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Abstract A Bayesian hierarchical space-time model is proposed by combining
information from real-time ambient AIRNow air monitoring data, and output from
a computer simulation model known as the Community Multi-scale Air Quality (Eta-
CMAQ) forecast model. A model validation analysis shows that the model predicted
maps are more accurate than the maps based solely on the Eta-CMAQ forecast data for
a 2 week test period. These out-of sample spatial predictions and temporal forecasts
also outperform those from regression models with independent Gaussian errors. The
method is fully Bayesian and is able to instantly update the map for the current hour
(upon receiving monitor data for the current hour) and forecast the map for several
hours ahead. In particular, the 8 h average map which is the average of the past 4 h,
current hour and 3 h ahead is instantly obtained at the current hour. Based on our vali-
dation, the exact Bayesian method is preferable to more complex models in a real-time
updating and forecasting environment.
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1 Introduction

Accurate, instantaneous and high resolution spatial air-quality information can better
inform the U.S. public and regulatory agencies about air pollution levels that lead
to adverse health effects. The most direct way to obtain accurate air quality infor-
mation is from measurements made at surface monitoring stations across the United
States (U.S.). However, many areas of the U.S. are not monitored and typically, air
monitoring sites are sparsely and irregularly spaced over large areas. Thus, it is now
important to develop computationally efficient models to combine air monitoring data
and numerical model output, in a coherent way for better prediction and forecasting
of air pollution over short (e.g. hourly) time periods.

U.S. national air quality forecasts and near real-time predictive spatial maps are
currently provided to the general public through the EPA-AIRNow web site: http://
airnow.gov/. Current and next day particulate matter and ozone (O3) air quality fore-
casts for over 200 U.S. cities are now provided on a daily basis. These forecast maps,
however, are based primarily on the output of a computer simulation model known as
the Eta-CMAQ model, see e.g. http://www.epa.gov/asmdnerl/CMAQ/. These models
use emission inventories, meteorological information, and land use to estimate average
pollution levels for gridded cells (12 km2) over successive time periods. However, it
is well known that these computer model may produce biased output and, as a result,
this may lead to inaccurate pollution forecasts.

The objective of this paper is to develop a set of Bayesian hierarchical models
which are capable of producing instantaneous, but more accurate short term fore-
cast maps of hourly ozone concentration levels. These models combine ground-level
observations from the real-time ozone monitoring network (http://airnow.gov) and
output from the Eta-CMAQ model. Using data over a 2 week period in August 2005
we develop a Bayesian model which is shown to provide improved predictions rela-
tive to those achieved by Eta-CMAQ alone based on cross-validation. The space-time
model lends itself to closed form analytic Bayesian posterior predictive distributions
for spatial interpolation of ozone concentration level for the past hours, current hour
and forecast for future hours. These predictive distributions provide instantaneous
spatial interpolation maps which could be used in a real-time environment such as
the U.S. EPA AIRNow system. The predictive distributions are used to obtain the
8 h average map which is the average of the past 4 h, current hour and 3 h ahead, see
Sect. 3.3. The forecasts are evaluated by using the model fitted to several weekly data
sets. Our approach does not rely on iterative algorithms such as the Markov Chain
Monte Carlo (MCMC) methods that are often used in Bayesian model fitting and
forecasting. The MCMC methods require considerably more execution time to esti-
mate model parameters, thus eliminating their potential use in real-time forecasting
environments.

Although spatial prediction with fused data is a relatively new field, several
papers have appeared in the literature on this topic, see the review by Gelfand and
Sahu (2009) and the references therein for a recent snapshot of activities. Fuentes
and Raftery (2005) developed a hierarchical statistical framework to model the “true”
pollutant process as jointly Gaussian random fields. They estimate the parameters
for the bias of Eta-CMAQ output, the parameters of the covariance structure for
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Eta-CMAQ, and the measurement error process. However, this methodology only
applies to spatial processes at a fixed time point, without evaluation of the space-time
dependence structure. Kang et al. (2008) consider Kalman-Filter approaches to im-
prove next day forecasts of ozone concentration at individual U.S. monitoring sites
for the summer of 2005.

Zimmerman and Holland (2005) consider the problem of optimal spatial prediction
of wet deposition data using data from two monitoring networks with network-spe-
cific biases and variances. Cowles and Zimmerman (2003) use a Bayesian modeling
approach for spatio-temporal data from two monitoring networks that accounts for
possible differences in network measurement error, bias and variances. Jun and Stein
(2004) suggest new ways of comparing space-time correlation structure of moni-
toring observations with Eta-CMAQ numerical model output. McMillan et al. (2008)
develop their model at the grid cell level simplifying the computation requirements and
enabling the use of this model to provide fused predictions for large spatial domains
and temporal periods. Unlike the exact, almost instantaneous, computation method
proposed in this paper, these methods and those of Fuentes and Raftery (2005) rely on
slower MCMC algorithms. Moreover, none of the above mentioned articles developed
forecasting methods in the data fusion setting of this paper.

In an earlier paper (Sahu et al. 2009) we have developed a hierarchical space-time
forecast model for the daily 8 h maximum ozone concentration data for the same
2 week time period in 2005 from the same study region. Besides the obvious differ-
ence in time units, hourly and daily, there are some fundamental differences between
the objectives, models, fitting and forecasting methods, and the results of the current
paper and the previous paper. The objective here is to instantaneously predict the
current 8 h ozone concentration based on past data upto the current hour while the
same there is to obtain accurate forecast for the next day. The model here incorporates
cyclic parameters describing the diurnal patterns and the results are obtained within
a few seconds of inputting the current hour’s data. The previous paper proposes a
more complex dynamic model which requires iterative MCMC methods taking about
5–7 h to produce the next day forecasts. When applied to the same data set these fore-
casts can be more accurate than those from the simple model proposed in this paper,
indeed see Sect. 5 where these and further differences between the two approaches are
presented.

The remainder of this paper is organized as follows. In Sect. 2 we describe the
available data and their use in our modeling development described in Sect. 3. Model
validation results and model based analyses are presented in Sect. 4. The differences
between the methodology of the current paper are contrasted with that of our previ-
ous paper which modeled daily data in Sect. 5. A few summary remarks are placed
in Sect. 6. An Appendix contains derivations of simplifications for various crucial
expressions in the posterior distributions.

2 Data descriptions

We use real-time hourly ozone concentrations in parts per billion (ppb) units from
n = 350 sites covering the eastern U.S. for a 2 week test period, August 2–14, 2005.
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Fig. 1 The 350 data and 40 validation sites (1–40)

Data from 40 additional sites are set aside for model validation, see Fig. 1. There are
about 20% missing values in the monitoring data which we impute using a simple
regression model.

There are 9119 Eta-CMAQ grid cells (12 km2) in our study region spanning the
eastern U.S. In practice, the hourly output from the Eta-CMAQ model are available
up to 24 h in advance. However, in our post-hoc study for data from 2005, Eta-CMAQ
output for all days and hours are available for analysis, though we shall pretend that
the output for only the next 24 h are available to mimic the real situation.

The range of the Eta-CMAQ forecast data is quite similar to the range of the ground-
level ozone monitoring data. To compare the Eta-CMAQ forecasts with the observed
monitoring data, we plot data from four randomly chosen sites and Eta-CMAQ fore-
casts from the corresponding grid cells containing the sites in Fig. 2. The plots show
good agreement between the two at some of the sites but large disagreements at the
other sites. This implies that there is spatio-temporal bias in the Eta-CMAQ forecasts
and appropriate space-time modeling is needed to remove those biases.

To complete a full weekly cycle, we model data for a running window of 7 days
starting at any given hour. More distant past data can be included at the expense of
increasing the computational burden. For spatial prediction, we use the Eta-CMAQ
forecasts for 3000 randomly sampled grid cells out of the available 9119 grid cells.
This is for illustration purposes only, as all of the available Eta-CMAQ output could be
used to produce spatial maps. We use the square-root scale to stabilize the variance for
modeling, but produce the predictions on the original scale for ease of interpretations,
as done previously in Sahu et al. (2009).
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Fig. 2 Observed hourly data are dotted lines and Eta-CMAQ forecasts are dashed lines at four randomly
chosen sites. The labels on the X-axis are the days in August, 2005. The mse for each plot is the mean
square error between the data and the Eta-CMAQ forecasts

3 Models

Let Z(s, t) denote the observed square-root ozone concentration at location s and
at hour t (t = 1, . . . , T ). We develop models for data from n stations denoted by
s1, . . . , sn , for a running window of 7 days so that T = 168(24 × 7).

Further, let X (s, t) denote the square-root of the Eta-CMAQ ozone forecast value
at the grid cell covering the site s and at time t . For simplicity, we adopt this notation
scheme to define the location of Eta-CMAQ areal grid cell averages. Figure 2 shows
that X (si , t) can be a good predictor of Z(si , t). The figure also shows heavy diurnal
cycles in both ozone concentrations and their Eta-CMAQ forecasts.

We model the diurnal patterns by including a different hourly intercept for each
hour to have an adequate, but simple model. The hourly intercept at any given hour
remains constant for different days. The hourly intercept is defined by ξ(t) = β j ,
where the hour t (= 1, . . . , T ) corresponds to the j th hour of the day, j = 1, . . . , 24.
The full model is given by:

Z(si , t) = β0x(si , t) + ξ(t) + w(si , t), i = 1, . . . , n, t = 1, . . . , T, (1)

where β0 is an unknown regression co-efficient. Note that the model (1) is in the form:
noisy data equal to the true mean level plus a random error where the true mean level is
given by β0x(si , t) + ξ(t) and the random error term, dependent in space and time, is
given by w(si , t). Let β denote the unknown parameters (β0, β1, . . . , β24) and p = 25
denote the dimensionality of β.
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The error term w(si , t) is assumed to be a zero-mean spatio-temporal process with
a separable covariance structure, given by:

Cov
{
w(si , tk), w(s j , tl)

} = σ 2
w ρs(|si − s j |;φs) ρt (|tk − tl |;φt ). (2)

We write w to denote the vector of all the nT w(si , t)’s. Let H(φ) = �s ⊗ �t

where the n × n spatial correlation matrix �s has elements ρs(|si − s j |;φs), for
i, j = 1, . . . , n and T ×T temporal correlation matrix �t has elements ρt (|tk −tl |;φt ),
for k, l = 1, . . . , T . This model reduces to the usual regression model with indepen-
dent errors when we take H(φ) = I , the identity matrix. This can be achieved by
choosing ρs(d;φs) = ρt (d, φt ) = 1 if d = 0 and 0 otherwise. This independent error
regression model is compared with the spatio-temporal model in Sect. 4.

We take the two ρ’s to be exponential covariance functions, i.e., ρs(d;φs) =
exp (−φs |d|) and ρt (d;φt ) = exp (−φt |d|) . Ideally, φ = (φs, φt )

′ should be esti-
mated within the Bayesian model as well. However, in a classical inference setting it
is not possible to consistently estimate all the parameters φ and σ 2 in a typical model
for spatial data with a covariance function belonging to the Matèrn family, see Zhang
(2004). Moreover, Stein (1999) shows that spatial interpolation is sensitive to the prod-
uct σ 2φ but not to either one individually. In Sect. 4 we choose optimal values of φ

using a validation mean square error criterion and estimate the variances conditional
on those values.

For convenience, we work with the precision τ 2
w = 1/σ 2

w. The joint prior distribu-
tion of β, τ 2

w is assumed to be:

π(β, τ 2
w) = N

(
βm,

V

τ 2
w

)
G(aw, bw),

where βm , p × 1, and V , p × p, are suitable hyper-parameters and τ 2
w follows the

gamma distribution G(aw, bw) with mean aw/bw. In our implementation we take
aw = 2 and bw = 1 to have a proper prior specification. We take βm to be the null
vector and V = 104 I to have a vague prior on the regression parameter β.

3.1 Posterior distributions

Model (1) can be written as

Z ∼ N
(

Xβ, σ 2
w H (φ)

)

where X is the associated nT × p design matrix. The joint posterior distribution of β

and τ 2
w, π

(
β, τ 2

w|z), is:
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∝
(
τ 2
w

) nT +p
2 +aw−1

exp

[
−τ 2

w

2
(z − Xβ)′ H−1 (φ) (z − Xβ)

−τ 2
w

2
(β − βm)′V −1(β − βm) − bwτ 2

w

]

∝
(
τ 2
w

) nT +p
2 +aw−1

exp

[
−τ 2

w

2

{
(z − Xβ)′ H−1 (φ) (z − Xβ)

+ (β − βm)′V −1(β − βm) + 2bw

}]
.

Now we use the matrix identity:

(z − Xβ)′H−1(φ)(z − Xβ) + (β − βm)′V −1(β − βm) + 2bw

= (β − β∗)′(V ∗)−1(β − β∗) + 2b∗
w

where

V ∗ =
(

V −1 + X ′ H−1(φ)X
)−1

, β∗ = V ∗ (
V −1βm + X ′ H−1(φ)z

)

and

b∗
w = bw +

{
β ′

m V −1βm + z′H−1(φ)z − (β∗)′(V ∗)−1(β∗)
}

/2.

Hence the joint posterior distribution is:

π
(
β, τ 2

w|z
)

∝
(
τ 2
w

) nT +p
2 +aw−1

exp

[
−τ 2

w

2

{
(β − β∗)′(V ∗)−1(β − β∗) + 2b∗

w

}]
.

Now the full conditional posterior distributions are given by:

β|z, τ 2
w ∼ N

(
β∗, σ 2

wV ∗)

τ 2
w|z,β ∼ G

(
nT +p

2 + aw, 1
2 (β − β∗)′(V ∗)−1(β − β∗) + b∗

w

)
.

By direct integration the marginal posterior distributions are obtained as follows:

β|z ∼ t

(
β∗, 2b∗

w

V ∗

nT + 2aw

, nT + 2aw

)
, τ 2

w|z ∼ G
(
nT/2 + aw, b∗

w

)
(3)

where Y ∼ t (µ, �, ν) has the probability density function

f (y|µ, �, ν) = 

( ν+p

2

)



(

ν
2

)
(νπ)p/2

|�|−1/2
{

1 + (y − µ)′�−1(y − µ)

ν

}−(ν+p)/2

.
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In the univariate case with scalar µ and � = σ 2 we note the following two properties
of this distribution which we shall require for prediction in the next sub-section:

E(Y 2) = µ2 + σ 2 ν

ν − 2
, Var(Y 2) = 2σ 4ν2(ν − 1)

(ν − 4)(ν − 2)2 + 8σ 2µ2 ν

ν − 2
, (4)

when ν > 4.
We use the marginal posterior distributions (3) to make inference. Specifically, β∗

provides the point estimates for the parameter β. We obtain a credible interval for the
component, βk , k = 1, . . . , p by using its marginal posterior distribution which is a
t-distribution with nT + 2aw degrees of freedom having mean β∗

k and scale param-

eter λ2
k where λ2

k = 2b∗
w

nT +2aw
V ∗

kk where V ∗
kk is the kth diagonal entry of V ∗. Now it

is straightforward to see that an equal-tailed (1 − α)100% credible interval for βk is
given by

β∗
k ± λk tα/2;nT +2aw

where P(T > tα/2;nT +2aw
) = α/2 when T follows the standard t-distribution with

nT + aw degrees of freedom.
Similarly we estimate σ 2

w by the posterior expectation

E(1/τ 2
w|z) = b∗

w

nT/2 + aw − 1

which follows from the properties of the Gamma distribution. Here also we can find
an equal tailed credible interval for σ 2 by using the probability identity

P
(

gα/2;nT/2+aw,λ ≤ τ 2
w ≤ g1−α/2;nT/2+aw,λ

)
= 1 − α

where ga,ν,λ is such that P(Y < ga,ν,λ) = a for any 0 < a < 1 when Y follows
G(ν, λ).

3.2 Predictive distributions

Using the above models we can interpolate the spatial surface at any time point t ′
in the future or in the past. Let the p-dimensional vector of values of the regression
variables at this new location-time combination be given by x0. We first construct the
joint distribution:

(
Z

(
s′, t ′

)

Z

)
∼ N

{(
x′

0β

Xβ

)
, σ 2

w

(
1 �12
�21 H (φ)

)}
,

where �21 = �′
12 and �12 is the nT dimensional vector with elements given by

σs(si −s′)σt (t −t ′) where σs(si −s′) = ρs(|si −s′|;φs) and σt (t −t ′) = ρt (|t −t ′|;φt ).
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Now we obtain the conditional distribution

Z
(
s′, t ′

) |z,β, σ 2
w ∼ N

{
x′

0β + �12 H−1 (φ) (z − Xβ) , σ 2
w

(
1−�12 H−1 (φ)�21

)}
.

We need to integrate out β and τ 2
w from the above distribution to obtain the required

predictive distribution. To do this, we note that:

z
(
s′, t ′

) − x′
0β − �12 H−1 (φ) (z − Xβ) = z

(
s′, t ′

) − �12 H−1 (φ) z − x′
0β

+�12 H−1 (φ) Xβ

= z∗(s′, t ′) − (x′
0 − �12 H−1 (φ) X)β

= z∗(s′, t ′) − g′β

where

z∗(s′, t ′) = z
(
s′, t ′

) − �12 H−1 (φ) z and g′ = x′
0 − �12 H−1 (φ) X.

Therefore,

π(Z
(
s′, t ′

) |z,β, σ 2
w) ∝ (τ 2

w)1/2 exp
[
− τ 2

w

2C(s′,t ′)
{
z∗(s′, t ′) − g′β

}2
]

where

C(s′, t ′) = 1 − �12 H−1 (φ)�21.

This shows that

Z∗(s′, t ′)|z,β, τ 2
w ∼ N

(
g′β, σ 2

w C(s′, t ′)
)

.

Hence by integrating out β we have

Z∗(s′, t ′)|z, τ 2
w ∼ N

(
g′β∗, σ 2

w(C(s′, t ′) + g′V ∗g)
)

.

By integrating this with respect to the marginal posterior distribution of τ 2
w in Equa-

tion (3), we obtain the posterior predictive distribution of Z∗ given z as:

Z∗(s′, t ′)|z ∼ t (g′β∗, 2b∗
w

C(s′, t ′) + g′V ∗g
nT + 2aw

, nT + 2aw).

Now the posterior predictive distribution of Z(s′, t ′)|z is obtained as:

Z(s′, t ′)|z ∼ t

(
x′

0β
∗ + �12 H−1 (φ)

(
z−Xβ∗) , 2b∗

w

C(s′, t ′)+g′V ∗g
nT +2aw

, nT +2aw

)
.

(5)
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Observe that we model ozone on the square root scale. Hence the predictions using
the posterior predictive distribution (5) will be on the square-root scale as well. We
can predict on the original scale by evaluating:

E
(
Z2(s′, t ′)|z) = {E(Z(s′, t ′)|z)}2 + Var{Z(s′, t ′)|z)}

= {
x′

0β
∗ + �12 H−1 (φ)

(
z − Xβ∗)}2 + 2b∗

w
C(s′,t ′)+g′V ∗g

nT +2aw−2 .

See the Appendix for simplified expressions for �12 H−1 (φ) and �12 H−1 (φ)�21
and (4) for properties of the t-distribution. The variance of the prediction, Var(Z2(s′,
t ′)|z), is calculated using the expression for variance also noted down in (4).

To obtain the prediction intervals we can adopt one of the two approaches. The first
method is to find a Monte Carlo estimate of the interval by sampling from the t-distri-
bution (5) and using appropriate averages. This approach, however, will be slower than
the method based on the normal approximation for the square of the t-distribution (5)
we adopt here. The approximation is justified by the fact that the degrees of freedom
nT + 2aw is very large (more than 2500 in our application). The approximate 95%
prediction interval is given by

E(Z2(s′, t ′)|z) ± 1.96 ×
√

Var(Z2(s′, t ′)|z).

3.3 Predicting the 8 h map at the current hour

A useful application of the proposed methods is the ability to predict the 8 h average
ozone concentration at the current hour. In the EPA AIRNow environment, the 8 h
average ozone concentration at the current hour t is the simple average of the eight
hourly concentrations at the current hour t , four past hours (t − 1, t − 2, t − 3, t − 4),
and three future hours (t + 1, t + 2, and t + 3). Accordingly, the 8 h ozone level at
time t , location s′ is given by:

O8(s′, t) = 1

8

3∑

k=−4

Z2(s′, t + k).

(Here we use Z2 since ozone is modeled in the square-root scale.) Note that at any
un-observed site s′, Z2(s′, t) for any t is the square of the non-central t-distribution
with parameters as given in (5). The posterior predictive distribution of O8(s′, t),
defined as the sum of the non-central F-distributed random variables, is not avail-
able in closed form. As a result, we use Monte Carlo simulation to find the mean
and standard deviation of the posterior predictive distribution of O8(s′, t) given the
observed data z as follows. We generate a large number B of independent random
variables, Z ( j)(s′, t + k), j = 1, . . . , B for each k = −4,−3, . . . , 3 at each hour t
at the given location s′. Now we obtain O( j)

8 (s′, t) = 1
8

∑3
k=−4 Z ( j)2

(s′, t + k) for
each j = 1, . . . , B. The 8 h average is estimated by the sample mean, Ō8(s′, t) =
B−1 ∑B

j=1 O( j)
8 (s′, t) and the sample standard deviation of O( j)

8 (s′, t) is used as
an uncertainty estimate of the posterior predictive distribution. In the Monte Carlo
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simulation, we use independent samples Z ( j)2
(s′, t + k), k = −4, . . . , 3 for each j .

In effect, we perform marginal predictions of Z
2
(s′, t + k) for each k, just as we do

marginal predictions at all the different locations s′ in the predictive grid of 3000 sites.
Joint predictions and forecasting is computationally prohibitive in the instantaneous
prediction problem of this paper and are not pursued here.

4 Analysis

We use the set-aside validation data from 40 stations to select the decay parameters φs

and φt . Let Ẑ2(s∗
i , t) denote the model based validation estimate for Z2(s∗

i , t) where
s∗

i denotes the i th validation site, i = 1, . . . , 40. Again, recall that we model ozone in
the square root scale. The validation mean-square error is given by

VMSE = 1

nv

40∑

i=1

T∑

t=1

(
Z2(s∗

i , t) − Ẑ2(s∗
i , t)

)2
I (Z(s∗

i , t)) (6)

where I (Z(s∗
i , t)) = 1 if Z(s∗

i , t) is available, and 0 otherwise, and nv =
∑40

i=1
∑T

t=1 I (Z(s∗
i , t)) is the total number of available observations at the 40 val-

idation sites. For φs , we searched for the optimal value in a grid formed of the values
of φs corresponding to the spatial ranges of 50, 250, 500 and 1,000 kilometers. For
the temporal decay parameter φt , we searched for the optimum value in a grid formed
of the values of φt corresponding to the temporal ranges of 3, 6, 9, 12 and 24 h.

As described in Sect. 2, we model data for a running window of 7 days, so T =
168(7 × 24) starting at one of the 5 h between 2 PM and 6 PM. We do this for each
of the six starting days, August 2–7. Thus, we have performed model fitting for 30
start day and start hour combinations. For each of the 30 model fitting combinations
we choose the optimal values of φs and φt from a fresh grid search using the VMSE
criterion in (6). The average spatial and temporal ranges were approximately 600
kilometers and 20 h, respectively, providing evidence of strong spatial and temporal
dependencies.

Corresponding to each of the 30 model fitting combinations we have calculated the
validation interpolations at the 40 sites for the last hour of data and for each of the next
three future hours. For example, starting at 3 PM of August 4th, we model T = 168
hourly observations from 3 PM on August 4th to 2 PM on August 10 using data from
all the 350 monitoring sites. Predictions are obtained at the 40 validation sites for the
last hour, 2 PM on August 10, and forecasts at these sites are calculated for 3 PM, 4
PM and 5 PM on August 10.

Figure 3 provides a comparison of spatial predictions obtained from our model,
Eta-CMAQ, and the regression model with independent error distribution assumption
by taking H(φ) = I , see the discussion below (2). In terms of VMSE, our proposed
Bayesian space-time model clearly outperforms the other two approaches. We note
that VMSE tends to increase as the length of the forecast period increases. Table 1
details uniform reductions in mean-square error that result in using the proposed model
relative to the regression model.
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Fig. 3 Boxplots of the VMSE’s: top left for the last modelling hour, top right for the one-hour, bottom left
for the two-hours and bottom right for the three hours ahead forecasts

Table 1 Mean-square error
reductions using Bayesian
space-time model relative to the
independent error regression
model

Day Start hour

2 PM 3 PM 4 PM 5 PM 6 PM

Last hour interpolation

Aug 2 124.7 124.8 141.0 103.0 84.3

Aug 4 94.1 99.6 118.6 141.4 192.4

Aug 6 117.4 82.1 65.1 74.2 148.0

One hour ahead forecasts

Aug 2 80.0 76.9 63.7 86.4 137.6

Aug 4 117.5 144.4 206.1 282.3 327.8

Aug 6 118.5 125.0 150.6 160.4 150.7

Two hours ahead forecasts

Aug 2 88.1 71.3 40.4 82.7 148.3

Aug 4 119.9 137.1 199.1 298.7 375.1

Aug 6 104.4 117.0 171.3 190.3 141.6

Three hours ahead forecasts

Aug 2 44.5 40.3 72.0 125.1 168.1

Aug 4 109.2 164.6 267.0 339.3 277.6

Aug 6 117.4 172.5 182.2 127.9 114.1
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Fig. 4 The validation plot for 2 PM on August 12 when the proposed model performs the worst
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Validation at 2PM  on Aug  9

Fig. 5 The validation plot for 2 PM on August 9 when the proposed model performs the best

Figures 4 and 5 provide detailed validation plots for times when our model performs
the best, and the worst. In both cases, we see that the Eta-CMAQ forecasts are upwardly
biased. The Bayesian model predictions are closer to the observations relative to the
other two approaches (the y = x, 45◦, line is superimposed). The validation plot for
the 8 h averages is provided in Fig. 6 where again similar conclusions are drawn. In
these three plots, it may seem that the Bayesian model is producing slightly biased
predictions. Predicted values are a bit high when the observed values are low, and low
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Fig. 6 The validation plot for the 8 h average at 3 PM on August 11th

Table 2 Parameter estimates
when the modeled data starts at
3 PM on August 3

Estimate 95% Credible interval

β0 0.163 (0.150, 0.176)

β24 3.451 (3.252, 3.650)

σ 2
w 2.532 (2.503, 2.561)

when the observed values are high. This can be attributed to the ‘regression to the
mean’ effect of the simple spatio-temporal regression model we have adopted here
for instantaneous prediction and forecasting. To address this issue we have included
higher order polynomial terms for the Eta-CMAQ forecasts in the model. However,
this change did not improve the validation predictions and made the linear term for
Eta-CMAQ forecasts non-significant. We have also examined the nominal coverage
of the 95% prediction intervals and that has turned out to be adequate, see particular
results in the next section.

Parameter estimates are illustrated in Table 2 and Fig. 7 when the data to be modeled
is started at 3 PM on August 3. The regression parameter β0 for the Eta-CMAQ output
co-variate is significant showing positive association between Eta-CMAQ output and
hourly ozone concentration values. The β for the midnight hour is taken as the baseline.
The estimates of β j for all other hours are relative to the β24 for the midnight hour. The
estimates of the 23 βs corresponding to 1 AM to 11 PM (Fig. 7) show that the mean
hourly ozone concentration diminishes until 9 AM in the morning and then it starts to
rise with the peak reaching around 4 PM and 5 PM. We observed similar parameter
estimates for other starting date and hour, especially for the variance parameter σ 2

w.
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Fig. 7 The posterior means and 95% credible intervals for the parameters β1, . . . , β23 corresponding to
the hours 1 AM–11 PM

We illustrate the 3 h ahead forecasts at 2 PM on August 13 in Figs. 8 and 9. (The
graphics parameters and the color-key bars are same for the three forecasts maps in
these two figures.) Here we use the 7 days data ending at 2 PM on August 11th to
do the model fitting and then obtain the 3 h ahead forecasts using the fitted model.
The Eta-CMAQ forecasts predict generally higher level of ozone concentrations than
those from the independent error regression model (Fig. 8) and the proposed spatio-
temporal model (left panel of Fig. 9). The superimposed actual ozone observations
make clear that our model greatly improves the forecasts using both the Eta-CMAQ
and independent error regression model. In fact, the VMSE’s are 240.58, 187.84 and
70.45, respectively for the three models. The standard deviation of the model based
predictions are plotted on the right panel of Fig. 9. Since a constant-variance model
was fit on the square-root scale, it is not surprising that, after transformation back to
the original scale, larger standard deviations of prediction are associated with larger
predicted values.

We illustrate the 8 h average map predictions at 3 PM on August 11th in Figs. 10
and 11. (The graphics parameters and the color-key bars are same for the three fore-
cast maps in these two figures.) We use the 7 days data ending at 3 PM on August
11th to do the model fitting and forecasting. In particular, to calculate the 8 h average
prediction at 3 PM we spatially interpolate the value at each of the 5 h 11 AM–3 PM
and temporally forecast for the 3 h 4–6 PM, see Sect. 3.3 for the details. Our model
clearly outperforms both the Eta-CMAQ and the independent error regression model;
the VMSE’s are 605.87, 80.89 and 22.40, respectively for the Eta-CMAQ, the inde-
pendent error regression model and the proposed model. See also the validation plot
in Fig. 6 for the 8 h averages. The standard deviation of the model based predictions
are provided in the right panel of Fig. 11. The 8 h average predictions have smaller
uncertainties than the 3 h ahead forecasts, as expected.

5 Comparison with the dynamic modeling approach

Sahu et al. (2009) have proposed a dynamic model approach for forecasting the next
day’s 8 h ozone concentration based on modeling daily data. Their model requires
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Fig. 8 The 3 h ahead forecasts at 2 PM on 13th August: left panel is using the Eta-CMAQ and right panel
is using an independent error regression model. Observed values from some selected sites are superimposed
(for visual clarity we present only a subset of the monitoring data)

5–7 h computing time and, as a result, is not suitable for the instantaneous forecasting
problem of this paper. However, the current model with suitable modifications for dif-
ferences in time unit can be fitted to the daily data and the forecasts can be compared.
This is taken up below.

To adapt the current model for daily data we must replace the hourly intercept term
ξ(t) by an overall intercept ξ from (1) and treat the time unit t as daily. Hence, the
hourly model adapted for daily data is given by:

Z(si , t) = β0 x(si , t) + ξ + w(si , t), (7)

for i = 1, . . . , n, t = 1, . . . , T . The specification for the space-time error term
w(si , t) can remain to be the same separable process, although the temporal correla-
tion now will have interpretations in daily time units. This model is to be compared
with the Sahu et al. (2009) model given by:

Z(si , t) = O(si , t) + ε(si , t), (8)
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Fig. 9 Left panel is the model based 3 h ahead forecasts at 2 PM on August 13th and the right panel provides
the standard deviation map. Observed values from some selected sites are superimposed (for visual clarity
we present only a subset of the monitoring data)

for i = 1, . . . , n, t = 1, . . . , T , where ε(si , t) is a white noise process, assumed to
follow N (0, σ 2

ε ) independently. The model for O(si , t) has been assumed as:

O(si , t) = ξ + ρ O(si , t − 1) + β0 x(si , t) + η(si , t),

for i = 1, . . . , n, t = 1, . . . , T where ξ , ρ and β0 are unknown parameters and η(si , t)
is a spatially correlated, but temporally independent error term. The grand mean of
the data has been chosen as the initial condition for O(s, 0).

A few remarks regarding the differences between the two sets of models are now
appropriate. The current model (7) does not incorporate the top level white noise pro-
cess (usually called the nugget term) and only has one variance parameter for w(si , t)
while the dynamic model has two variance components one for each of ε(si , t) and
η(si , t). There is a concept of true process given by O(si , t) in the dynamic mod-
els while there is only a concept of mean process described by the mean function
β0 x(si , t) + ξ in the current model. The two sets of models require different sets of
hyper-parameters; the current model has two spatial and temporal correlation decay
parameters φs and φt , see (2) and the hyper-parameters in the prior for β0, ξ and σ 2

w.
On the other hand, the dynamic models require a spatial decay parameter for the cor-
relation of the η(s, t) process and the hyper-parameters for the prior of β0, ξ, ρ, σ 2

ε
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Fig. 10 Left panel is for the 8 h average Eta-CMAQ map at 3 PM on August 11th and right panel is for
the same map using an independent error regression model. Observed values from some selected sites are
superimposed (for visual clarity we present only a subset of the monitoring data)

and σ 2
w. The introduction of the hierarchy in the dynamic models is advantageous in

handling missing data since those are simply filled up using the top-level model (8)
in each iteration of the MCMC algorithm. The missing data in the current model
must be imputed beforehand so that the exact computing methods of Sect. 3 can be
implemented. The expected consequence of these modeling assumptions is that the
forecasts using the dynamic models can be more accurate than those from the current
set of models.

To illustrate the differences between the two sets of models we compare the mean-
square errors and the median of the standard deviations of the predictions and the
nominal coverage of the 95% prediction intervals for 3 different 7-day data sets and
one day ahead forecasts published in Sahu et al. (2009) in their Table 1. We compare
the three sets of model fitting and forecasting for August 3–12; we do not compare the
data for August 2 and 13 since those were unavailable. The spatial decay parameter
was chosen the same for both the hourly and daily model. The temporal decay param-
eter for the hourly model was chosen as 0.13 corresponding to roughly 24 h decay in
temporal correlation. Table 3 provides the results for the daily and the hourly model
applied to daily data. The dynamic daily model has better VMSE results except for the
last set of days. The standard deviation of the predictions are smaller for the simpler
hourly model of this paper. This is expected since the more complex daily model will
imply higher prediction variability. The nominal coverages from both models are seen
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Fig. 11 Left panel is for the 8 h average model based map at 3 PM on August 11th and right panel is
the standard deviation map. Observed ozone values from some selected sites are superimposed (for visual
clarity we present only a subset of the monitoring data)

Table 3 Properties of the validation predictions

Days Daily model Hourly model

VMSE Med.sd Cover VMSE Med.sd Cover

Aug 3–10 50.0 34.6 0.98 51.3 27.0 1.00

Aug 4–11 64.5 34.0 0.95 68.1 26.7 1.00

Aug 5–12 62.1 33.4 0.98 49.0 26.1 0.98

Med.sd are the median of the standard deviation of the predictions and cover is the nominal coverage of the
95% prediction intervals

to be adequate. We may see better prediction performance by the daily model than
the hourly model, however, the daily model is unsuitable for the instantaneous hourly
prediction problem since it requires longer computing time.

6 Summary

As we enter a new age where air pollution data can be accessed in real-time, new
space-time models are needed to provide continuous, updated maps of current and
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future air pollution levels. This is a departure from previous research on retrospective
space-time analyses of air pollution data where computational time for fitting models
is not a constraint. To meet this modeling challenge, we develop a flexible Bayesian
spatial-temporal model which can be fit by exact methods, eliminating the need to use
computationally intensive MCMC. Given the limited time available to provide credi-
ble predictions in a real-time environment, we use a minimum number of parameters
in the model, but do account for ozone diurnal variation, the influence of Eta-CMAQ
numerical output, and space-time random variation. Validation analyses show that
this model provides improved predictions of hourly ozone spatial patterns, and can
be used to predict 8 h average ozone concentrations surrounding any hour of the day,
including 3 forecasted hours in the 8 h average. Future efforts will focus on improving
the model further by incorporating spatially varying coefficients for Eta-CMAQ to
evaluate regional effects and thereby adjust for possible regional biases. It will be also
interesting to see how the model will perform for other pollutants such as the fine
particulate matter.
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and approved for publication, it does not necessarily reflect the Agency’s policies or views.

Appendix: Simplifying the expressions: �12H
−1 (φ) and �12H

−1 (φ) �21

Note that

(
1 �12

�21 H (φ)

)
=

(
1 �′

s(s − s′) ⊗ �′
t (t − t ′)

�s(s − s′) ⊗ �t (t − t ′) �s ⊗ �t

)

where �s(s − s′) is an n × 1 column vector with the i th entry given by σs(si − s′)
and �t (t − t ′) is a T × 1 column vector with the kth entry given by σt (t − t ′). Here
H−1 (φ) = �−1

s ⊗ �−1
t . Hence the 1 × nT vector �12 H−1 (φ) will have elements

(for j = 1, . . . , n and k = 1, . . . , T )

b jk(s′, t ′) =
n∑

i=1

T∑

m=1

σs(si − s′)σt (m − t ′)(�s)
−1
i j (�t )

−1
mk

=
n∑

i=1

σs(si − s′)(�s)
−1
i j

T∑

m=1

σt (m − t ′)(�t )
−1
mk

= bs( j, s′) bt (k, t ′),

where

bs( j, s′) =
n∑

i=1

σs(si − s′)(�s)
−1
i j , and bt (k, t ′) =

T∑

m=1

σt (m − t ′)(�t )
−1
mk .
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The quantity bt
(
k, t ′

)
simplifies considerably by noting that it resembles the inner

product of a multiple of a particular column of �t and a particular row of �−1
t . First,

consider the case t ′ ≤ T . In this case bt
(
k, t ′

)
is the inner product of the t ′th column

of �t and kth row of �−1
t . Hence bt

(
k, t ′

)
will be 1 if t ′ = k and 0 otherwise. Now

consider the case t ′ > T . Suppose that we can write

σt (m − t ′) = σt (t
′ − T )σt (T − m) (9)

for m = 1, . . . , T , thus bt
(
k, t ′

)
will be σt (t ′ − T ) times the inner product of the

T th column of �t and kth row of �−1
t . Observe that (9) holds for the exponential

covariance function adopted here. Thus we have proved the following result:

bt
(
k, t ′

) =
{

δk,t ′ , if t ′ ≤ T
δk,T σt

(
t ′ − T

)
, if t ′ > T

where δi, j = 1 if i = j and 0 otherwise.
Now we obtain simplified expressions for a quantity like �12 H−1 (φ) a where a is

nT by 1 with elements a jk , j = 1, . . . , n and k = 1, . . . , T . We have:

�12 H−1 (φ) a =
n∑

j=1

T∑

k=1
b jk(s′, t ′)a jk

=
n∑

j=1

T∑

k=1
a jkbs( j, s′) bt (k, t ′)

=
n∑

j=1
bs( j, s′)

T∑

k=1
a jkbt (k, t ′).

Now

T∑

k=1

a jkbt (k, t ′) =

⎧
⎪⎪⎨

⎪⎪⎩

T∑

k=1
a jkδk,t ′ , if t ′ ≤ T

T∑

k=1
a jkδk,T σt

(
t ′ − T

)
, if t ′ > T .

Thus we have,

T∑

k=1

a jkbt (k, t ′) =
{

a jt ′ , if t ′ ≤ T
a jT σt

(
t ′ − T

)
, if t ′ > T .

Finally,

�12 H−1 (φ) a =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1
bs( j, s′)a jt ′, if t ′ ≤ T

σt
(
t ′ − T

) n∑

j=1
bs( j, s′)a jT if t ′ > T .
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Now we simplify the expression for the conditional variance. Note that �12 H−1 (φ)

�21 is exactly equal to �12 H−1 (φ) a where a = �21. For this choice we have,
a jt = σs(s j − s′)σt (t − t ′). Hence,

�12 H−1 (φ) �21 =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1
bs( j, s′)σs(s j − s′)σt (t ′ − t ′), if t ′ ≤ T

σ
(
t ′ − T

) n∑

j=1
bs( j, s′)σs(s j − s′)σt (T − t ′), if t ′ > T .

Let

as(s′) =
n∑

i=1

n∑

j=1

σs
(
si − s′) (

�−1
s

)

i j
σs

(
s j − s′) .

Thus,

�12 H−1 (φ)�21 =
{

as(s′), if t ′ ≤ T
as(s′)σ 2

t

(
t ′ − T

)
if t ′ > T .

Now

C(s′, t ′) = 1 − as(s′) at (t
′),

where

at
(
t ′
) =

{
1, if t ′ ≤ T
σ 2

t (t ′ − T ) if t ′ > T .
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