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Motivation

Want to

� have more flexible models.

� exploit advanced MCMC methods.

� learn more from the data.
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Outline

� What are multivariate survival data?

� The general model and setup

– Models for frailty

– Modelling the baseline hazard

� Computations using the reversible jump

� Examples

– Example 1: Rat litter data

– Example 2: Kidney infection data

� Discussion
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Multivariate survival data

� Survival times of family members.

� Recurrence times of diseases.

� Failure times of paired human organs.

Right censored data with covariates.

� Three rats from each of 50 litters were

observed to develop tumor: A random rat

was given a drug.

� Data on first and second recurrence of 38

kidney patients.

� Onset of blindness for diabetic retinopathy

patients.

� Plenty of more.
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The general model

Suppose that data

Tij ; j = 1; : : : ;m; i = 1; : : : ; n

is survival time of the jth subject in the ith

group. Assume the Cox proportional hazard

model conditional on the frailty.

h(tijjzij ; wi) = wi ho(tij) exp(�T
zij)

wi: the individual level effect is called frailty.

Hazard: Probability of instantaneous death

given that it has survived upto that point.

Density = Hazard � Exp(– Cumulative Hazard)

i.e.

f(t) = h(t) exp(�

Z t

0

h(u)du)
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Frailty Distributions

Gamma frailty:

f(wj�) =
��

�(�)
w��1 exp(�w�); w > 0:

Has mean 1, variance 1=�; provides a

conjugate prior; easy to use.

Has the Laplace transform

E [exp(�sW )] =

�
�

� + s

��

:

Does not give proportional hazard in the

marginal model.
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Positive stable frailty

One specifies the Laplace transform.

E [exp(�sW )] = exp(�s�):

� It maintains the proportional hazard

assumption in the marginal model.

� It is heavy tailed.

� Its density is not unique.
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There are many possible solutions for the

density of W . One version due to Buckle

(1995) is f(wj�) =

�w1=(��1)

j�� 1j

Z
1=2

�1=2

exp

(
�

���� w

d�(y)

����
�=(��1)

)

���� 1

d�(y)

����
�=(��1)

dy

where

d�(y) =
sin(��y + s�)

cos�y
�

�
cos�y

cosf�(�� 1)y + s�g

�(��1)=�

;

and s� = min(�; 2� �)�=2.
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Log-Skew- t frailty

We specify the density fb(bj�; Æ; �) of

b = log(w).

2 (�2 + Æ2)�1=2 ft;�

 
bp

�2 + Æ2

!
�

Ft;�+1

 p
q(b)

Æ

�

bp
�2 + Æ2

!

where

q(b) =
� + 1

� + b2=(�2 + Æ2)

and ft and Ft are the pdf and cdf of the

standard t distribution with m df.
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� With Æ = 0 the density reduces to the

standard t density with � df.

� If � !1 then it approaches the normal

distribution.

� It is Cauchy if Æ = 0 and � = 1.

� Non-zero values of Æ provide skewness.

– Positively skewed if Æ > 0.

– Negatively skewed if Æ < 0.
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Let us compare

Assume the bivariate setup, i.e. m = 2.

Tools for comparison:

� Local dependence measure, e.g.
S(t1;t2)

S(t1)S(t2)

� Kendall’s

� = Esignf(T11 � T21)(T12 � T22)g

� corr(T1; T2)

� corr(log T1; log T2)

We use the correlation between log(T1) and

log(T2). Following Hougaard (2000)

corr(log T1; log T2) =
Var(b)

Var(b) + �2=6
:

11



� For gamma frailty: E(b) =  (�)� log(�)

and Var(b) =  0(�) where  (�) is the

digamma function.

� For stable frailty E(b) = �
�
1

�
� 1
�
 (1)

and Var(b) =
�

1

�2
� 1
�

�2

6
.

� For log-skew-t frailty:

E(b) =
�
�
�

�1=2 �[(��1)=2]

�(�=2)
Æ and Var(b) =

(�2 + Æ2) �
��2

� �
�

�
�[(��1)=2]

�(�=2)

�
2

Æ2:
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� Equate the Var(b) under all three models

and E(b) under the last two models to

obtain comparable densities.

� With this corr(log T1; log T2) will be the

same under all three models.

The expectation of b is not matched under the

gamma and stable model since they are of

opposite signs, always.

We thus obtain:

� For gamma frailty: � = 1:14.

� For stable � = 0:74.

� For the log-skew-t model, we first choose,

� = 1 and � = 8. Then Æ = 0:23.

Now corr(log T1; log T2) = 0:45 for all three

models.
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Figure 1: Rescaled densities of frailty distributions.
The graphs are for (i) the log-skew-t distribution with
� = 1, Æ = 0:23 and � = 8, (ii) positive stable
with � = 0:74, and (iii) the gamma distribution with
� = 1:14.

� Three densities induce the same correlation

on the log transformed survival times.

� The log-skew-t model has the heaviest tail.
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Models for baseline hazard

Time is divided into g pre-specified intervals

Ik = (�k�1; �k] for k = 1; 2; : : : ; g where

0 = �0 < �1 < : : : < �g <1;

�g being the last survival or censored time.

Assume that the baseline hazard is constant

within each interval. That is,

ho(tij) = hk; for tij 2 Ik:

Assume a martingale prior for �k = log(hk),

(see e.g. Sahu et al., 1997),

�kj�1; : : : ; �k�1 � N(�k�1; 1)

with �0 = 0.
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A baseline hazard function

k

�k
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We further assume that the jump times

�1; �2; : : : form a time-homogeneous Poisson

process with rate a.

Advantage: The number and positions of the

grid points need not be fixed in advance.

Given g, the martingale specification for �k

implies that

� � Ng

�
0; C�1

�
where the g� g matrix C has all elements zero

except for ckk = 2; k = 1; : : : ; g and

ckk+1 = �1, k = 1; : : : ; g � 1 and

ck�1k = �1 for k = 2; : : : ; g.
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Posterior

Likelihood:

nY
i=1

mY
j=1

(
gijY
k=1

exp(�hk�k�ijwi)

)

�
hgij+1�ijwi

�Æij
exp

�
�hgij+1(tij � �gij)�ijwi

	
;

where tij 2 (�gij ; �gij+1] = Igij+1 and

�ij = exp(�T
zij).

Prior:

nY
i=1

[�(wij � � � )]�(� � � ) �(g)�(�jg) �(�):
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Prior Sensitivity

Aim is to keep the hyper-parameters as vague

as possible.

� For �, and ��2 we use gamma(b; b) with

b = 0:001

� For Æ � U(0; 5): positively skewed.

� For � we adopt exponential with mean 10.

� For g the number of jump times we assume

Poisson with mean 10 truncated between 1

and 20.

Inference was largely insensitive to these

choices.
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Using Reversible jump

Three types of moves:

(a) updating all the parameters except for g,

(b) birth of a new jump time,

(c) death of an existing jump time.

The move type (a) does not change the

dimension, details in Sahu et al. (1997).

How to jump from the current point x to a new

point y of possibly different dimension?
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Draw u and v of appropriate dimensions, such

that

dimension of (x; u) = dimension of (y; v).

The point y is obtained using a one-to-one

transformation (y; v) = T (x; u) which is

accepted with probability � f(x; u); (y; v)g =

min

�
1;
�(y)q2(v)

�(x)q1(u)

����@T (x; u)@(x; u)

����
�

where �(�) is the posterior distribution and

q1(u) and q2(v) are the densities of u and v,

respectively.
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Consider the birth move. We draw:

� � � Uniform(�0; �max):

Suppose that � � 2 (�k�1; �k).

Need to generate �0k and �0k+1
in the proposal

when the current point is �k.

There is one degree of freedom of proposing

the move. We simulate u uniformly in (��; �)

for some � > 0.

Now �0k is taken to be a convex combination of

�k�1 and �k + u, and �0k+1
is taken to be a

convex combination of �k � u and �k+1.
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In particular we take

�0k =
� � � �k�1

�k � �k�1

�k�1 +
�k � � �

�k � �k�1

(�k + u);

�0k+1
=

� � � �k�1

�k � �k�1

(�k � u) +
�k � � �

�k � �k�1

�k+1:

Now we set �0i = �i for 1 � i � k � 1 and

�0i+2
= �i+1 for k � i � g � 1. Further, we

let � 0k = � � and set � 0i = �i for 0 � i � k � 1

and � 0i+1
= �i for k � i � g.

Other proposals can be considered as well.
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Observe that the Jacobian for this type of move

is
2�0

k �
0

k+1

�2

k

:

where �k = �k � �k�1.

The density q1(u) in the acceptance probability

is 1

2�
I(�� < u < �) and generation of v is not

required.
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Model Choice and Validation

�(yrjyobs) =

Z
�(yrj�)�(�jyobs)d�:

Suppose

�(1); : : : ;�(B) � �(�jy):

� Draw y
(j)
r from �(yrj�

(j)).

� It is a sample from the predictive density.

Gelfand (1996).
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Litters Example

Three rats from each of 50 litters were observed

to develop tumor. A randomly selected rat from

each litter was given a drug and the other two

were selected as controls and were given a

placebo.

� ' Æ �

0.69 (0.31) 0.51 (0.45) – –

(0.09, 1.30) (0.06, 1.69) – –

0.78 (0.32) 0.40 (0.004) – –

(0.13, 1.41) (0.37, 0.42) – –

0.74 (0.31) 0.23 (0.23) 0.39 (0.27) 12.8 (9.2)

(0.13, 1.35) (0.05, 0.89) (0.02, 0.99) (2.07, 37.1)

Parameter estimates from the gamma (first row), stable

(second row) and log-skew-t (last row) model.
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Figure 2: The kernel density estimates of �.
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Diagnostic Checking
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Figure 3: The CPO plot for comparing the log-skew-
t model versus the stable model. 93 out of 150 ob-
servations support the skew model. The log pseudo-
Bayes factor is 6.3.
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Fitted Frailty Distributions

Recall the theoretical comparison made before.
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Figure 4: The fitted frailty distributions for the litters
example.

� The tail of the log-skew-t is heavier than the

gamma but lighter than the stable.
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Kidney Infection Data

This is a well known data set from 38 kidney

patients of which 28 are female. For each

patient two recurrence times were recorded.

Some were censored.

� Right censored data.

� Covariates: sex and age.

� Survival times: Tij , jth recurrence time for

the ith patient.

Sex has a ‘significant’ effect.
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Figure 5: Predictive survival curves for a typical fe-
male patient for the kidney infection example.

� Most survival times are below 200.

� Around time=200 the Kaplan-Meyer

estimate shows a sharp decrease in the

survival function as the data suggests.

� The predictive survival function under the

log-skew-t model adapts to this most

rapidly. Other models follow suit, but at a

slower pace.
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Evaluate reversible jump

We get a smoother baseline hazard function.

0 100 200 300 400 500
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Figure 6: Posterior mean estimate of the log base
line hazard function for fixed g and random g model
for the kidney infection example.
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The posterior distribution of g is not very

sensitive under the three models or under

different hyper parameter values.
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Figure 7: The posterior distribution of g under the
three models for the litters example.
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Discussion

Extended the multivariate survival models in

two directions.

1. The log-skew-t frailty is more flexible than

the gamma and stable frailty distributions.

� It cannot take multi-modal shape.

2. The baseline hazard function is modeled

using a flexible martingale process.

� It imposes smoothing using its

neighbors.

� The jump times follow a

time-homogeneous Poisson process.

� This removes the ad-hoc assumptions

on the number and position of the jump

times.
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Further Discussion

� We have developed the powerful reversible

jump Markov chain Monte Carlo method for

multivariate survival analysis.

� Our methods can be extended to many

other scenarios including the models with

time-dependent covariate effects.

The paper and the references are available

from:

http://www.maths.soton.ac.uk/staff/Sahu/
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