Revision of Lecture 2

Memoryless source with independent symbols

$$\begin{array}{c|c} m_i, p_i \\ 1 \leq i \leq q \end{array} \quad \begin{array}{c} \text{symbol rate } R_s \text{ (symbols/s)} \\ \hline & \\ \text{entropy } H \text{ (bits/symbol)} \end{array} \quad \begin{array}{c} \text{information rate:} \\ R = R_{\text{s}} \cdot H \text{ (bits/s)} \end{array}$$

• Code each symbol by $\log_2 q$ bits (BCD), then data rate $R_s \cdot \log_2 q > R$, unless source is equal probable $p_i = 1/q$, $1 \le i \le q$

- How to code symbols in an *efficient* way so that data rate as close as possible to R
- Two equivalent efficient encoding methods, achieving efficiency approximating 100%, by assigning codeword length (bits) according to symbol's information content

Remove memoryless assumption \rightarrow this lecture

- Most real world sources exhibit memory, resulting in *correlated source signals*; this property is retained during sampling and quantisation
 - This implies that the signal exhibits some form of *redundancy*, which should be exploited when the signal is coded
 - For example, samples of speech waveform are correlated; redundancy in samples is first removed, as it can be predicted; the resulting residuals, almost memoryless or uncorrelated, can then be coded with far fewer bits
- Here memory can be modelled by a Markov process
 - Consider source with memory that emits a sequence of symbols $\{S(k)\}$ with "time" index k
 - First order Markov process: the current symbol depends only on the previous symbol, p(S(k)|S(k-1))
 - N-th order Markov process: the current symbol depends on N previous symbols, $p(S(k)|S(k-1), S(k-2), \cdots, S(k-N))$

Two-State First Order Markov Process

• Source S(k) can only generate two symbols, $X_1 = 1$ and $X_2 = 2$; their probability explicitly depends on the previous state (i.e. p(S(k)|S(k-1)))

- Probabilities of occurrence (prior probabilities) for states X_1 and X_2 : $P_1 = P(X_1)$ and $P_2 = P(X_2)$ (i.e. $p(S(0) = 1) = P(X_1)$ and $p(S(0) = 2) = P(X_2)$)
- Transition probabilities: transition probabilities from state X_1 are given by the conditional probabilities $p_{12} = P(X_2|X_1)$ and $p_{11} = P(X_1|X_1) = 1 P(X_2|X_1)$, etc. (i.e. $p(S(k) = j|S(k 1) = i) = p_{ij})$

Entropy for 2-State 1st Order Markov Source

• Entropy H_i for state X_i , i = 1, 2:

$$H_i = -\sum_{j=1}^{2} p_{ij} \cdot \log_2 p_{ij} = -p_{i1} \cdot \log_2 p_{i1} - p_{i2} \cdot \log_2 p_{i2} \quad (bits/symbol)$$

This describes the average information carried by the symbols emitted in state X_i

• The overall entropy H includes the probabilities P_1, P_2 of the states X_1, X_2 :

$$H = \sum_{i=1}^{2} P_i H_i = -\sum_{i=1}^{2} P_i \sum_{j=1}^{2} p_{ij} \cdot \log_2 p_{ij} \quad (bits/symbol)$$

• For a highly correlated source, it is likely to remain in a state rather than to change, and *entropy is decreasing with correlation*

Entropy for N-State 1st Order Markov Source

• A *N*-state (not *N*-th order) 1st-order Markov source can generate *N* symbols $X_i = i$, $1 \le i \le N$, and the symbol entropy H_i for state X_i :

$$H_i = -\sum_{j=1}^N p_{ij} \cdot \log_2 p_{ij}$$
 (bits/symbol)

where p_{ij} is transition probability from X_i to X_j

• The averaged, weighted symbol entropies give the source entropy

$$H = \sum_{i=1}^{N} P_i H_i = -\sum_{i=1}^{N} P_i \sum_{j=1}^{N} p_{ij} \cdot \log_2 p_{ij} \quad (\mathsf{bits/symbol})$$

where P_i is the probability of occurrence (prior probability) of the state X_i

• With a symbol rate $R_{
m s}$ symbols/second, the average source information rate R is

$$R = R_{\rm s} \cdot H$$
 (bits/second)

A 2-State 1st Order Markov Source – Problem

• Consider the following state diagram with associated probabilities:

- **Q1**: What is the source entropy?
- Q2: What is the average information content in message sequences of length 1, 2, and 3 symbols, respectively, constructed from a sequence of X_1 and X_2 ?

University

of Southampton

A 2-State 1st Order Markov Source – Solution

- A1: The source entropy is given by $H = -0.8 \cdot (0.9 \log_2 0.9 + 0.1 \log_2 0.1)$ $-0.2 \cdot (0.9 \log_2 0.9 + 0.1 \log_2 0.1) = 0.4690$ (bits/symbol)
- A2 Average information for
 - 1-symbol sequence: $H^{(1)} = -0.8 \log_2 0.8 0.2 \log_2 0.2 = 0.7219$ (bits/symbol)
 - 2-symbols sequence: $P('11') = P_1 \cdot p_{11} = 0.72$; $P('12') = P_1 \cdot p_{12} = 0.08$; $P('21') = P_2 \cdot p_{21} = 0.18$; $P('22') = P_2 \cdot p_{22} = 0.02 \longrightarrow$ average 1.190924 bits for 2-symbol sequence, hence $H^{(2)} = 1.190924/2 = 0.5955$ (bits/symbol)
 - 3-symbols sequence: $P('111') = P('11') \cdot p_{11} = 0.648$; $P('112') = P('11') \cdot p_{12} = 0.072$; etc. $\longrightarrow H^{(3)} = 0.5533$ (bits/symbol)
- Consider sequence length of more symbols, which exhibits more memory dependency of the source, and therefore the average information or entropy *decreases*; e.g. $H^{(20)} = 0.4816$ bits/symbol
- In the limit: $H^{(k)} \longrightarrow H$ for message sequence length $k \longrightarrow \infty$

A2 Solution Explained

• One-symbol sequences: either "1" or "2" with P("1") = 0.8 and P("2") = 0.2

Hence average information content (bits or bits/symbol as it is just one symbol)

 $-P("1") \log_2 P("1") - P("2") \log_2 P("2")$

 $= -0.8 \log_2 0.8 - 0.2 \log_2 0.2 = 0.7219$ (bits/symbol)

- Two-symbol sequences: "11", "12", "21" or "22"
 - Consider "11": $P("11") = 0.8 \times 0.9 = 0.72$
 - Average information contents (bits) for 2-symbol sequence:

 $-P(``11") \log_2 P(``11") - P(``12") \log_2 P(``12") - P(``21") \log_2 P(``21") - P(``22") \log_2 P(``22")$ $= -0.72 \log_2 0.72 - 0.08 \log_2 0.08 - 0.18 \log_2 0.18 - 0.02 \log_2 0.02$

= 0.3412304 + 0.2915084 + 0.4453076 + 0.1128771 = 1.1909235 (bits)

A Few Comments on Markov Source Model

- Markov process is a most complete model to describe sources with memory; it is a *probabilistic* model
- Most widely used Markov process is 1st order Markov process, where
 - $P_i = P(X_i)$ is probability of occurrence of state X_i ; image starting an experiment with time index t, at the beginning or t = 0, you can find that the process S(0)starts from state X_i with probability P_i ; hence P_i is a priori probability
 - Transition probability p_{ij} describes the probability of the process changing from state X_i to X_j , hence is *conditional* probability $p(S(t) = X_j | S(t-1) = X_i) = p_{ij}$
- To describe source with memory longer than 1, higher order Markov process is needed, but this is much more difficult to use
 - In practice, simplified parametric model is often used to describe source with higher-order memory, i.e.
 - Use conditional mean $E[s(t)|s(t-1), s(t-2), \dots, s(t-N)]$ of realisation (observation) s(t) to "replace" probabilities of stochastic process S(t)

Autoregressive Models

• An Nth order Markov process can be represented (simplified) as an Nth order autoregressive (AR) model:

- The input process $\epsilon(n)$ is uncorrelated, zero-mean; the output process y(n) is the symbol sequence emitted by the source described by the Nth order Markov process (with appropriate parameters a_k); n is a time index for the symbol sequence
- This parametric model is widely used, for example, in speech source coding (transmit a_k and $\epsilon(n)$ instead of y(n)) Why doing this?

Predictive Run-Length Coding (RLC)

• Since "memory" of the source makes the source signal partially predictable, this can be exploited in the following scheme:

- If prediction is successful, the signal e(i) will mostly contain zeros, and this property is exploited in RLC

Run Length Coding Table

• Code words with fixed length of n bits are formed from a bit stream (encoder input pattern) of upto $l \le N - 1 = 2^n - 2$ successive zeros followed by a one or zero:

length of 0-run	encoder input pattern	encoder output codeword
l	$(length = \min\{N, l+1\})$	(fixed n bits)
0	1	$00 \cdots 000$
1	01	$00 \cdots 001$
2	001	$00 \cdots 010$
3	0001	$00\cdots 011$
:	÷	÷
N-2	$0\cdots 01$	$11 \cdots 101$
N-1	$00\cdots 01$	$11 \cdots 110$
$N = 2^{n} - 1$	$00 \cdots 00$	$11 \cdots 111$

- Assumption is input bit stream contains mostly "0"s, i.e. p = P("0") is very high
- Thus encoder on average reduces the word length

RLC Efficiency

- Code word length after run length coding: n bits;
- Average code word length d before coding with $N = 2^n 1$:

$$d = \sum_{l=0}^{N-1} (l+1) \cdot p^l \cdot (1-p) + N \cdot p^N = 1 + p + p^2 + \dots + p^{N-1} = \frac{1-p^N}{1-p}$$

where \boldsymbol{p} is the probability of a bit is '0'

- Therefore compression ratio C = d/n
- A numerical example: p = 0.95, n = 5 (N = 31)

$$C = \frac{d}{n} = \frac{1 - p^N}{n(1 - p)} \approx \frac{15.92}{5} \approx 3.18$$

41

RLC Re-exam Again

• RLC is widely used in various applications, so let us exam RLC more closely

Input patterns have variable lengths, $2^n - 1$ bits to just 1 bit, depending on length of "**0**" runs before "**1**"; while output codewords have fixed length of n bits

Input pattern 01 1 00...0000 00...0001 00...001 ... 2^{n} -3+1 bits 1+1 bits 2^{n} -1+0 bits 2^{n} -2+1 bits 0+1 bits **RLC Output codeword** 11...111 11...110 11...101 00...001 00...000 *n* bits **n** bits *n* bits *n* bits **n** bits

• Shannon-Fano and Huffman: inputs have fixed length while outputs variable lengths

RLC appears very different from Shannon-Fano and Huffman or is it?

• RLC, Shannon-Fano and Huffman encodings are lossless or entropy encodings

University

of Southampton

Lossless Encodings Comparison

• Lossless or entropy encodings

Input Output

Shannon–Fano Huffman RLC (for binary data most 0s)

• Same principle:

rare input pattern/message/symbol coded with large output codeword large probability coded with small codeword

- Shannon-Fano and Huffman: input fixed length → output variable length
 RLC: input variable length → output fixed length
- It is the ratio $ratio = \frac{output \ length}{input \ length}$ small probability \longrightarrow large ratio $large \ probability \longrightarrow small \ ratio$

University

of Southampton

Summary

- First-order Markov process model for sources with 1st-order memory Entropy and information rate of first-order Markov source
- Autoregressive models of N-th order for sources with N-th order memory
- The need to remove redundancy to make it memoryless
- Run-length encoding

Comparison with Shannon-Fano and Huffman lossless or entropy encodings

