ELEC3028 Digital Transmission — Overview & Information Theory S Chen

Revision of Lecture 2

Memoryless source with independent symbols

symbol rate R. (symbols/s
My, Pi Y i ( Y / ) information rate:

1<i<gq R = Ry - H (bits/s)

entropy H (bits/symbol)

e Code each symbol by log, ¢ bits (BCD), then data rate R -log,q > R, unless
source is equal probable p; =1/q, 1 <i <q

e How to code symbols in an efficient way so that data rate as close as possible to R

e Two equivalent efficient encoding methods, achieving efficiency approximating 100%,
by assigning codeword length (bits) according to symbol’s information content

Remove memoryless assumption — this lecture
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Information of Sources with Memory

e Most real world sources exhibit memory, resulting in correlated source signals; this
property is retained during sampling and quantisation

— This implies that the signal exhibits some form of redundancy, which should be
exploited when the signal is coded

— For example, samples of speech waveform are correlated; redundancy in samples
is first removed, as it can be predicted; the resulting residuals, almost memoryless
or uncorrelated, can then be coded with far fewer bits

e Here memory can be modelled by a Markov process

— Consider source with memory that emits a sequence of symbols {S(k)} with
“time” index k

— First order Markov process: the current symbol depends only on the previous
symbol, p(S(k)|S(k —1))

— N-th order Markov process: the current symbol depends on IV previous symbols,

p(S(k)|S(k—1),5(k =2),---,5(k = N))
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Two-State First Order Markov Process

e Source S(k) can only generate two symbols, X; = 1 and X5 = 2; their probability
explicitly depends on the previous state (i.e. p(S(k)|S(k — 1)))

P (X P (X
(X) o, (%)

e Probabilities of occurrence (prior probabilities) for states X; and X5: P, = P(X4)
and Py = P(X5) (ie. p(S(0) = 1) = P(X}) and p(S(0) = 2) = P(X>))

e Transition probabilities: transition probabilities from state X; are given by the
conditional probabilities P12 = P(XQ‘Xl) and P11 = P(Xl‘Xl) =1-— P<X2|X1),
etc. (i.e. p(S(k) = j|S(k —1) =14) = pij)
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Entropy for 2-State 1st Order Markov Source

e Entropy H, for state X;, 1 = 1, 2:
2
H; = — sz'j -logy pij = —pi1 - 10gy Pi1 — iz - logy pia  (bits/symbol)
=1

This describes the average information carried by the symbols emitted in state X

e The overall entropy H includes the probabilities P;, P> of the states X1, X5:

2 2
H = ZPZHZ = — ZPZ pr . longZ-j (blts/symbol)
7=1

e For a highly correlated source, it is likely to remain in a state rather than to change,
and entropy is decreasing with correlation

B Electronics and ':f";fu':"gmpton
EME computer Science

illlli 32



ELEC3028 Digital Transmission — Overview & Information Theory

S Chen

Entropy for N-State 1st Order Markov Source

e A N-state (not N-th order) 1st-order Markov source Hj
can generate N symbols X; =1, 1 <12 < N, and the
symbol entropy H; for state X;:

N
7=1

where p;; is transition probability from X; to X F?

e The averaged, weighted symbol entropies give the source entropy
N N N
H = Z Psz = — Z Pz Zpij . 10g2 Dij (blts/symbol)
i=1 i=1  j=1

where P; is the probability of occurrence (prior probability) of the state X

e With a symbol rate Rg symbols/second, the average source information rate R is

R=Rs-H (bits/second)
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A 2-State 1st Order Markov Source — Problem

e Consider the following state diagram with associated probabilities:

P,=0.1
111 121

T

P,,=0.9 C@ @ p,,=0.1
\/
P =0.8 R=0.2

p,,=0.9

e Q1: What is the source entropy?

e Q2: What is the average information content in message sequences of length 1, 2,
and 3 symbols, respectively, constructed from a sequence of X7 and X7
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A 2-State 1st Order Markov Source — Solution

e Al: The source entropy is given by H = —0.8 - (0.91log, 0.9 + 0.11og, 0.1)
—0.2-(0.910g, 0.9 4+ 0.11log, 0.1) = 0.4690 (bits/symbol)

e A2 Average information for

— 1-symbol sequence: H) = —0.81og, 0.8 — 0.210g, 0.2 = 0.7219 (bits/symbol)

— 2-symbols sequence: P('11") = P, - p;; = 0.72; P("12") = P - p12 = 0.08;
P("21") = Py - po1 = 0.18; P('22") = Py - pao = 0.02 — average 1.190924 bits
for 2-symbol sequence, hence H(?) = 1.190924/2 = 0.5955 (bits/symbol)

— 3-symbols sequence: P('111") = P(’11")-p11 = 0.648; P("112") = P('11")-p12 =
0.072; etc. — H®) = 0.5533 (bits/symbol)

e Consider sequence length of more symbols, which exhibits more memory dependency
of the source, and therefore the average information or entropy decreases; e.g.
H®% = (.4816 bits/symbol

e In the limit: H*) — H for message sequence length k — oo

Uy Electronics and gf";fu':;?mpton
H Computer Science
| 1T} 35




ELEC3028 Digital Transmission — Overview & Information Theory S Chen

A2 Solution Explained

e One-symbol sequences: either “1" or “2" with P(“1") = 0.8 and P("2") = 0.2

Hence average information content (bits or bits/symbol as it is just one symbol)
—P("1") log, P("1") — P("2") log, P("2")
= —0.8log, 0.8 — 0.21log, 0.2 = 0.7219 (bits/symbol)

e Two-symbol sequences: “117, “12", “21" or "22"
— Consider “11": P("11") = 0.8 x 0.9 = 0.72 P()(1 ):0_8

N~ 0.9

— Average information contents (bits) for 2-symbol sequence:

—P(“11") log, P(“11")—=P(“12") log, P(“12")—P(“21") log, P(“21")—P("22") log, P(“22")

— —0.72log, 0.72 — 0.08 log, 0.08 — 0.18log, 0.18 — 0.02 log, 0.02

= 0.3412304 + 0.2915084 + 0.4453076 + 0.1128771 = 1.1909235 (bits)
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A Few Comments on Markov Source Model

e Markov process is a most complete model to describe sources with memory; it is a
probabilistic model

e Most widely used Markov process is 1st order Markov process, where

— P, = P(X,;) is probability of occurrence of state X;; image starting an experiment
with time index ¢, at the beginning or ¢ = 0, you can find that the process S(0)
starts from state X, with probability P;; hence P; is a priori probability

— Transition probability p;; describes the probability of the process changing from
state X; to X, hence is conditional probability p(S(t) = X,;|S(t—1) = X;) = pi;

e [o describe source with memory longer than 1, higher order Markov process is
needed, but this is much more difficult to use

— In practice, simplified parametric model is often used to describe source with
higher-order memory, i.e.

— Use conditional mean E|s(t)|s(t — 1),s(t — 2),--- ,s(t — N)] of realisation
(observation) s(t) to “replace” probabilities of stochastic process S(t)

Uy Electronics and gf";fu':;?mpton
i. E Computer Science
[1]]]

37



ELEC3028 Digital Transmission — Overview & Information Theory S Chen

Autoregressive Models

e An Nth order Markov process can be represented (simplified) as an Nth order
autoregressive (AR) model:

[n] y[n]
AL Q .

y[n-pl yin-21 _ y[n1] y(n) = Z ary(n—k)+e(n)

g?—@ ﬂﬂﬂH —
O<—®Hf j
e The input process €(n) is uncorrelated, zero-mean; the output process y(n) is the

symbol sequence emitted by the source described by the Nth order Markov process
(with appropriate parameters ay); n is a time index for the symbol sequence

e This parametric model is widely used, for example, in speech source coding (transmit
ar and €(n) instead of y(n)) — Why doing this?
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Predictive Run-Length Coding (RLC)

e Since “memory” of the source makes the source signal partially predictable, this
can be exploited in the following scheme:

()

F predictor
g-ary g-ary to | x(i) RL

source | binary & &(i) encoder

Q(i)r predictor
g-ary binary C . T RL
output |[tog-ary | x(i) &) decoder

e If prediction is successful, the signal e(7) will mostly contain zeros, and this property
is exploited in RLC

Uy Electronics and gf";fu':;?mpton
H Computer Science
| 1T} 39



ELEC3028 Digital Transmission — Overview & Information Theory

S Chen

Run Length Coding Table

e Code words with fixed length of n bits are formed from a bit stream (encoder input

pattern) of upto | < N — 1 = 2" — 2 successive zeros followed by a one or zero:

length of O-run encoder input pattern encoder output codeword
[ (length = min{N,l 4+ 1}) (fixed n bits)
0 1 00 ---000
1 01 00---001
2 001 00---010
3 0001 00---011
N —2 0---01 11---101
N -1 00---01 11---110
N=2"-1 00---00 11---111

e Assumption is input bit stream contains mostly “0"s, i.e. p = P("“0") is very high

e Thus encoder on average reduces the word length
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RLC Efficiency

e Code word length after run length coding: n bits;

e Average code word length d before coding with NV = 2" — 1:

N-—-1
1 — N
A= (1+1)p - (=P +N-pV =14p+p*+---pV 1= ==
1=0 1—p

where p is the probability of a bit is "0’
e Therefore compression ratio C'=d/n
e A numerical example: p =0.95, n =5 (N = 31)

_1-pN 1592

— ~ 3.18
n(l —p) 5

O —

d
n
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RLC Re-exam Again

e RLC is widely used in various applications, so let us exam RLC more closely

Input patterns have variable lengths, 2™ — 1 bits to just 1 bit, depending on length
of “0" runs before “1"; while output codewords have fixed length of n bits

Input pattern

00...0000 00...000 00..a0 --- O1 1
oN_14+0 bits  2M=2+1 bits  2"-3+1 bits 1+1 bits 0+1 bits

v RLC
Output codeword

11...111 11...110 11...101 ... 00...000 00...00C
N bits N bits N bits N bits N bits

e Shannon-Fano and Huffman: inputs have fixed length while outputs variable lengths

RLC appears very different from Shannon-Fano and Huffman or is it?

e RLC, Shannon-Fano and Huffman encodings are lossless or entropy encodings
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Lossless Encodings Comparison

e Lossless or entropy encodings

Shannon-Fano
Huffman
RLC (for binary data most Os

Input
— Encoder—

e Same principle:
rare input pattern/message/symbol coded with large output codeword
large probability coded with small codeword
e Shannon-Fano and Huffman: input fixed length — output variable length

RLC: input variable length — output fixed length

e |t is the ratio i output length
ratio = —;
input length
small probability — large ratio large probability — small ratio
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Summary

e First-order Markov process model for sources with 1st-order memory

Entropy and information rate of first-order Markov source
e Autoregressive models of N-th order for sources with N-th order memory
e [he need to remove redundancy to make it memoryless

e Run-length encoding

Comparison with Shannon-Fano and Huffman lossless or entropy encodings
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