ELEC3026 MODEM: Brief Notes

Coherent and Non-coherent Receivers

Professor Sheng Chen School of Electronics and Computer Science University of Southampton Southampton SO17 1BJ, UK E-mail: sqc@ecs.soton.ac.uk

http://www.ecs.soton.ac.uk/~qc/EL334/

University

of Southampton

1

S Chen

Coherent Receiver

(a) Carrier recovery for demodulation

- Receiver signal $\hat{S}(t) = A \cos (\omega_c t + \varphi) + N(t)$
- Local carrier $\cos(\omega_c t + \bar{\varphi})$
- Carrier recovery (e.g. phase lock loop) circuit

$$\Delta \varphi = \varphi - \bar{\varphi} \to 0 \quad \text{i.e.} \quad \bar{\varphi} \to \varphi$$

- Demodulation leads to recovered baseband signal

$$Y(t) = X(t+\tau) + N(t)$$

where $\boldsymbol{X}(t)$ is transmitted baseband signal

(b) Timing recovery for sampling

– Align receiver clock with transmitter clock, so that sampling \Rightarrow no ISI

$$Y_k = X_k + N_k$$

where X_k are transmitted symbols, and N_K noise samples

Electronics and Computer Science

Non-coherent Receiver

(a) No carrier recovery for demodulation

- Receiver signal $\hat{S}(t) = A \cos \left(\omega_c t + \varphi\right) + N(t)$
- Local carrier $\cos(\omega_c t + \bar{\varphi})$
- No carrier recovery,

$$\phi = \Delta \varphi = \varphi - \bar{\varphi} \neq 0$$
 i.e. $\bar{\varphi} \neq \varphi$

- Demodulation leads to recovered baseband signal

$$Y(t) = X(t+\tau)e^{j\phi} + N(t)$$

(b) Timing recovery for sampling

- Align receiver clock with transmitter clock, sampling results in

$$Y_k = X_k e^{j\phi} + N_k$$

Could not recover transmitted symbols properly from Y_k !

Differential Detection

(a) Differential encoding for transmission

- Symbols $\{C_k\} \Rightarrow \{X_k\}$ for transmission

$$X_k = C_k \cdot X_{k-1}$$

- As
$$X_k \cdot X_{k-1}^* = C_k \cdot (X_{k-1} \cdot X_{k-1}^*)$$
,

$$C_k = \frac{X_k \cdot X_{k-1}^*}{|X_{k-1}|^2}$$
(1)

(b) Non-coherent detection

- Receiver samples $Y_k = X_k \cdot |H|$

$$Y_k = X_k \cdot |H| \cdot e^{j\phi} + N_k$$

- |H|: magnitude of combined channel tap, $\phi \neq 0:$ unknown phase
- Differential decoding

$$\hat{C}_k = \frac{Y_k \cdot Y_{k-1}^*}{|Y_{k-1}|^2} \tag{2}$$

Differential Detection (derivation)

$$Y_{k} \cdot Y_{k-1}^{*} = (X_{k} \cdot |H| \cdot e^{j\phi} + N_{k}) \cdot (X_{k-1}^{*} \cdot |H| \cdot e^{-j\phi} + N_{k-1}^{*})$$

$$= X_{k} \cdot X_{k-1}^{*} \cdot |H|^{2} \cdot e^{j(\phi-\phi)}$$

$$+ N_{k} \cdot N_{k-1}^{*} + X_{k} \cdot |H| \cdot e^{j\phi} \cdot N_{k-1}^{*} + N_{k} \cdot X_{k-1}^{*} \cdot |H| \cdot e^{-j\phi}$$

$$|Y_{k-1}|^{2} = X_{k-1} \cdot X_{k-1}^{*} \cdot |H|^{2} + N_{k-1} \cdot N_{k-1}^{*}$$
$$+ X_{k-1} \cdot |H| \cdot e^{j\phi} \cdot N_{k-1}^{*} + N_{k-1} \cdot X_{k-1}^{*} \cdot |H| \cdot e^{-j\phi}$$

When noise N_k is very small

$$Y_k \cdot Y_{k-1}^* pprox X_k \cdot X_{k-1}^* \cdot |H|^2$$
 and $|Y_{k-1}|^2 pprox |X_{k-1}|^2 \cdot |H|^2$

• Thus,

$$\hat{C}_k = \frac{Y_k \cdot Y_{k-1}^*}{|Y_{k-1}|^2} \approx C_k + \bar{N}_k$$

where power of enhanced noise \bar{N}_k is larger than that of N_k

• Note that influence of channel phase ϕ has been removed

University

of Southampton

Comparison

- Coherent detection
 - Require expensive and complex carrier recovery circuit
 - Better bit error rate of detection

$$\hat{X}_k = X_k + N_k$$

- Non-coherent detection
 - Do not require expensive and complex carrier recovery circuit
 - Poorer bit error rate of detection

$$\hat{C}_k = C_k + \bar{N}_k$$

• Differential systems have important advantages and are widely used in practice