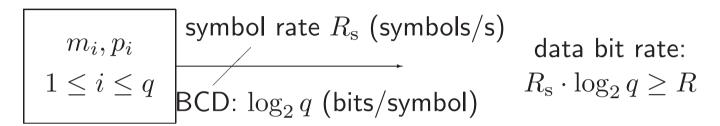
Revision of Lecture 1

• Source emitting sequence $\{S(k)\}$: 1. Symbol set m_i , $1 \le i \le q$; 2. Probability of occurring for m_i , p_i , $1 \le i \le q$; 3. Symbol rate R_b [symbols/s]; 4. **Memoryless**



• Information content $I(m_i) = \log_2 \frac{1}{p_i}$ (bits)

Entropy
$$H = \sum_{i=1}^{q} p_i \log_2 \frac{1}{p_i}$$
 (bits/symbol)

Information rate $R = R_s \cdot H$ (bits/s)

- After source coding, e.g. code every symbol by $\log_2 q$ bits or binary coded decimal (BCD), data rate you send is R_b [bits/s] and generally $R_b > R$
- How to code symbols to achieve **efficiency** (data bit rate $R_b = R$)?

Maximum Entropy for *q*-ary Source

- ullet Entropy of a q-ary source: $H = -\sum_{i=1}^q p_i \log_2 p_i$ when it reaches maximum?
- Maximisation under the constraint $\sum_{i=1}^{q} p_i = 1$ is based on the Lagrangian

$$\mathcal{L} = \left(\sum_{i=1}^{q} -p_i \log_2 p_i\right) + \lambda \cdot \left(1 - \sum_{i=1}^{q} p_i\right)$$

and yields

$$\frac{\partial \mathcal{L}}{\partial p_i} = -\log_2 p_i - \log_2 e - \lambda = 0$$

• Since $\log_2 p_i = -(\log_2 e + \lambda)$ is independent of i, i.e. constant, and $\sum_{i=1}^q p_i = 1$, entropy of a q-ary source is maximised for equiprobable symbols with $p_i = 1/q$

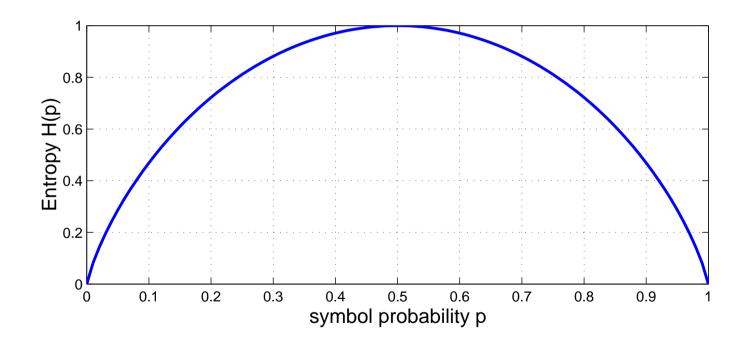
$$\frac{\partial \mathcal{L}}{\partial \lambda} = 0 \to 1 = \sum_{i=1}^q p_i, \text{ also } p_i = c: \quad 1 = \sum_{i=1}^q c \to p_i = c = \frac{1}{q}$$

Maximum Entropy for binary Source

Binary source (q=2) emitting two symbols with probabilities $p_1=p$ and $p_2=(1-p)$:

• Source entropy:

$$H(p) = -p \cdot \log_2 p - (1-p) \cdot \log_2 (1-p)$$



• Source entropy is maximum for equiprobable symbols, $p_1 = p_2 = 0.5$

Efficient Source Coding

- We are considering lossless source coding, i.e. when we convert symbols into bit streams (codewords), we do not throw away any "information"
- Information rate is $R = R_s \cdot H \le R_s \cdot \log_2 q$, so in general BCD is not efficient
- $0 \le H \le \log_2 q$, so source entropy is bound by maximum entropy and, therefore, BCD only achieves most efficient source coding for **equiprobable** symbols
- Efficient channel use requires efficient source encoding, and coding efficiency:

$$coding efficiency = \frac{source information rate}{average source output rate}$$

- Shannon's source coding theorem: with an efficient source coding, a coding efficiency of almost 100% can be achieved
- We consider efficient Shannon-Fano and Huffman source codings

Efficient Coding (continue)

- For source with equiprobable symbols, it is easy to achieve an efficient coding
 - For such a source, $p_i=1/q$, $1\leq i\leq q$, and source entropy is maximised: $H=\log_2 q$ bits/symbol
 - Coding each symbol into $\log_2 q$ -bits codeword is efficient, since coding efficiency²

$$CE = \frac{H}{\log_2 q} = \frac{\log_2 q}{\log_2 q} = 100\%$$

ullet For source with non-equiprobable symbols, coding each symbol into $\log_2 q$ -bits codeword is not efficient, as $H < \log_2 q$ and

$$\mathsf{CE} = \frac{H}{\log_2 q} < 100\%$$

 How to be efficient: assign number of bits to a symbol according to its information content, that is, using variable-bits codewords, more likely symbol having fewer bits for its codeword

 $^{^2}$ Assume $\log_2 q$ is an integer, as practical coding cannot have a fraction of bit

Example of 8 Symbols

symbol	m_1	m_2	m_3	m_4	m_5	m_6	m_7	m_8
BCD codeword	000	001	010	011	100	101	110	111
equal p_i	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
non-equal p_i	0.27	0.20	0.17	0.16	0.06	0.06	0.04	0.04

Average codeword length is 3 bits for BCD

- For equiprobable case, $H=\log_2 8=3$ bits/symbol, and coding each symbol with 3-bits codeword achieves coding efficiency of 100%
- For non-equiprobable case,

$$H = -0.27 \log_2 0.27 - 0.20 \log_2 0.20 - 0.17 \log_2 0.17 - 0.16 \log_2 0.16$$
$$-2 \times 0.06 \log_2 0.06 - 2 \times 0.04 \log_2 0.04 = 2.6906 \text{ (bits/symbol)}$$

coding each symbol by 3-bits codeword has coding efficiency

$$CE = 2.6906/3 = 89.69\%$$

Shannon-Fano Coding

Shannon-Fano source encoding follows the steps

- 1. Order symbols m_i in descending order of probability
- 2. Divide symbols into subgroups such that the subgroup's probabilities (i.e. information contests) are as close as possible
 - can be two symbols as a subgroup if there are two close probabilities (i.e. information contests), can also be only one symbol as a subgroup if none of the probabilities are close
- 3. Allocating codewords: assign bit 0 to top subgroup and bit 1 to bottom subgroup
- 4. Iterate steps 2 and 3 as long as there is more than one symbol in any subgroup
- 5. Extract variable-length codewords from the resulting tree (top-down)

Note: Codewords must meet condition: no codeword forms a *prefix* for any other codeword, so they can be decoded *unambiguously*

Shannon-Fano Coding Example

• Example for 8 symbols

approx	I_i	Symb.	Prob.	Coding Steps		Codeword		
length	(bits)	m_i	p_i	1	2	3	4	
2	1.89	m_1	0.27	0	0			00
2	2.32	m_2	0.20	0	1			01
3	2.56	m_3	0.17	1	0	0		100
3	2.64	m_4	0.16	1	0	1		101
4	4.06	m_5	0.06	1	1	0	0	1100
4	4.06	m_6	0.06	1	1	0	1	1101
4	4.64	m_7	0.04	1	1	1	0	1110
4	4.64	m_8	0.04	1	1	1	1	1111

 Less probable symbols are coded by longer code words, while higher probable symbols are assigned short codes

Assign number of bits to a symbol as close as possible to its information content, and no codeword forms a prefix for any other codeword

Shannon-Fano Coding Example (continue)

- Entropy for the given set of symbols: H = 2.6906 (bits/symbol)
- Average code word length with Shannon-Fano coding:

$$0.47 \cdot 2 + 0.33 \cdot 3 + 0.2 \cdot 4 = 2.73$$
 (bits/symbol)

Coding efficiency:

$$\frac{\text{source information rate}}{\text{average source output rate}} = \frac{R_s \cdot H}{R_s \cdot 2.73} = \frac{2.6906}{2.73} = 98.56\%$$

- In comparison, coding symbols with 3-bits equal-length codewords:
 - Average code word length is 3 (bits/symbol)
 - Coding efficiency is 89.69%

Shannon-Fano Coding – Another Example

Symbol X_i	Prob. $P(X_i)$	I (bits)	Codeword					bits/symbol		
A	$\frac{1}{2}$	1	0							1
B	$\frac{1}{4}$	2	1	0						2
C	$\frac{1}{8}$	3	1	1	0					3
D	$\frac{1}{16}$	4	1	1	1	0				4
E	$\frac{1}{32}$	5	1	1	1	1	0			5
F	$\frac{1}{64}$	6	1	1	1	1	1	0		6
G	$\frac{1}{128}$	7	1	1	1	1	1	1	0	7
H	$\frac{1}{128}$	7	1	1	1	1	1	1	1	7

Source entropy

$$H = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{16} \cdot 4 + \frac{1}{32} \cdot 5 + \frac{1}{64} \cdot 6 + 2 \cdot \frac{1}{128} \cdot 7 = \frac{127}{64} \quad \text{(bits/symbol)}$$

Average bits per symbol of Shannon-Fano coding

$$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{16} \cdot 4 + \frac{1}{32} \cdot 5 + \frac{1}{64} \cdot 6 + 2 \cdot \frac{1}{128} \cdot 7 = \frac{127}{64}$$
 (bits/symbol)

Coding efficiency is 100% (Coding efficiency is 66% if codewords of equal length of 3-bits are used)

Huffman Coding

Huffman source encoding follows the steps

- 1. Arrange symbols in descending order of probabilities
- 2. Merge the two least probable symbols (or subgroups) into one subgroup
- 3. Assign '0' and '1' to the higher and less probable branches, respectively, in the subgroup
- 4. If there is more than one symbol (or subgroup) left, return to step 2
- 5. Extract the Huffman code words from the different branches (bottom-up)

Huffman Coding Example

• Example for 8 symbols

Symb.	Prob.	Со	Coding Steps						Code word
m_i	p_{i}	1	2	3	4	5	6	7	
m_1	0.27						1	0	01
m_2	0.20					0		1	10
m_3	0.17				0		0	0	000
m_4	0.16				1		0	0	001
m_5	0.06		0	0		1		1	1100
m_6	0.06		1	0		1		1	1101
m_7	0.04	0		1		1		1	1110
m_8	0.04	1		1		1		1	1111

- Intermediate probabilities: $m_{7,8}=0.08$; $m_{5,6}=0.12$; $m_{5,6,7,8}=0.2$; $m_{3,4}=0.33$; $m_{2,5,6,7,8}=0.4$; $S_{1,3,4}=0.6$
- When extracting codewords, remember "reverse bit order" This is important as it ensures no codeword forms a prefix for any other codeword

Huffman Coding Example (explained)

step 2		
m_1	0.27	
m_2	0.20	
m_3	0.17	
m_4	0.16	
m_{78}	0.08	
m_5	0.06	0
m_6	0.06	1

0.27	
0.20	
0.17	
0.16	
0.12	0
0.08	1
	0.20 0.17 0.16 0.12

step 4		
m_1	0.27	
m_2	0.20	
m_{5678}	0.20	
m_3	0.17	0
m_4	0.16	1

sten 4

step 5		
m_{34}	0.33	
m_1	0.27	
m_2	0.20	0
m_{5678}	0.20	1

$$m_{25678} \quad 0.40 \ m_{34} \quad 0.33 \quad 0 \ m_{1} \quad 0.27 \quad 1$$

step 1		
m_{134}	0.60	0
m_{25678}	0.40	1

- \bullet Average code word length with Huffman coding for the given example is also 2.73 (bits/symbol), and coding efficiency is also 98.56%
- Try Huffman coding for 2nd example and compare with result of Shannon-Fano coding

Shannon-Fano and Huffman Source Encoding Summary

- Shannon-Fano and Huffman source encoding methods belong to class of entropy encoding, which
 - Assign number of bits to a symbol as close as possible to its information content
- Both Shannon-Fano and Huffman coded sequences can be decoded unambiguously, as no code word forms a prefix for any other code word
- With Shannon-Fano and Huffman coding, *memory-less sources* can be encoded such that the emitted bit sequence carries a *maximum of information*
- For an alphabet of q symbols, the longest code word could be up to q-1 bits; this is *prohibitive for large alphabets* (requiring large buffer sizes)
- Huffman coding gives a different code word assignment to Shannon-Fano coding;
 the coding efficiency is however nearly identical
- Which of these two source encoding methods do you prefer?

Summary

- Source encoding efficiency and concept of efficient encoding
- Memoryless source with equiprobable symbols achieves maximum entropy
- Entropy source encoding: Shannon-Fano and Huffman source encoding methods
 - What for: Data rate > information rate → With efficient encoding, data rate is minimised, i.e. as close to information rate as possible
 - How to: Assign number of bits to a symbol as close as possible to its information content, subject to practical constraints of
 - 1. Number of bits can only be an integer
 - 2. No code word forms a prefix for any other code word

