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Abstract Air pollution is known to have a significant health impact particularly on
people suffering from asthma and other forms of respiratory diseases. In the US
ozone pollution is a huge concern during summer months because strong sunlight
and hot weather result in harmful ozone concentrations in the atmosphere. Many
urban and suburban areas have high levels of ozone concentrations, but many ru-
ral areas also have high ozone levels as winds carry emissions hundreds of miles
from their sources. With air quality changing day to day, and even hour to hour, the
challenge is to devise a model that could provide more accurate forecasts in real
time. A Bayesian hierarchical space-time model is proposed and is validated to be
the most accurate one that reduces forecasting error up to a third. The method com-
bines observational air monitoring data with a forecast numerical model output to
create a statistical model that could be used to provide very accurate forecast maps
for the current eight-hour average and the next day maximum eight-hour average
ozone concentration levels. The method is fully Bayesian and is able to instantly
update the 8-hour map at the current hour (upon receiving monitor data for the cur-
rent hour) and forecast the map for several hours ahead. Consequently, children and
vulnerable people suffering from respiratory illnesses could gain potential health
benefits by limiting their exposure to potentially harmful air pollution by reducing
their outdoor activity when levels are high.

1 Introduction

Air quality changes very fast in space and time as airborne particles and harmful
gases are transported by the prevailing weather conditions and human activity, such
as motoring, in the immediate neighbourhood and beyond. For example, dust par-
ticles originating from the Sahara desert have been known to pollute the air in the
UK and Europe in 2014 and 2015. Thus episodes in air pollution can occur in a
study region for activities and natural phenomena taking place in areas even 1000s
of miles apart. How then can air pollution levels be forecast accurately so that at risk
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people, i.e. children and those suffering from respiratory illnesses can be alerted to
exposure risk?

Air quality models have been developed based on chemical transport models and
those for atmospheric air dispersion systems. In the United State of America (USA),
national air quality forecasts and near real-time predictive spatial maps are provided
to the general public through the EPA-AIRNow web site: http://airnow.gov/. Current
and next day particulate matter and ozone (O3) air quality forecasts for over 200 U.S.
cities are now provided on a daily basis. These forecast maps, however, are based
primarily on the output of a computer simulation model known as the Eta-CMAQ
model, see e.g. http://www.epa.gov/asmdnerl/CMAQ/. These models use emission
inventories, meteorological information, and land use to estimate average pollution
levels for gridded cells (12 km2) over successive time periods. However, it is well
known that these computer models may produce biased output and, as a result, this
may lead to inaccurate pollution forecasts [3].

Monitoring data, on the other hand, provide much better air quality information
since those are based on actual measurements and thus are free from biases in the
computer model output. However, the monitoring sites are often sparsely located
and irregularly spaced over large areas such as the Eastern US which is the study
region of interest in this chapter. The sparsity limits accurate air quality information
for areas away from the monitoring sites. Surely, from an individual’s view point
the most relevant air quality information must be the one where he/she lives or
works and not at or near the monitoring sites. The problem of finding accurate air
quality information in space and time still remains even after obtaining data from a
monitoring network. This problem is further exacerbated by the need to forecast air
quality so that preventive steps can be taken to limit exposure.

The need for prediction of air quality in both space and time naturally leads to
the consideration of statistical modelling as candidate solutions. The main contribu-
tion behind the current impact case study is the development of a statistical spatio-
temporal model that combines information from both the numerical model (Eta-
CMAQ) and real time data from the monitoring sites. The model, implemented in
a Bayesian inference framework, is computationally efficient and produces instan-
taneous forecast maps of hourly ozone concentration levels. The space-time model
lends itself to closed form analytic Bayesian posterior predictive distributions for
spatial interpolation of ozone concentration level for the past hours, current hour
and forecast for future hours. These predictive distributions provide instantaneous
spatial interpolation maps which could be used in a real-time environment such as
the U.S. EPA AIRNow system. The predictive distributions are used to obtain the
eight-hour average map which is the average of the past four hours, current hour
and three hours ahead. The forecasts are evaluated by using the model fitted to a
two week test data set.
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2 Models

Modelling development is for observed data from the, n say, monitoring sites de-
noted by s1, . . . ,sn where each si is described either by a latitude and longitude pair
or equivalently a northing and easting pair. Observed data often have high variabil-
ity which causes problems in prediction (e.g. a negative value) using Gaussian error
distribution. To address that, we model data on the square-root scale but report all
predictions at the original scale for ease of interpretation. Let Z(s, t) denote the ob-
served square-root ozone concentration, in parts per billion (ppb) units at location s
and at hour t for t = 1, . . . ,T where we take T = 168 corresponding to a seven day
modelling period that captures a full weekly cycle.

The Eta-CMAQ forecasts are proposed to be used as a regressor in the model so
that we can use the best estimates so far to train the model. These forecasts fill in
the gaps in space where monitoring data are not available and the regression method
improves the accuracy by using these in conjunction with the ground truth revealed
by the observations.

There is, however, a potential problem in using the Eta-CMAQ forecasts since
those correspond to an average value on a 12-kilometre square grid-cell while the
monitoring data are observed at a point level, s, described by a latitude-longitude
pair. This general problem is the ’change of support problem’ and the method used
to solve the problem is known as ’downscaling’, see e.g. [1] and [2]. We follow [5]
and use x(s, t) (in ppb units) to denote the square-root of the Eta-CMAQ ozone
forecast value at the unique grid cell covering the site s and at time t.

Ozone concentration data often shows strong diurnal patterns and we model us-
ing a different hourly intercept for each of the 24 hours in a day. Let ξ (t)= β j denote
the hourly intercept, where the hour t(= 1, . . . ,T ) corresponds to the jth hour of the
day, j = 1, . . . ,24. In addition, a weekday/weekend indicator, q(t) taking value 1 if
the hour t is within a weekday and 0 otherwise is also used as a regressor.

The full model is written as observed data as the total of a mean and a random
error and is given by:

Z(si, t) = β0 x(si, t)+ξ (t)+βq q(t)+w(si, t), i = 1, . . . ,n, t = 1, . . . ,T, (1)

where β =(β0,β1, . . . ,β24,βq)
′ contains p= 26 unknown regression parameters and

w(si, t) is a space-time error term.
The error term w(si, t) is assumed to be a zero-mean spatio-temporal process with

a covariance structure, given by:

Cov
{

w(si, tk), w(s j, tl)
}
= σ

2
w ρs(|si− s j|;φs) ρt(|tk− tl |;φt). (2)

We write w to denote the vector of all the nT w(si, t)’s. Let H(φ)=Σs⊗Σt where the
n×n spatial correlation matrix Σs has elements ρs(|si−s j|;φs), for i, j = 1, . . . ,n and
T×T temporal correlation matrix Σt has elements ρt(|tk−tl |;φt), for k, l = 1, . . . ,T .
Here A⊗B denotes the Kronecker product of the two matrices A and B. This model
reduces to the usual regression model with independent errors when we take H(φ)=
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I, the identity matrix. This can be achieved by choosing ρs(d;φs) = ρt(d,φt) = 1 if
d = 0 and 0 otherwise. This independent error regression model is compared with
the spatio-temporal model in Section 3.

We take the two ρ’s to be exponential covariance functions, i.e., ρs(d;φs) =
exp(−φs|d|) and ρt(d;φt) = exp(−φt |d|) . Estimation of the spatial decay param-
eters, φs and φt , is generally problematic since those are weakly identified by the
model and in Section 3 we choose optimal values of φ using a validation mean
square error criterion.

The Bayesian model is completed by specifying prior distributions for β and σ2
w.

For convenience, we work with the precision τ2
w = 1/σ2

w. The joint prior distribution
of β ,τ2

w is assumed to be:

π(β ,τ2
w) = N

(
β m,

V
τ2

w

)
G(aw,bw),

where β m, p× 1, and V , p× p, are suitable hyper-parameters and τ2
w follows the

gamma distribution G(aw,bw) with mean aw/bw. In our implementation we take
aw = 2 and bw = 1 to have a proper prior specification. We take β m to be the null
vector and V = 104I to have a vague prior on the regression parameter β .

2.1 Posterior distributions

Model (1) can be written as

Z∼ N
(
Xβ ,σ2

wH (φ)
)

where Z, nT ×1, contains all the data and X is the associated nT × p design matrix.
Any missing value in Z must be replaced by an appropriate average of the space-
time observations. The joint posterior distribution of β and τ2

w, π
(
β ,τ2

w|z
)
, is:

∝
(
τ2

w
) nT+p

2 +aw−1 exp
[
− τ2

w
2

{
(z−Xβ )′H−1 (φ)(z−Xβ )+(β −β m)

′V−1(β −β m)+2bw
}]

.

By direct integration the marginal posterior distributions are obtained as follows:

β |z∼ t
(

β
∗,2b∗w

V ∗

nT +2aw
,nT +2aw

)
, τ

2
w|z∼ G(nT/2+aw,b∗w) (3)

where

V ∗ =
(
V−1 +X ′H−1(φ)X

)−1
, β

∗ =V ∗
(
V−1

β m +X ′H−1(φ)z
)

and
b∗w = bw +

{
β
′
mV−1

β m + z′H−1(φ)z− (β ∗)′(V ∗)−1(β ∗)
}
/2.
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Here t(µ,Σ ,ν) denotes the multivariate t distribution with ν degrees of freedom
having location parameter µ and scale parameter Σ . We use the marginal posterior
distributions (3) to make inference. Specifically, β

∗ provides the point estimates for
the parameter β . We obtain a credible interval for the component, βk, k = 1, . . . , p
by using its marginal posterior distribution which is a t-distribution with nT + 2aw

degrees of freedom having mean β ∗k and scale parameter λ 2
k where λ 2

k =
2b∗w

nT+2aw
V ∗kk

where V ∗kk is the kth diagonal entry of V ∗. Similarly we estimate σ2
w by the poste-

rior expectation E(1/τ2
w|z) =

b∗w
nT/2+aw−1 which follows from the properties of the

Gamma distribution.

2.2 Predictive distribution for forecasting

Using the above models we interpolate the spatial surface at any time point t ′ in
the future or in the past. Let the p-dimensional vector of values of the regression
variables at this new location-time combination be given by x0. We first construct
the joint distribution:(

Z (s′, t ′)
Z

)
∼ N

{(
x′0β

Xβ

)
, σ

2
w

(
1 Σ12

Σ21 H (φ)

)}
,

where Σ21 = Σ ′12 and Σ12 is the nT dimensional vector with elements given by
σs(si−s′)σt(t−t ′) where σs(si−s′) = ρs(|si−s′|;φs) and σt(t−t ′) = ρt(|t−t ′|;φt).
Now we obtain the conditional distribution

Z
(
s′, t ′

)
|z,β ,σ2

w ∼ N
{

x′0β +Σ12H−1 (φ)(z−Xβ ) ,σ2
w
(
1−Σ12H−1 (φ)Σ21

)}
.

By integrating out β and τ2
w from the above distribution we obtain the predictive

distribution given by:

Z(s′, t ′)|z∼ t
(

x′0β
∗+Σ12H−1 (φ)(z−Xβ

∗) ,2b∗w
C(s′, t ′)+g′V ∗g

nT +2aw
,nT +2aw

)
(4)

where g′ = x′0− Σ12H−1 (φ)X . Observe that we model ozone on the square root
scale. Hence the predictions using the posterior predictive distribution (4) will be on
the square-root scale as well. We can predict on the original scale by evaluating:

E(Z2(s′, t ′)|z) = {E(Z(s′, t ′)|z)}2 +Var{Z(s′, t ′)|z)}
=
{

x′0β
∗+Σ12H−1 (φ)(z−Xβ

∗)
}2

+2b∗w
C(s′,t ′)+g′V ∗g

nT+2aw−2 .

Further details of the predictive distributions and the computations are provided in
[5].
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3 Validation analysis

The model and the forecasts are validated using the root mean square error (RMSE)
for the forecasts Ŷj for the observed Yj, on the original scale, for j = 1, . . . ,m where
m denotes the number of validation observations and j is the index that represent a
unique space and time combination. The RMSE is given by:

RMSE =

√
1
m

m

∑
j=1

(
Yj− Ŷj

)2
. (5)

In our illustration, we use data from n = 694 sites in a study region in the eastern
US. We use the RMSE criterion (5) to select the optimal values of the spatial and
temporal decay parameters φs and φt . For selecting φs the candidate effective ranges
(≈ 3/φs) were taken as 3, 6, 30, 60 and 600 kilometres. For selecting the temporal
decay parameter φt we searched corresponding to effective ranges of 3, 6, 9, 12 and
24 hours. The optimal selection of these two parameters the only tuning required
in the whole procedure. The optimal values of these parameters must be found for
each case of model based spatial interpolation and forecasting. However, the RMSE
criterion cannot be calculated when it is necessary to forecast values in the future.
In such cases, we recommend to use the optimal values of φs and φt for forecasting
the most recent observed values by pretending those to be as yet unobserved.

Figure 1 illustrates the RMSE of the forecasts for one hour ahead at the 694
fitting sites. Here one hour ahead forecasts are obtained for 11 hours from 6AM to
4PM for 7 days. At each forecasting occasion the data from previous seven days
(i.e. 168 hours) have been used and the optimal values of the tuning parameters
are found using method described above. On average, the RMSEs for the Bayesian
model based forecasts are a third lower than the same for the Eta-CMAQ forecasts
and are about half of the same for the forecasts based on simple linear regression
method. [5] illustrate the accuracy of the forecasts in further detail. In conclusion,
it is expected that forecasting using optimal Bayesian space-time model will have
much better accuracy than other methods which do not explictly take space-time
correlation into account.

4 Discussion

Millions of Americans with respiratory illnesses could gain potential health benefits
from improved air pollution forecasting methods. The air quality forecasts devel-
oped are up to three times more accurate than previous forecasts (as illustrated here)
and this means that people can limit their exposure to potentially harmful air pol-
lution by reducing their outdoor activity when levels are high. The ability to limit
exposure to high levels of air pollution can have a positive impact on long-term
health and also has an economic impact as the need for medication, doctors and
hospital admissions is reduced.
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The accuracy of the forecasts can be increased by more complex modelling as
has been claimed by [4]. However, such approaches require iterative model fitting
methods, such as Markov Chain Monte Carlo (MCMC), since the posterior pre-
dictive distributions are not available in closed form unlike the case here. Being
iterative, the MCMC methods require considerably more execution time to esti-
mate model parameters and the methods also need convergence monitoring, thus
eliminating their potential use in real-time forecasting environments. The proposed
methods can be fully automated requiring no user input or intervention. The two
weeks test data set is available from the author upon request.
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Fig. 1 The RMSE’s of the
forecasts for the 8-hour av-
erages at the current hour at
each hour from 6AM to 4PM
for three different forecasting
methods.
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