
#### **Digital Communication System**

 Purpose: communicate information at certain rate between geographically separated locations reliably (quality)

Important point: rate, quality  $\leftrightarrow$  spectral bandwidth requirement

• Major components: CODEC, MODEM and channel (transmission medium)



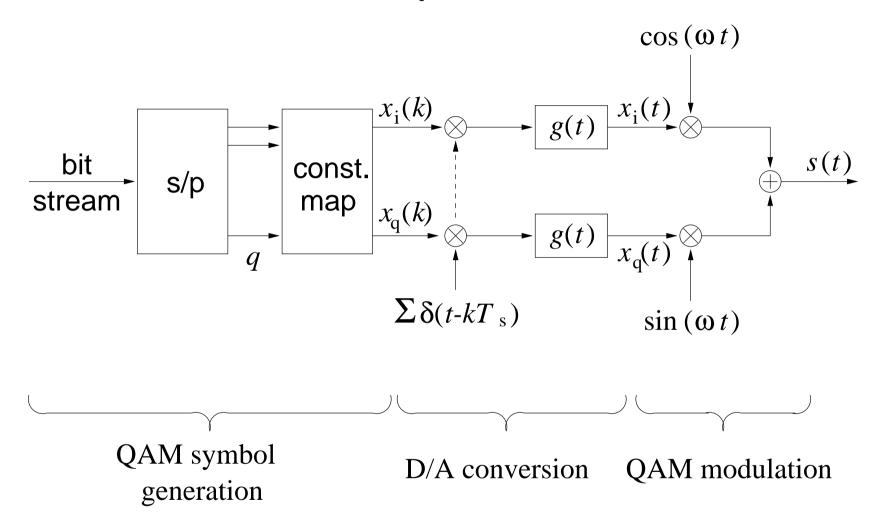


# Digital Communication System (continue)

- ullet A pair of transmitter (coder, modulator) and receiver (demodulator, decoder) is called transceiver
- Information theory provides us basic communication theory for communication system design, including CODEC and MODEM
- Detailed practical CODEC design, including source coding and channel coding, will be covered latter by the other lecturer
- This part considers MODEM (modulation/demodulation)
- The purpose of MODEM: transfer the bit stream at certain rate over the communication medium reliably
- Why *carrier* communication (modulation): low frequency signal cannot travel far, also most spectral resource (channels) are in RF



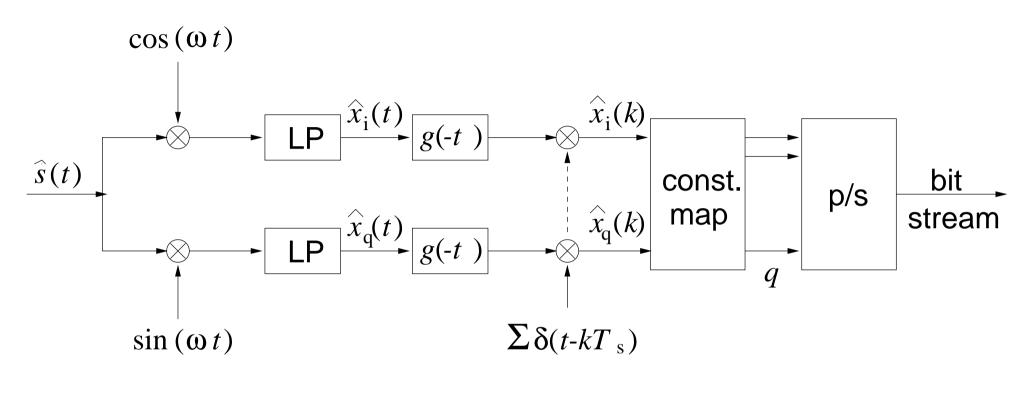
#### **Digital Modulation**


- In the old day, communications were *analogue*, analogue modulation techniques include amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM)
- Communications today are mostly all digital, equivalent digital modulation forms exist: amplitude shift keying (ASK), frequency shift keying (FSK), or phase shift keying (PSK)

Sin waveform  $A \sin(2\pi f_c t + \theta)$ : amplitude A, frequency  $f_c$ , phase  $\theta \to \text{three}$  kinds of modulation

- A large number of other digital modulations are in use, and often combinations are employed
- We will consider quadrature amplitude modulation (QAM), which is a combination of ASK and PSK




#### **Quadrature Amplitude Modulation**



Note: e.g., odd bits go to form  $x_i(k)$  and even bits to form  $x_q(k)$ ;  $x_i(k)$  and  $x_q(k)$  are in-phase and quadrature components of the  $x_i(k) + jx_q(k)$  QAM symbol;  $x_i(k)$  and  $x_q(k)$  are M-ary symbols

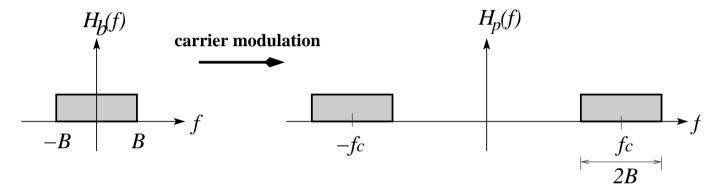
D/A conversion is not "correct full name", should be called transmit filter, part of pulse shaping filter pair

#### **Quadrature Amplitude Demodulation**



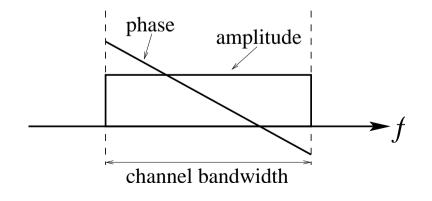
QAM demodulation

symbol detection


bit recovery

Note: in-phase and quadrature branches are "identical"; many issues, such as design of Tx/Rx filters g(t)/g(-t), carrier recovery, synchronisation, can be studied using one branch

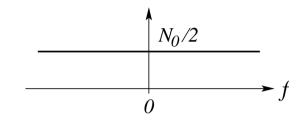



# Channel (Medium) I

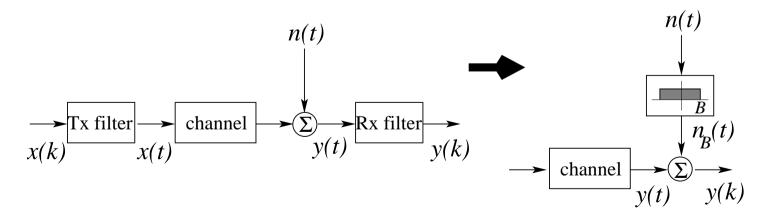
- Between modulator and demodulator is medium (channel)
- Passband channel and baseband (remove modulator/demodulator) equivalence:



Baseband channel bandwidth  $B \leftrightarrow \text{passband}$  channel bandwidth 2B


- Communication is at passband channel but for analysis and design purpose one can consider equivalent baseband channel
- Channel has *finite* bandwidth, ideally phase is linear and amplitude is flat:

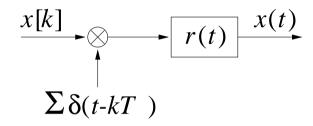





# Channel (Medium) II

- Bandwidth is a prime consideration, and another consideration is noise level
- Channel noise: AWGN with a constant power spectrum density (PSD)




- Power is the area under PSD, so WN has infinitely large power
- But communication channels are bandlimited, so noise is also bandlimited and has a finite power:

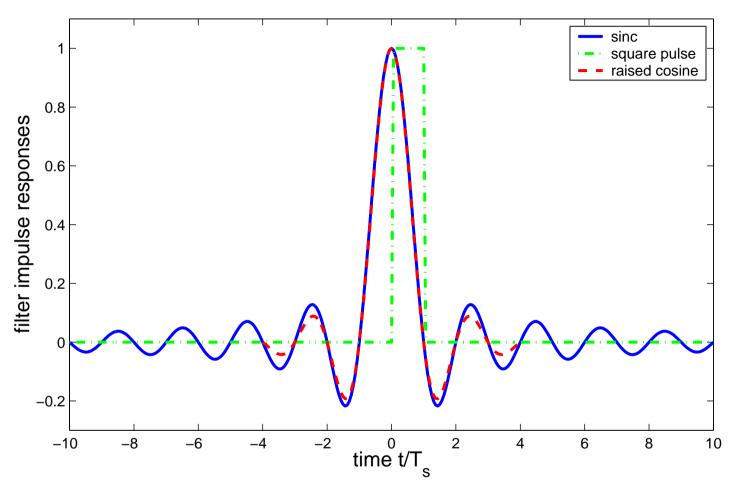


## Pulse Shaping I

- Unless transmission symbol rate  $f_s$  is very low, one cannot use impulse, narrow pulse or rectangular pulse to transmit data symbols, and discrete samples have to be *pulse shaped* 
  - $\{x[k]\}$ : transmitted symbols
  - $\sum \delta(t kT_s)$ : pulse clock (every  $T_s$  s a symbol is transmitted)
  - r(t): combined impulse response of Tx/Rx filters, and channel

$$r(t) = g(-t) \star c(t) \star g(t)$$
 or  $R(f) = G_R(f) \cdot C(f) \cdot R_T(f)$ 

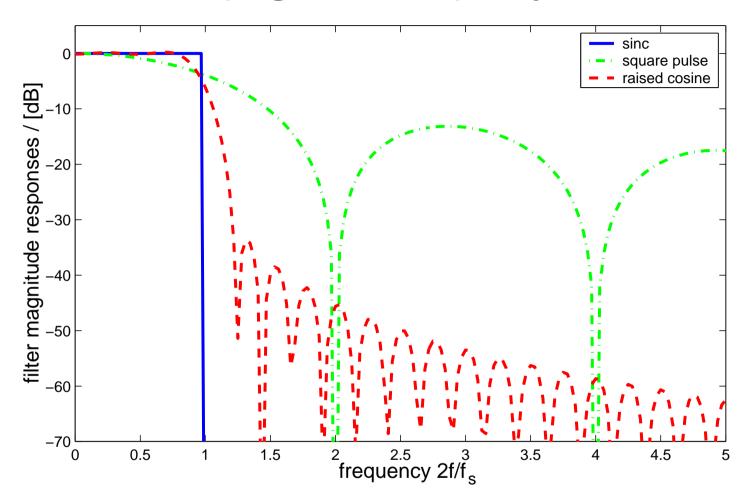



- Baseband (received) signal, assuming no noise

$$x(t) = r(t) \star \left(\sum x[k]\delta(t - kT_s)\right) = \int \sum r(t - \tau) \cdot x[k]\delta(\tau - kT_s) d\tau$$
$$= \sum_{k = -\infty}^{+\infty} x[k] \cdot r(t - kT_s)$$

- ullet A number of choices for r(t) would allow to retrieve the original data sample x[k] from x(t): what are the requirements for r(t)?
- To transmit at symbol rate  $f_s$  needs certain bandwidth  $B_T$  and  $B_T$  depends on which pulse shaping used does the channel bandwidth B enough to accommodate  $B_T$ ?



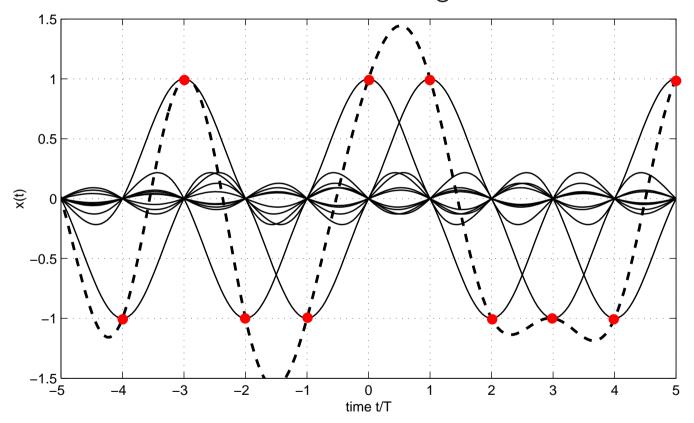

### Pulse Shaping II — Time Domain



- ullet sinc: assume  $t \to \pm \infty$ ; square: last one  $T_s$ ; and raised cosine: truncate to 8  $T_s$ s
- All these filters have regular zero-crossing at symbol-rate spacing except t=0 (Nyquist system), but they have different time supports



## Pulse Shaping III — Frequency Domain




• Square pulse produces considerable excess bandwidth beyond the symbol rate  $f_s$ ; sinc impractical to realize; truncated raised cosine easy to realize



#### Pulse Shaping IV

• Example: binary  $(\pm 1)$  x[k], each is transmitted as a sinc pulse; the peak of different shifted sinc functions coincide with zero crossings of all other sincs:



ullet At receiver, sampling at correct symbol rate enables recovery of transmitted x[k]



#### **Transmit and Receive Filters**

- Pulse shaping fulfils two purposes: limit the transmission bandwidth, and enable to recover the correct sample values of transmitted symbols; such a pulse shaping r(t) is called a Nyquist system
  - 1. (Infinite) sinc has a (baseband) bandwidth  $B_T = f_s/2$ , (infinite) raised cosine has  $f_s/2 \le B_T \le f_s$  depending on roll-off factor
  - 2. A Nyquist time pulse have regular zero-crossing at symbol-rate spacings to avoid interference with neighboring pulses at correct sampling instances
- Nyquist system r(t) is separated into transmit filter g(t) and receive filter g(-t) (square-root Nyquist systems)
  - 1. The filter g(-t) in the receiver is also called a matched Filter (to g(t)); g(t) and g(-t) are basically identical (square-root of r(t))
  - 2. This division of r(t) enables suppression of out-of-band noise and results in the maximum received SNR



#### **Summary**

- Revisit major blocks of a digital communication system
- MODEM: responsible for transferring the bit stream at a given rate over the communication medium reliably
- Transmission channel (medium) has finite bandwidth and introduces noise, these are two factors that has to be considered in design
- Purpose of pulse shaping, how to design transmit and receive filters

