
ELEC3028 Digital Transmission – Overview & Information Theory S Chen

Revision of Lecture 2

Memoryless source with independent symbols

mi, pi

1 ≤ i ≤ q
-

�
�

�

entropy H (bits/symbol)

symbol rate Rs (symbols/s)
information rate:

R = Rs · H (bits/s)

• Code each symbol by log2 q bits (BCD), then data rate Rs · log2 q > R, unless
source is equal probable pi = 1/q, 1 ≤ i ≤ q

• How to code symbols in an efficient way so that data rate as close as possible to R

• Two equivalent efficient encoding methods, achieving efficiency approximating 100%,
by assigning codeword length (bits) according to symbol’s information content

Remove memoryless assumption → this lecture
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Information of Sources with Memory

• Most real world sources exhibit memory, resulting in correlated source signals; this
property is retained during sampling and quantisation

– This implies that the signal exhibits some form of redundancy, which should be
exploited when the signal is coded

– For example, samples of speech waveform are correlated; redundancy in samples
is first removed, as it can be predicted; the resulting residuals, almost memoryless
or uncorrelated, can then be coded with far fewer bits

• Here memory can be modelled by a Markov process

– Consider source with memory that emits a sequence of symbols {S(k)} with
“time” index k

– First order Markov process: the current symbol depends only on the previous
symbol, p(S(k)|S(k − 1))

– N -th order Markov process: the current symbol depends on N previous symbols,
p(S(k)|S(k − 1), S(k − 2), · · · , S(k − N))
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Two-State First Order Markov Process

• Source S(k) can only generate two symbols, X1 = 1 and X2 = 2; their probability
explicitly depends on the previous state (i.e. p(S(k)|S(k − 1)))
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• Probabilities of occurrence (prior probabilities) for states X1 and X2: P1 = P (X1)
and P2 = P (X2) (i.e. p(S(0) = 1) = P (X1) and p(S(0) = 2) = P (X2))

• Transition probabilities: transition probabilities from state X1 are given by the
conditional probabilities p12 = P (X2|X1) and p11 = P (X1|X1) = 1 − P (X2|X1),
etc. (i.e. p(S(k) = j|S(k − 1) = i) = pij)
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Entropy for 2-State 1st Order Markov Source

• Entropy Hi for state Xi, i = 1, 2:

Hi = −

2∑

j=1

pij · log2 pij = −pi1 · log2 pi1 − pi2 · log2 pi2 (bits/symbol)

This describes the average information carried by the symbols emitted in state Xi

• The overall entropy H includes the probabilities P1, P2 of the states X1,X2:

H =
2∑

i=1

PiHi = −
2∑

i=1

Pi

2∑

j=1

pij · log2 pij (bits/symbol)

• For a highly correlated source, it is likely to remain in a state rather than to change,
and entropy is decreasing with correlation
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Entropy for N-State 1st Order Markov Source

• A N -state (not N -th order) 1st-order Markov source

can generate N symbols Xi = i, 1 ≤ i ≤ N , and the

symbol entropy Hi for state Xi:

Hi = −
N

X

j=1

pij · log2 pij (bits/symbol)

where pij is transition probability from Xi to Xj

p
ii X i

Pi

X

pij

j

• The averaged, weighted symbol entropies give the source entropy

H =

N
X

i=1

PiHi = −

N
X

i=1

Pi

N
X

j=1

pij · log2 pij (bits/symbol)

where Pi is the probability of occurrence (prior probability) of the state Xi

• With a symbol rate Rs symbols/second, the average source information rate R is

R = Rs · H (bits/second)
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A 2-State 1st Order Markov Source – Problem

• Consider the following state diagram with associated probabilities:

X1 X2p11=0.9 p22=0.1

p12 =0.1

p21=0.9
P1 =0.8 P2 =0.2

’2’’1’

• Q1: What is the source entropy?

• Q2: What is the average information content in message sequences of length 1, 2,
and 3 symbols, respectively, constructed from a sequence of X1 and X2?
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A 2-State 1st Order Markov Source – Solution

• A1: The source entropy is given by H = −0.8 · (0.9 log2 0.9 + 0.1 log2 0.1)
−0.2 · (0.9 log2 0.9 + 0.1 log2 0.1) = 0.4690 (bits/symbol)

• A2 Average information for

– 1-symbol sequence: H(1) = −0.8 log2 0.8 − 0.2 log2 0.2 = 0.7219 (bits/symbol)
– 2-symbols sequence: P (′11′) = P1 · p11 = 0.72; P (′12′) = P1 · p12 = 0.08;

P (′21′) = P2 · p21 = 0.18; P (′22′) = P2 · p22 = 0.02 −→ average 1.190924 bits
for 2-symbol sequence, hence H(2) = 1.190924/2 = 0.5955 (bits/symbol)

– 3-symbols sequence: P (′111′) = P (′11′)·p11 = 0.648; P (′112′) = P (′11′)·p12 =
0.072; etc. −→ H(3) = 0.5533 (bits/symbol)

• Consider sequence length of more symbols, which exhibits more memory dependency
of the source, and therefore the average information or entropy decreases; e.g.
H(20) = 0.4816 bits/symbol

• In the limit: H(k) −→ H for message sequence length k −→ ∞
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A2 Solution Explained

• One-symbol sequences: either “1” or “2” with P (“1”) = 0.8 and P (“2”) = 0.2

Hence average information content (bits or bits/symbol as it is just one symbol)

−P (“1”) log2 P (“1”) − P (“2”) log2 P (“2”)

= −0.8 log2 0.8 − 0.2 log2 0.2 = 0.7219 (bits/symbol)

• Two-symbol sequences: “11”, “12”, “21” or “22”

– Consider “11”: P (“11”) = 0.8 × 0.9 = 0.72

– Average information contents (bits) for 2-symbol sequence:
p  =0.9
11

X1 P(X  )=0.81

−P (“11”) log2 P (“11”)−P (“12”) log2 P (“12”)−P (“21”) log2 P (“21”)−P (“22”) log2 P (“22”)

= −0.72 log2 0.72 − 0.08 log2 0.08 − 0.18 log2 0.18 − 0.02 log2 0.02

= 0.3412304 + 0.2915084 + 0.4453076 + 0.1128771 = 1.1909235 (bits)
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A Few Comments on Markov Source Model

• Markov process is a most complete model to describe sources with memory; it is a
probabilistic model

• Most widely used Markov process is 1st order Markov process, where

– Pi = P (Xi) is probability of occurrence of state Xi; image starting an experiment
with time index t, at the beginning or t = 0, you can find that the process S(0)
starts from state Xi with probability Pi; hence Pi is a priori probability

– Transition probability pij describes the probability of the process changing from
state Xi to Xj, hence is conditional probability p(S(t) = Xj|S(t−1) = Xi) = pij

• To describe source with memory longer than 1, higher order Markov process is
needed, but this is much more difficult to use

– In practice, simplified parametric model is often used to describe source with
higher-order memory, i.e.

– Use conditional mean E[s(t)|s(t − 1), s(t − 2), · · · , s(t − N)] of realisation
(observation) s(t) to “replace” probabilities of stochastic process S(t)
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Autoregressive Models

• An N th order Markov process can be represented (simplified) as an N th order
autoregressive (AR) model:

3 2

ε
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][ny][n

y(n) =
N∑

k=1

aky(n−k)+ǫ(n)

• The input process ǫ(n) is uncorrelated, zero-mean; the output process y(n) is the
symbol sequence emitted by the source described by the N th order Markov process
(with appropriate parameters ak); n is a time index for the symbol sequence

• This parametric model is widely used, for example, in speech source coding (transmit
ak and ǫ(n) instead of y(n)) – Why doing this?
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Predictive Run-Length Coding (RLC)

• Since “memory” of the source makes the source signal partially predictable, this
can be exploited in the following scheme:

q-ary to
binary

predictor

predictor

encoder
RL 

RL
decoder

binary
to q-ary

q-ary 
source

q-ary

output

x(i)

x(i)

e(i)

e(i)

x(i)

x(i)

• If prediction is successful, the signal e(i) will mostly contain zeros, and this property
is exploited in RLC
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Run Length Coding Table

• Code words with fixed length of n bits are formed from a bit stream (encoder input
pattern) of upto l ≤ N − 1 = 2n − 2 successive zeros followed by a one or zero:

length of 0-run encoder input pattern encoder output codeword
l (length = min{N, l + 1}) (fixed n bits)
0 1 00 · · · 000
1 01 00 · · · 001
2 001 00 · · · 010
3 0001 00 · · · 011
... ... ...

N − 2 0 · · · 01 11 · · · 101
N − 1 00 · · · 01 11 · · · 110

N = 2n − 1 00 · · · 00 11 · · · 111

• Assumption is input bit stream contains mostly “0”s, i.e. p = P (“0”) is very high

• Thus encoder on average reduces the word length
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RLC Efficiency

• Code word length after run length coding: n bits;

• Average code word length d before coding with N = 2n − 1:

d =
N−1∑

l=0

(l + 1) · pl · (1 − p) + N · pN = 1 + p + p2 + · · · pN−1 =
1 − pN

1 − p

where p is the probability of a bit is ’0’

• Therefore compression ratio C = d/n

• A numerical example: p = 0.95, n = 5 (N = 31)

C =
d

n
=

1 − pN

n(1 − p)
≈

15.92

5
≈ 3.18

41



ELEC3028 Digital Transmission – Overview & Information Theory S Chen

RLC Re-exam Again

• RLC is widely used in various applications, so let us exam RLC more closely

Input patterns have variable lengths, 2n − 1 bits to just 1 bit, depending on length
of “0” runs before “1”; while output codewords have fixed length of n bits

00...0000 00...000 00...001 ...
n2  −1+0 bitsn 2  −2+1 bits 2  −3+1 bitsn 1+1 bits

Output codeword

Input pattern

11...111
n bits

11...110
n bits

11...1  10
n

... 00...001
n bits

00...000

1
0+1 bits

01

n bits

RLC

1

bits

• Shannon-Fano and Huffman: inputs have fixed length while outputs variable lengths

RLC appears very different from Shannon-Fano and Huffman or is it?

• RLC, Shannon-Fano and Huffman encodings are lossless or entropy encodings
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Lossless Encodings Comparison

• Lossless or entropy encodings

Encoder
Input Output

RLC
Huffman
Shannon−Fano

(for binary data most 0s)

• Same principle:

rare input pattern/message/symbol coded with large output codeword
large probability coded with small codeword

• Shannon-Fano and Huffman: input fixed length −→ output variable length

RLC: input variable length −→ output fixed length

• It is the ratio
ratio =

output length

input length

small probability −→ large ratio large probability −→ small ratio
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Summary

• First-order Markov process model for sources with 1st-order memory

Entropy and information rate of first-order Markov source

• Autoregressive models of N -th order for sources with N -th order memory

• The need to remove redundancy to make it memoryless

• Run-length encoding

Comparison with Shannon-Fano and Huffman lossless or entropy encodings
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