan
et al. (2005) propose a regime switching model for ozone fore-
casting using meteorological variables as covariates and they
illustrate using data from April to September in 1999 over a spatial
domain covering Lake Michigan.

Several papers have appeared in the literature on the topic of data
fusion methods for combining ground level observed data and
computer model output. Fuentes and Raftery (2005) develop
a hierarchical statistical framework to model the ‘‘true’’ pollutant
process as jointly Gaussian random fields. They estimate the
parameters for the bias of Eta CMAQ output and the parameters of
the covariance structure for Eta CMAQ and measurement error
processes, then simulate the conditional distribution of the ‘‘true’’
process given both sources of spatial information. Their methodo-
logy only applies to spatial processes at a fixed time point, although
it can be extended for space–time data. Zimmerman and Holland
(2005) consider the problem of optimal spatial prediction of wet
deposition data using data from two monitoring networks with
network-specific biases and variances. Cowles and Zimmerman
(2003) use a Bayesian modeling approach for spatio-temporal data
from two monitoring networks that account for possible differences
in network measurement error, bias and variances. Jun and Stein
(2004) suggest new ways of comparing the space–time correlation
structure of monitoring observations with Eta CMAQ numerical
model output, see also Yu et al. (2007). Eder et al. (2006) discuss
statistical metrics to provide an operational evaluation of Eta CMAQ
air quality forecasting system.

The remainder of this article is organized as follows. In Section 2
we describe the available data. Modeling developments are pre-
sented in Section 3. Prediction details are discussed in Section 4.
Section 5 provides the modeling results and analyses. A few
summary remarks are provided in Section 6 and Appendix A
contains the computational details for Gibbs sampling.
2. Available data

We use daily O3 monitoring data for the 2-week period August
2–14 in the year 2005. The data obtained from http://nsdi.epa.gov/
ttn/amtic are recorded in units of parts per billion (ppb) from
n ¼ 350 monitoring sites spanning the eastern US (see Fig. 1). We
set aside data from 40 additional randomly chosen sites (numbered
1–40 in Fig. 1) for model validation purposes. There are about 20%
missing values in the data. We model the daily 8-h maximum data
for a running window of seven consecutive days during the 2 weeks
and forecast the next day’s 8-h maximum in each case. We simply
choose to model 7 days of data because those data complete
a weekly cycle. Inclusion of more distant past data is also possible,
but some preliminary analysis (not included here) did not show any
significant improvement in interpolation and forecasting.

The output from the Eta CMAQ model are available a day in
advance as hourly forecasts on a 12-km grid, see, e.g. (http://www.
epa.gov/AMD/AQF/index.html). The daily Eta CMAQ value is
computed as the maximum of all 8 hourly averages within a day.
The 8 hourly averages are centered at the middle of 8 h, for
example, the 8-h average at 4 pm is the average value obtained
from the 8 hourly measurements observed from 12 pm to 7 pm.

http://nsdi.epa.gov/ttn/amtic
http://nsdi.epa.gov/ttn/amtic
http://www.epa.gov/AMD/AQF/index.html
http://www.epa.gov/AMD/AQF/index.html
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Fig. 2. Observed data are dotted lines and Eta CMAQ forecasts are dashed lines at four sites. The mse for each plot is the mean-square error between the data and the Eta CMAQ
forecasts.
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For prediction purposes, we obtain the Eta CMAQ forecasts for
3000 randomly sampled grid cells out of the available 9119 such
grid cells in the eastern US. This is for illustration purposes only and
all the available data should be used to produce more accurate
forecast maps.

The range of the Eta CMAQ forecasts matches with the range of
the ground level observed data. As mentioned above, to compare
the Eta CMAQ forecasts with the observed station data we plot data
from four randomly chosen stations and Eta CMAQ forecasts from
the corresponding grid cells containing the stations, see Fig. 2.
There is good agreement between the Eta CMAQ forecasts and
observed data in some of the sites, but there is also large
disagreement between them at other sites. This implies that there
is bias in the Eta CMAQ forecasts and appropriate modeling is
needed to remove these bias structures which may vary in space
and time, or just space.
3. Modeling developments

Following Sahu et al. (2007), the pollutant process is modeled as
a high-resolution space–time process. Let Z(s,t) denote the square-
root of the monitor observation in location s and at time t, U(s,t),
t ¼ 1, ., T. Further, let O(s,t) denote the true value corresponding to
Z(s,t). We develop models for data from n stations denoted by s1, .,
sn, for a running window of T ¼ 7 days.

The monitoring data are assumed to represent the true ambient
levels with random measurement error, but no bias. Expressed as
a probability distribution:

Zðsi; tÞ ¼ Oðsi; tÞ þ eðsi; tÞ (2)

for i ¼ 1, ., n, t ¼ 1, ., T, where 3(si,t) is a white noise process,
assumed to follow N(0,s 2

3) independently. Thus s2
e , taken to be

homogeneous in space and time, is the so-called nugget effect.
Next, we turn to the modeling for O(si,t). Fig. 2 shows that there

is some auto-correlation between ozone measurements on
successive days. That is why our model must include an auto-
regressive term. As mentioned above, the Eta CMAQ forecast for the
observation grid cell is also relevant for predicting the true ozone so
we include a spatially varying regression term with the Eta CMAQ
forecasts as predictors. Thus, we assume that

Oðsi; tÞ ¼ xþ rOðsi; t � 1Þ þ ðb0 þ bðsiÞÞxðsi; tÞ þ hðsi; tÞ (3)

for i ¼ 1, ., n, t ¼ 1, ., T where x is a constant across space and
time, rO(si,t � 1) is the auto-regressive term with 0 < r < 1,
(b0 þ b(si))x(si,t) is the spatially varying regression term and h(si,t)
is a spatially correlated, but temporally independent error term.
Inclusion of the spatially varying regression term introduces spatial
non-stationarity in the model since covariance of O(si,t) and O(sj,t)
given O(si,t � 1) and O(sj,t � 1) involves both si and sj, not only their
absolute difference in distance. The above model becomes
stationary when b(s) ¼ 0 for all s. Inclusion of the term b(si)x(si,t)
will lead to a better fitting model than the sub-model corre-
sponding to b(s) ¼ 0. However, forecasting and out of sample
spatial interpolation may have increased variability due to these
additional parameters. In Section 5 we use Bayesian model selec-
tion and cross-validation methods to make this decision. The auto-
regressive models require an initial condition for O1(s,0), which for
convenience we choose to be the grand mean of the data, see Sahu
et al. (2007) for an alternative method with additional processes
and parameters.

We shall use the following vector notations: Zt ¼ (Z(s1,t),
. ,Z(sn,t))0, Ot ¼ (O(s1,t),.,O(sn,t))0, and xt ¼ (x(s1,t), . ,x(sn,t))0.
Finally, we use Xt to denote a diagonal matrix whose ith diagonal
entry is x(si,t). Now we write the above models using vectors and
matrices to facilitate computation. The first model equation is
obtained from (2):

Zt ¼ Ot þ et (4)

for t ¼ 1, ., T, where et ¼ ðeðs1; tÞ;.; eðsn; tÞÞ0. Let 1 be the vector of
dimension n with all elements unity and b ¼ ðbðs1Þ;.; bðsnÞÞ0
From Eq. (3) we have

Ot ¼ x1þ rOt�1 þ b0xt þ Xtbþ ht (5)

for t ¼ 1, ., T, where ht ¼ ðhðs1; tÞ;.; hðsn; tÞÞ0.
For the measurement error in Eq. (4) we assume that

etwNð0; s2
e InÞ, t ¼ 1, ., T, independently, where 0 is the vector with



S.K. Sahu et al. / Atmospheric Environment 43 (2009) 494–501 497
all elements zero and In is the identity matrix of order n. For the
spatially correlated error we assume that htwNð0;ShÞ, t ¼ 1, ., T,
where Sh has elements shði; jÞ ¼ s2

hrhðsi � sj; fhÞ. We take
rhðsi � sj; fhÞ ¼ expð�fhdðsi; sjÞÞ where d(si,sj) is the distance
between sites si and sj, i,j ¼ 1, ., n. We acknowledge the simplifi-
cation associated with choosing the exponential covariance struc-
ture, however, other members of the Matèrn family of covariance
functions can be chosen.

The spatially varying coefficients bwNð0;SbÞ, where Sb has
elements sb(i,j) ¼ s

2
br(si � sj;4b). The parameters 4h and 4b are

determined using cross-validation as discussed in Section 5. For
future use we define Sh and Sb by the relations:

Sh¼ s2
hSh; Sb¼ s2

bSb:

Let wt ¼ x1þ rOt�1 þ b0xt þ Xtb for t ¼ 1, ., T. Further, let q

denote all the parameters, b0, b, r, s 2
3, s 2

h, s
2
b and x. Let w denote all

the augmented data, Ot and the missing data, denoted by z*(si,t), for
i ¼ 1, ., n, t ¼ 1, ., T, and z denote all the non-missing data z(si,t),
for i ¼ 1, ., n, t ¼ 1, ., T. The log of the posterior distribution,
denoted by logpðq;wjzÞ, can be written as

�nT
2

logðs2
e Þ �

1
2s2

e

XT

t¼1

ðZt �OtÞ0ðZt �OtÞ

�nT
2

logðs2
hÞ �

1
2s2

h

XT

t¼1

ðOt � wtÞ0S�1
h ðOt � wtÞ

�n
2

logðs2
bÞ �

1
2s2

b

b0S�1
b bþ logðpðx; b0; r;s

2
e ; s

2
h; s

2
bÞÞ

where p(x,r,b0,s 2
3,s

2
h,s 2

b) denotes the prior distribution. To have
a flat prior we assume that x and b0 are independently normally
distributed with mean 0 and variance 104. The auto-regressive
coefficient r is also specified as the N(0,104) distribution, but
restricted in the interval I(0 < r < 1). The inverse of the variance
components, 1/s 2

3, 1/s 2
h, 1/s 2

b are assumed to follow G(a,b) inde-
pendently, where the distribution G(a,b) has mean a/b. In our
implementation we take a ¼ 2 and b ¼ 1 to have a proper prior
specification for each of these variance components.

4. Prediction details

We first develop the methods for spatial interpolation of the
ozone levels at a new location s0 and any time t, t ¼ 1, ., T. Details
for one step-ahead forecasting at time t ¼ T þ 1 are given at the end
of this section. Spatial interpolation at location s0 and time t is based
upon the predictive distribution of Z(s0,t) given in the model Eqs. (2)
and (3). According to Eq. (2), Z(s0,t), has the distribution

Zðs0; tÞwN
�

Oðs0; tÞ; s2
e

�
(6)

and

Oðs0; tÞ ¼ xþ rOðs0; t � 1Þ þ ðb0 þ bðs0ÞÞxðs0; tÞ þ hðs0; tÞ:

It is now clear that O(s0,t) can only be sequentially determined
using all the previous O(s0,t) up to time t. Hence, we introduce
the notation O(s,[t]) to denote the vector (O(s,1), ., O(s,t))0 for
t � 1.

The posterior predictive distribution of Z(s0,t) is obtained by
integrating over the unknown quantities in Eq. (6) with respect to
the joint posterior distribution, i.e.

pðZðs0; tÞjzÞ ¼
Z

pðZðs0; tÞjOðs0; ½t�Þ; s2
e ÞpðOðs0; ½t�Þjbðs0Þ;q;wÞ

� pðbðs0ÞjqÞdOðs0; ½t�Þdbðs0Þ dq dw ð7Þ
When using MCMC methods to draw samples from the posterior,
the predictive distribution (7) is sampled by composition. Draws
from the posterior distribution pðqjz;wÞ, and the conditional
distributions pðbðs0ÞjqÞ facilitate evaluation of the above integral,
details are provided below.

To sample b(s0), we have�
bðs0Þ

b

�
wN

��
0
0

�
; s2

b

�
1 Sb;12

Sb;21 Sb

��
where Sb,12 is 1 � n with the ith entry given by exp(�4bd(si,s0)) and
Sb, 21 ¼ S0b,12. Therefore,

bðs0Þ
���qwN

�
Sb;12S�1

b b; s2
b

�
1� Sb;12S�1

b Sb;21

��
: (8)

We draw O(s0,t) from its conditional distribution given q, w and
O(s0,[t � 1]). Analogous to Eq. (5), we obtain for t � 0�

Oðs0; tÞ
Ot

�
wN

"�
xþ rOðs0; t � 1Þ þ ðb0 þ bðs0ÞÞxðs0; tÞ

x1þ rOt�1 þ b0xt þ Xtb

�
;

s2
h

 
1 Sh;12

Sh;21 Sh

!#

where Sh,12 is 1 � n with the ith entry given by exp(�4hd(si,s0)) and
Sh,21 ¼ S0h,12. Hence,

Oðs0; tÞjbðs0Þ;Ot ;q;wwNðc;LÞ (9)

where L ¼ s2
hð1� Sh;12S�1

h Sh;21Þ and

c ¼ xþ rOðs0; t � 1Þ þ ðb0 þ bðs0ÞÞxðs0; tÞ þ Sh;12S�1
h ðOt � x1

� rOt�1 � b0xt � XtbÞ

In summary, we implement the following algorithm to predict
Z(s0,t), t ¼ 1, ., T.

1. Draw a sample qðjÞ;wðjÞ; j � 1 from the posterior distribution.
2. Draw b(j)(s0) using Eq. (8).
3. Draw O(j)(s0,[t]) sequentially using Eq. (9). Note that the initial

value O(j)(s0,0) is a constant for all s0.
4. Finally draw Z(j)(s0,t) from N

�
OðjÞðs0; tÞ; s2ðjÞ

e

�
.

The ozone concentration on the original scale is the square of
Z(j)(s0,t). If we want the predictions of the smooth ozone concen-
tration process without the nugget term we simply omit the last
step in the above algorithm and square the realizations O(j)(s,t). We
use the median of the MCMC samples and the lengths of the 95%
intervals to summarize the predictions. The median as a summary
measure preserves the one-to-one relationships between summa-
ries for O and Z, and for O2 and Z2.

The one-step ahead Bayesian forecast at a location s0 is given by
the posterior predictive distribution of Z(s0,T þ 1) which is deter-
mined by O(s0,T þ 1). Note that using Eq. (9) we already have the
conditional distribution of O(s0,T) given bðs0Þ, Ot , q and w. We use
model Eq. (3) to advance this conditional distribution one unit of
time in future. The mean of the one step-ahead forecast distribution
is given by x þ r O(s0,T) þ (b0 þ b(s0))x(s0,T), according to Eq. (3), and
O(s0,T þ 1) should be equal to this if we are interested in forecasting
the mean. If, however, we want to forecast an observation at location
s0 we simulate O(s0,T þ 1) from the marginal distribution which has
the above mean and variance s 2

h. We work with this marginal
distribution rather than the conditional distribution since condi-
tioning with respect to the observed information (i.e. kriging) up to
time T at the observation locations s1, ., sn has already been done in
Eq. (9), and at the future time T þ 1 there is no new available infor-
mation to condition on except for the Eta CMAQ output as regressor
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values. Then we follow the above algorithm and the MCMC output
summarization methods to evaluate the forecasts.
Validation days, August Eta CMAQ b(s) s 0 b(s) ¼ 0

2–9 229.6 84.4 50.5
3–10 246.4 58 50
4–11 260.5 77.8 64.5
5–12 253.4 99.1 62.1
6–13 240.6 72.5 45.4
5. Analysis

Under weak prior distributions it is not possible to estimate all
the parameters in the covariance structure, s 2

3, s 2
h, s

2
b, 4h and 4b

consistently (see, e.g. Zhang, 2004). Moreover, Stein (1999) shows
that spatial interpolation is sensitive to the product s24 but not to
either one individually. Hence, we use the set-aside validation data
from 40 stations to select the decay parameters 4h and 4b. The
variance components are estimated using MCMC conditional on
these values. Let Ẑ2(s *

i,t) denote the model based validation esti-
mate for Z2(s *

i,t), where s*
i denotes the ith validation site. Again

recall that we model ozone in the square-root scale. The validation
mean-square error is given by

VMSE ¼ 1
nv

X40

i¼1

XT

t¼1

�
Z2ðs*

i ; tÞ � bZ2ðs*
i ; tÞ

�2

IðZðs*
i ; tÞÞ

where I(Z(s *
i,t)) ¼ 1 if Z(s *

i,t) has been observed and 0 otherwise, and
nv is the total number of available observations at the 40 validation
sites. We searched for the optimal values in a two-dimensional grid
formed of the values 0.005, 0.01 and 0.05, and 0.10. The values
4h ¼ 0.01 and 4b ¼ 0.05 provided the smallest estimated VMSE.
Although it is possible to further refine the grid in a neighborhood of
the best value we do not explore beyond our grid here.

The spatially varying regression term, b(si)x(si,t), although quite
attractive theoretically, did not improve the model fitting a great
deal. Only a few b(si) were significant. We also used the predictive
Bayesian model selection criterion of Gelfand and Ghosh (1998) to
help make this decision. The criterion was much smaller for the
model without the b(si)x(si,t) term. Any sort of local lack of model
fit for not including b(si)x(si,t) gets compensated by the spatio-
temporally varying intercept term h(si,t). Exclusion of the b(si)x(si,t)
term, however, does not mean that there is no spatio-temporal bias
in the Eta CMAQ output – such biases can simply be recovered by
the differences between the model based predictions and the Eta
CMAQ output. If the intention is to recover the bias using a para-
metric form then a model omitting the spatially varying intercept
and the auto-regressive term rO(si,t � 1) should be considered.
Observation
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Fig. 3. Scatter plot of validation predictions against observations The symbols ‘C’, ‘b’
and ‘X’ denote Eta CMAQ forecasts, the validation predictions from the model with
non-zero b(s) and the validations predictions from the model with b(s) ¼ 0,
respectively.
Fig. 3 provides the scatter plot of validation predictions using
both the b(s) ¼ 0 and the b(s) s 0 model against the corresponding
actual observations. The validation predictions are for the spatial
interpolation of the daily 8-h maximum ozone values at the 40
validation sites for the seven modeled days August 2–8 and forecast
for the next day August 9th. The Eta CMAQ forecasts and the 45�

line are also superimposed in the figure. Clearly, the b(s) ¼ 0 model
gives better predictions than the other two. In fact, the Eta CMAQ
forecasts mean square error (mse) of 220.6 is much higher than the
b(s) s 0 mse (84.4) and the b(s) ¼ 0 mse (50.5). This clearly shows
that the b(s) ¼ 0 model is much superior than the others. We also
have obtained similar plots for the models fitted to data sets
obtained from a running window of 7 days and forecasting the next
day for each of the days during 10–13 August. The plots looked
similar and the mean-square errors were same sort of magnitude
apart, see Table 1. Henceforth, we worked with the sub-model
corresponding to b(s) ¼ 0.

We examine the model performance in more detail in Table 2.
In the table, we provide the hit and false alarm rates for the Eta
CMAQ and the predictions using our chosen model. Here, hit is
defined as the event where both the validation observation and
the forecast for it were either both greater or less than 75 ppb, the
current O3 standard. The false alarm, on the other hand, is defined
as the event where the actual observation is less than 75 ppb but
the forecast is greater than 75 ppb. From the table we see that the
model hit rate is more than 90%, whereas the Eta CMAQ hit rate is
about 80%. The false alarm rate for Eta CMAQ is about 20%
compared to it being less than 5% for the proposed model. We
repeated the calculations for the threshold values 80 and 70 ppb in
place of the above value of 75 ppb. In both the cases the model
outperformed the Eta CMAQ forecasts by substantial margins. This
is expected since the Eta CMAQ over-estimates the true values and
this is observed more for ozone values which are lower than the
extremes.

Figs. 4 and 5 illustrate the forecast maps for 9 and 12 August.
As expected, the Eta CMAQ maps show higher daily ozone levels
than the observed values. It is clear that the observations are
closer to the forecasts than the Eta CMAQ values. The lengths of
the 95% forecast intervals for 9 and 12 August are shown in
Fig. 6. By comparing the model based forecast map (in Figs. 4
and 5) and the corresponding length map in Fig. 6 we see that
on average the higher forecast levels are associated with
larger forecast lengths, as is often observed in environmental
data.
Table 2
Hit and false alarm percentages for O3 exceeding 75 ppb.

Validation days, August Eta CMAQ Model: b(s) ¼ 0

Hit False alarm Hit False alarm

2–9 81.70 17.07 90.86 4.88
3–10 79.58 19.37 92.67 3.66
4–11 78.97 20.00 93.85 2.56
5–12 80.71 18.78 93.40 1.52
6–13 79.90 19.60 92.97 2.51



Fig. 4. Forecast maps for August 9: (a) is for the Eta CMAQ and (b) is for the model with b(s) ¼ 0. Observed ozone values from some selected sites are superimposed. (For visual
clarity we present only a subset of the monitoring data.)

Fig. 5. Forecast maps for August 12: (a) is for the Eta CMAQ and (b) is for the model with b(s) ¼ 0. Observed ozone values from some selected sites are superimposed. (For visual
clarity we present only a subset of the monitoring data.)
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6. Discussion

We have developed a space–time model in a Bayesian frame-
work that uses both real-time air monitoring data and numerical
Eta CMAQ output for forecasting spatial patterns of next day daily
8-h maximum ozone concentrations across the eastern US. For a 2-
week test period, we have shown model validation results that
indicate this model improves upon the forecast results based on
sole use of Eta CMAQ forecast output. Moreover, we can attach
prediction uncertainties to all of these forecasts. This model
appears to have great potential for use in USEPA’s AIRNow web site
to better inform the US public of next day ozone levels. Accurate air
quality information can offer significant health benefits, particu-
larly for people with respiratory diseases, by leading to better
environmental decisions. A companion paper, Sahu et al. (2008),
focuses on predicting 8-h average ozone levels based on predictions
for the previous 4 h, current hour, and forecasts for the next 3 h.
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The US Environmental Protection Agency’s Office of research and
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Fig. 6. Lengths of the 95% intervals for the forecasts: (a) is for the forecast map on 9 August and (b) is for 12 August.
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Appendix A. Distributions for Gibbs sampling

Conditional distributions for: s 2
3, s 2

h, s
2
b, Ot , r, b0 and b

Any missing value, Z(s,t) is to be sampled from N(O(s,t),s 2
3), t ¼ 1,

., T. Straightforward calculation yields the following complete
conditional distributions:
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Let Qh ¼ Sh
�1. The full conditional distribution of Ot is N(Ltct,Lt)

where
Case 1: For 1 � t < T � 1,

L�1
t ¼ In

s2
e

þ
�

1þ r2
�

Qh;

ct ¼
Zt

s2
e

þ Qhfx1þ rOt�1 þ b0xt þ Xtbþ rðOtþ1 � x1� b0xtþ1

� Xtþ1bÞg:

Case 2: For t ¼ T

L�1
t ¼ In

s2
e

þ Qh;

ct ¼
Zt

s2
e

þ Qhfx1þ rOt�1 þ b0xt þ Xtbg:

The full conditional distribution of r is N(Lc,L) where
L�1 ¼
XT

t¼1

O0t�1QhOt�1 þ 10�4;

c ¼
XT

t¼1

O0t�1QhðOt � x1� b0xt � XtbÞ:

restricted in the interval (0,1).
The full conditional distribution of b0 is N(Lc,L) where

L�1 ¼
XT

t¼1

x0tQhxt þ 10�4

c ¼
XT

t¼1

x0tQhðOt � x1� rOt�1 � XtbÞ:

The full conditional distribution of b is NðLc;LÞ where

L�1 ¼
XT

t¼1

X0tQhXt þ S�1
b

and

c ¼
XT

t¼1

X0tQhðOt � x1� rOt�1 � b0xtÞ:

The full conditional distribution of x is N(Lc,L) where

L�1 ¼ 10�4 þ T10Qh1; c ¼ 10Qh

XT

t¼1

at

where at ¼ Ot � rOt�1 � b0xt � Xtb.
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