ELEC3030 (EL336) Computer Networks

S Chen

Simplex Stop and Wait Protocol

e Flow control deals with prObIem that /* Protocol 2 (stop-and-wait) also provides for a one-directional flow of data from
sender transmits frames faster than sender to receiver. The communication channel is once again assumed to be error
)] . free, as in protocol 1. However, this time, the receiver has only a finite buffer
recelver can accept, and solution is capacity and a finite processing speed, so the protocol must explicitly prevent
.o . . the sender from flooding the receiver with data faster than it can be handled. */
to limit sender into sending no faster
. typedef enum {frame_arrival} event_type;
than receiver can handle #include "protocol.h
e Consider the simplex case: data is roid sender2(void)
transmitted in one direction (Note frame s; /* buffer for an outbound frame */
Ith hd f . d packet buffer; /* buffer for an outbound packet */
although data trames are transmitte event_type event; /* frame_arrival is the only possibility */
in one direction, frames are going in while (true) {
both directions. i.e. link is duplex) from_network_layer(&buffer); /* go get something to send */
' s.info = buffer; /* copy it into s for transmission */
. to_physical_layer(&s); /* bye-bye little frame */
e Stop and wait: sender sends wait_for_event(&event); /* do not proceed until given the go ahead */
one data frame, waits for }}
ack|.10wledgement _(ACK) from void recelver2(vokd)
receiver before proceeding to transmit {
framer, s; /* buffers for frames */
next fra me event_type event; /* frame_arrival is the only possibility */
while (true) {
— This simple flow control will break wait_for_event(&event); /* only possibility is frame_arrival */
. from_physical_layer(&r); /* go get the inbound frame */
down if ACK gets lost or errors to_network_layer(&r.info); /* pass the data to the network layer */
. to_physical_layer(&s); /* send a dummy frame to awaken sender */
occur — sender may wait for ACK | -physical layer(&s) Y
that never arrives)
IR Electronics and

g i Computer Science

University
of Southampton

49

ELEC3030 (EL336) Computer Networks S Chen

Simplex Stop and Wait with ARQ

e For noisy link, pure stop and wait protocol will break down, and solution is to incorporate some
error control mechanism

e Stop and wait with ARQ: Automatic Repeat reQuest (ARQ), an error control method, is
incorporated with stop and wait flow control protocol

— If error is detected by receiver, it discards the frame and send a negative ACK (NAK), causing
sender to re-send the frame

— In case a frame never got to receiver, sender has a timer: each time a frame is sent, timer is set
— If no ACK or NAK is received during timeout period, it re-sends the frame

— Timer introduces a problem: Suppose timeout and sender retransmits a frame but receiver
actually received the previous transmission — receiver has duplicated copies

— To avoid receiving and accepting two copies of same frame, frames and ACKs are alternatively
labeled 0 or 1: ACKO for frame 1, ACK1 for frame 0

e An important link parameter is defined by

__ propagation time R d

frame time N ﬁ

where R is data rate (bps), d is link distance (m), V is propagation velocity (m/s) and L frame
length (bits)

Uy Electronics and gf";fu':;?mpton
H Computer Science
Bl

50

ELEC3030 (EL336) Computer Networks S Chen

Stop and Wait with ARQ (continue)
A B

e In error-free case, efficiency or maximum link
utilisation of stop and Wait with ARQ is:

Time

1
14 2a

Timeout

e lllustration of how stop and wait with ARQ works:
Frame lost:

A retransmits

ACKO: frame 1 is received, waiting for next
(frame 0)

ACK1: frame 0 is received, waiting for next

(frame 1) A'Teirensmits " Frame 1 _
ACK 0 %d'ﬁcardi
. . . uplicate frame
This is to have 1-bit sequence number, and . g

implies receiver have buffer for one frame

Timeout

e For an LAN with R = 10 Mbps and d = 1 km, using V = 2 X 108 m/s and L = 500 bits,
a = 0.1 and stop-and-wait procedure has U = 0.83, which has adequate line utilisation

But for a satellite link, link utilisation for stop-and-wait procedure may only be U = 0.001 or
lower, which is clearly wasteful

Uy Electronics and gf";fu':;?mpton
H Computer Science
| 7] | 51

ELEC3030 (EL336) Computer Networks S Chen

Sliding Window Protocol

e For large link parameter a, stop and wait protocol is inefficient

e A universally accepted flow control procedure is the sliding window protocol

— Frames and acknowledgements are numbered using sequence numbers

— Sender maintains a list of sequence numbers (frames) it is allowed to transmit, called sending
window

— Receiver maintains a list of sequence numbers it is prepared to receive, called receiving window

— A sending window of size N means that sender can send up to N frames without the need for
an ACK

— A window size of IN implies buffer space for N frames

— For n-bit sequence number, we have 2" numbers: 0,1, , 2" — 1, but the maximum window
size N = 2" — 1 (not 2")

— ACK3 means that receiver has received frame 0 to frame 2 correctly, ready to receive frame 3
(and rest of IV frames within window)

e In error-free case, efficiency or maximum link utilisation of sliding window protocol is:

U — 1, N >2a+1
— N N < 2a+1

Thus it is able to maintain efficiency for large link parameter a: just use large widow size N

Uy Electronics and gf";fu':;?mpton
H Computer Science
Bl

52

ELEC3030 (EL336) Computer Networks S Chen

Sliding Window (continue)

e Note that U = 1 means that link has no idle time: there are always something in it, either data

frames or ACKs A B
e Consider the case of 3-bit sequence |o[1[2[3[4[s[6|o]1[2[3[4]5[6[0[1] s o[1[2[3] 4[5[6] o[1] 2[3] 4[5[6] O] 1]
: i :) 0
number with maximum window size }1
N=T &
e This illustration shows that [o[1] 2| 3[4]5[6] 0] 1] 2[3] 4[5[6] O[1] T e aselei s a5t

Sending and receiving windows can

p\C\C‘)’ o[1] 2 3[4]5]6[0][1]2]3]4]5]6]0]1]

shrink or grow during operation =
lo[1] 2| 3] 4][5]6]0]1]2][3]4]5]6]0]1] IS
3
The receiver do not need to T
F4 lo[1] 2[3] 4] 5] 6] 0] 1] 2] 3] 4] 5] 6] O] 1]
acknowledge every frames -
e If both sending and receiving A
window sizes are N = 1, the Jloli[2ls[4[s]6[o]1]2]s]4]5]6[0]1] g ro 2T a s 6l ol T2l sl als 6o T
sliding window protocol reduces to O
the stop-and-wait [of 1[2[3] 4[5[6] o[1[2[3] 4[5[6] O] 1] N

e In practice, error control must be incorporated with flow control, and we next discuss two common
error control mechanisms

. University
1]
! ! Electronics ar!d of Southampton
EME Computer Science
| 53

ELEC3030 (EL336) Computer Networks S Chen

Go-back-n ARQ

e The basic idea of go-back-n error control is: If frame 7 is damaged, receiver requests retransmission

of all frames starting from frame 4
o 1] [2] 13 [4 8 (2 (3] 4] [5] [§ [7] [0
o 1) E D D D [2] [38 [4 [5 l6] [7]

discarded

An example:

e Notice that all possible cases of
damaged frame and ACK / NAK
must be taken into account

error

e For n-bit sequence number, maximum window size is N 2" — 1 not N = 2" — with

N = 2" confusion may occur

*
e Consider n = 3, if N = 8 what may happen: —FO> — N
— Suppose that sender transmits frame 0 and gets ACKT Sither
- | v_e_recelved Fi,....F7,FO
an ACK1 FLF2.. F7.FO o waiting for (next) F1
— It then transmits frames 1,2,3,4,5,6,7,0 (this is — | [I'vereceived FJ thennothing
allowed, as they are within the sending window L ACKE | clse timeott, retra'”sm'tACKi;

of size 8) and gets another ACK1

This could means that all eight frames were received correctly
It could also mean that all eight frames were lost, and receiver is repeating its previous ACK1
With N = 7, this confusing situation is avoided

-3

University

Electronics and of Southampton

Computer Science

54

ELEC3030 (EL336) Computer Networks S Chen

Selective-Reject ARQ

e In selective-reject ARQ error control, the only frames retransmitted are those
receive a NAK or which time out

An illustrative example: 2] 3] 4] 5] [2]
\\\g\\?\\x\\
e Selective-reject would appear to be

more efficient than go-back-n, but it
is harder to implement and less used

er?or buffered é\z-S rel eased

e The window size is also more restrictive: for n-bit sequence number, the maximum
- L] L] n - - -
window size is N = 27 to avoid possible confusion

e Go-back-n and selective-reject can be seen as trade-offs between link bandwidth
(data rate) and data link layer buffer space

— If link bandwidth is large but buffer space is scarce, go-back-n is preferred

— If link bandwidth is small but buffer space is pretty, selective-reject is preferred

University

nmn

[! Electronics and of Southampton

. Computer Science

T | 55

ELEC3030 (EL336) Computer Networks S Chen

From Simplex to Duplex

e So far, we consider data transmission in one direction (simplex), although the link is duplex

e If two sides exchange data (duplex), each needs to maintain two windows: one for transmitting and
one for receiving

e In duplex communication, frames transmitted from either side can be data, ACKs and NAKs —
the need to distinguish them

e Frame type: Recall in frame header there is a control field, and part of it is typically used as frame
type field to tell what type the frame is

e Piggybacking: In duplex situations, piggybacking is often used — If one has data and an ACK to
send, it sends both in one frame
e Discussion so far: data link layer is primarily concerned with making point-to-point link reliable

— It is responsible for transmitting frames from sender to receiver (service to network layer), and
can only uses physical layer to do the job

— It has to take into account that transmission error may occur and sender/receiver may operate at
different speeds — error control /flow control (ACKs, NAKs, CRC, windows, sequence numbers)

— Next lecture will see how all these fit into some data link layer protocols

Uy Electronics and gf";fu':;?mpton
H Computer Science
| T | 56

ELEC3030 (EL336) Computer Networks

S Chen

/* Protocol 5 (go back n) allows multiple outstanding frames. The sender may transmit up

to MAX_SEQ frames without waiting for an ack. In addition, unlike in the previous
protocols, the network layer is not assumed to have a new packet all the time. Instead,

the network layer causes a network_layer_ready event when there is a packet to send. *

#define MAX_SEQ 7 /* should be 2'n — 1 */
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready} event_type;
#include "protocol.h"

static boolean between(seq_nr a, seq_nr b, seq_nr ¢)

/* Return true if a <=b < c circularly; false otherwise. */
if ((a<=b) && (b<c)) || ((c<a) && (a <=b)) || (b < ¢) && (c < a)))
return(true);
else
return(false);
}

static void send_data(seq_nr frame_nr, seq_nr frame_expected, packet buffer[])
{
/* Construct and send a data frame. */

frame s; /* scratch variable */

s.info = buffer[frame_nr]; /* insert packet into frame */

s.seq = frame_nr; /* insert sequence number into frame */
s.ack = (frame_expected + MAX_SEQ) % (MAX_SEQ + 1);/* piggyback ack */
to_physical_layer(&s); /* transmit the frame */
start_timer(frame_nr); /* start the timer running */

}

void protocol5(void)

{
seq_nr next_frame_to_send;
seq_nr ack_expected;
seq_nr frame_expected;
framer;
packet bufferflMAX_SEQ + 1];
seq_nr nbuffered;
seq_nri;
event_type event;

* MAX_SEQ > 1; used for outbound stream */
/* oldest frame as yet unacknowledged */

/* next frame expected on inbound stream */
/* scratch variable */

/* buffers for the outbound stream */

/* # output buffers currently in use */

/* used to index into the buffer array */

enable_network_layer();
ack_expected = 0;
next_frame_to_send = 0;
frame_expected = 0;
nbuffered = 0;

/* allow network_layer_ready events */
/* next ack expected inbound */

/* next frame going out */

/* number of frame expected inbound */
/* initially no packets are buffered */

while (true) {

wait_for_event(&event); /* four possibilities: see event_type above */
switch(event) {
case network_layer_ready: /* the network layer has a packet to send */

/* Accept, save, and transmit a new frame. */
from_network_layer(&buffer[next_frame_to_send)]); /* fetch new packet */
nbuffered = nbuffered + 1; /* expand the sender’s window */
send_data(next_frame_to_send, frame_expected, buffer);/* transmit the frame */
inc(next_frame_to_send); /* advance sender’s upper window edge */
break;

/* a data or control frame has arrived */
/* get incoming frame from physical layer */

case frame_arrival:
from_physical_layer(&r);

if (r.seq == frame_expected) {
/* Frames are accepted only in order. */
to_network_layer(&r.info); /* pass packet to network layer */
inc(frame_expected); /* advance lower edge of receiver’'s window */

}

/* Ack n implies n— 1, n - 2, etc. Check for this. */

while (between(ack_expected, r.ack, next_frame_to_send)) {
/* Handle piggybacked ack. */
nbuffered = nbuffered — 1; /* one frame fewer buffered */
stop_timer(ack_expected); /* frame arrived intact; stop timer */
inc(ack_expected); /* contract sender’'s window */

}

break;

case cksum_err: break; /* just ignore bad frames */
case timeout: /* trouble; retransmit all outstanding frames */
next_frame_to_send = ack_expected; /* start retransmitting here */
for (i = 1; i <= nbuffered; i++) {
send_data(next_frame_to_send, frame_expected, buffer);/* resend 1 frame */
inc(next_frame_to_send); /* prepare to send the next one */

}

if (nbuffered < MAX_SEQ)
enable_network_layer();
else
disable_network_layer();

}
Sliding Window with Go-back-n C Codes

University

Electronics and of Southampton

Computer Science

57

ELEC3030 (EL336) Computer Networks S Chen

Protocol Verification

e How to know a protocol really works — specify and verify protocol using, e.g. finite state machine

— Each protocol machine (sender or receiver) is at a specific state at every time instant
— Each state has zero or more possible transitions to other states
— One particular state is initial state: from initial state, some or possibly all other states may be

reachable by a sequence of transitions ™

Who Frame Frame network
Transition runs? accepted emitted layer

e Simplex stop and wait ARQ protocol:

— State SRC: S = 0,1 — which
frame sender is sending; R = 0,1
— which frame receiver is expecting;
C = 0,1, A (ACK), — (empty) —
channel state, i.e. what is in channel

— There are 9 transitions

(frame lost)

Yes

Yes

POX>»RL>O

No

(timeout)
(timeout)

o~NoUuhhwNREO

R
S 1
R A
S 0
R A No
R A
S 0
S 1

(b)

— Initial state (000): sender has just sent frame 0, receiver is expecting frame 0, and frame 0 is
currently in channel

— Transition 0 consists of channel losing its contents, transition 1 consists of channel correctly
delivering frame 0 to receiver, and so on

— During normal operation, transitions 1,2,3,4 are repeated in order over and over: in each cycle,
two frames are delivered, bringing sender back to initial state

Uy Electronics and gf";fu':;?mpton
H Computer Science
Bl

58

ELEC3030 (EL336) Computer Networks S Chen

Summary

e Flow control and error control techniques for data link layer:

Stop and wait ARQ), sliding window, go-back-n, selective-reject (repeat)

e Data link layer (part) discussed so far:
It is concerned with making a point-to-point link reliable, and is responsible for
transmitting frames from sender to receiver, can only use physical layer to do job
e Error control and flow control (ACKs, NAKs, CRC, sliding windows, sequence

numbers, go-back-n etc.):

How these are included in a data link layer protocol will be discussed in next lecture

Uy Electronics and gf";fu':;?mpton
H Computer Science
| T | 59

