
ELEC3203 Digital Coding and Transmission – Overview & Information Theory S Chen

Revision of Lecture 2

• Source is defined by

1. Symbol set: S = {mi, 1 ≤ i ≤ q}
2. Probability of occurring of mi: pi, 1 ≤ i ≤ q

3. Symbol rate: Rs [symbols/s]

4. Interdependency of {S(k)} (memory or

memoryless source)

digital
source

source
coding

{S(k)} {b  }i

symbols/s bits/s

• We have completed discussion on memoryless source

– Entropy
√

– Information rate
√

– Efficient coding (entropy encoding)
√

• For source with memory

– Entropy ?

– Information rate ?

– How to code ?

• Question: Two sources have same 1., 2. and 3. but one is memoryless, another
has memory – Which has larger entropy/information rate ?
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Sources with Memory

• Most real world sources exhibit memory, resulting in correlated source signals; this
property is retained during sampling and quantisation

– This implies that the signal exhibits some form of redundancy, which should be exploited when

the signal is coded

– For example, samples of speech waveform are correlated; redundancy in samples is first removed,

as it can be predicted; the resulting residuals, almost memoryless or uncorrelated, can then be

coded with far fewer bits
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• S(k) ∈ {mi, 1 ≤ i ≤ 8}, but given S(k − 1) = m5, S(k − 2) = m4, · · · , unlikely
S(k) = m1 or m2

– there exists interdependency between S(k) and previous samples S(k − j), j ≥ 1
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Model Source Memory

• Here memory can be completely modelled by a stochastic probabilistic Markov

process

– Consider source with memory that emits a sequence of symbols {S(k)} with
“time” index k

– First order Markov process: the current symbol depends only on the previous
symbol, p(S(k)|S(k − 1))

– N -th order Markov process: the current symbol depends on N previous symbols,
p(S(k)|S(k − 1), S(k − 2), · · · , S(k − N))

• Alternatively, if S(k) is influenced by S(k − 1) up to S(k − N), then it may be
modelled by predictive model

S(k) = f(S(k − 1), · · ·S(k − N)) + ε(k)

– Prediction model f(S(k − 1), · · ·S(k − N)) contains information of S(k) that
can be predicted by S(k − 1), · · ·S(k − N)

– Innovation ε(k) contains new information of S(k) that cannot be predicted by
S(k − 1), · · ·S(k − N)
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Two-State First Order Markov Process

• Source S(k) can only generate two symbols, X1 = 1 and X2 = 2; their probability
explicitly depends on the previous state (i.e. p(S(k)|S(k − 1)))

Transition probability matrix

Γ =

[

p11 p12

p21 p22

]
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p21X
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• Probabilities of occurrence (prior probabilities) for states X1 and X2: P1 = P (X1)
and P2 = P (X2) (i.e. p(S(0) = 1) = P (X1) and p(S(0) = 2) = P (X2))

• Transition probabilities: transition probabilities from state X1 are given by the
conditional probabilities p12 = P (X2|X1) and p11 = P (X1|X1) = 1 − P (X2|X1),
etc. (i.e. p(S(k) = j|S(k − 1) = i) = pij)
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Entropy for 2-State 1st Order Markov Source

• Entropy Hi for state Xi, i = 1, 2:

Hi = −
2

∑

j=1

pij · log2 pij = −pi1 · log2 pi1 − pi2 · log2 pi2 (bits/symbol)

– describes average information carried by the symbols emitted in state Xi

• The overall entropy H includes the probabilities P1, P2 of the states X1,X2:

H =
2

∑

i=1

PiHi = −
2

∑

i=1

Pi

2
∑

j=1

pij · log2 pij (bits/symbol)

– For a highly correlated source, it is likely to remain in a state rather than to
change, and entropy decreases as correlation increases

• Information rate R = Rs · H (bits/second)
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Entropy for q-State 1st Order Markov Source

• For q-state 1st-order Markov source with q symbols

Xi = i, 1 ≤ i ≤ q, symbol entropy Hi for state Xi:

Hi = −
q

X

j=1

pij · log2 pij (bits/symbol)

where pij is transition probability from Xi to Xj

• Source entropy is obtained by averaging all symbol

entropies with corresponding prior symbol probabilities

H =

q
X

i=1

PiHi = −
q

X

i=1

Pi

q
X

j=1

pij·log2 pij (bits/symbol)

where Pi is the probability of occurrence (prior

probability) of state Xi

p
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Transition probability matrix

Γ =

2
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p11 p12 · · · p1q

p21 p22 · · · p2q
... ... . . . ...

pq1 pq2 · · · pqq
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• With a symbol rate Rs symbols/second, the average source information rate R is

R = Rs · H (bits/second)
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A 2-State 1st Order Markov Source – Problem

• Consider the following state diagram with associated probabilities:

X1 X2p11=0.9 p22=0.1

p12 =0.1

p21=0.9
P1 =0.8 P2 =0.2

’2’’1’

• Q1: What is the source entropy?

• Q2: What is the average information content in message sequences of length 1, 2,
and 3 symbols, respectively, constructed from a sequence of X1 and X2?
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A 2-State 1st Order Markov Source – Solution

• A1: The source entropy is given by H = −0.8 · (0.9 log2 0.9 + 0.1 log2 0.1)
−0.2 · (0.9 log2 0.9 + 0.1 log2 0.1) = 0.4690 (bits/symbol)

• A2 Average information for

– 1-symbol sequence: H(1) = −0.8 log2 0.8 − 0.2 log2 0.2 = 0.7219 (bits/symbol)
– 2-symbols sequence: P (′11′) = P1 · p11 = 0.72; P (′12′) = P1 · p12 = 0.08;

P (′21′) = P2 · p21 = 0.18; P (′22′) = P2 · p22 = 0.02 −→ average 1.190924 bits
for 2-symbol sequence, hence H(2) = 1.190924/2 = 0.5955 (bits/symbol)

– 3-symbols sequence: P (′111′) = P (′11′)·p11 = 0.648; P (′112′) = P (′11′)·p12 =
0.072; etc. −→ H(3) = 0.5533 (bits/symbol)

• Consider sequence length of more symbols, which exhibits more memory dependency
of the source, and therefore the average information or entropy decreases; e.g.
H(20) = 0.4816 bits/symbol

• In the limit: H(k) −→ H for message sequence length k −→ ∞
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A2 Solution Explained

• One-symbol sequences: either “1” or “2” with P (“1”) = 0.8 and P (“2”) = 0.2

Hence average information content (bits or bits/symbol as it is just one symbol)

−P (“1”) log2 P (“1”) − P (“2”) log2 P (“2”)

= −0.8 log2 0.8 − 0.2 log2 0.2 = 0.7219 (bits/symbol)

• Two-symbol sequences: “11”, “12”, “21” or “22”

– Consider “11”: P (“11”) = 0.8 × 0.9 = 0.72

– Average information contents (bits) for 2-symbol sequence:
p  =0.9
11

X1 P(X  )=0.81

−P (“11”) log2 P (“11”)−P (“12”) log2 P (“12”)−P (“21”) log2 P (“21”)−P (“22”) log2 P (“22”)

= −0.72 log2 0.72 − 0.08 log2 0.08 − 0.18 log2 0.18 − 0.02 log2 0.02

= 0.3412304 + 0.2915084 + 0.4453076 + 0.1128771 = 1.1909235 (bits)
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Compare Memory and Memoryless Sources

• Two sources with

1. Same symbol set: S = {mi, 1 ≤ i ≤ q}
2. Same probability of occurring of mi: pi, 1 ≤ i ≤ q

3. Same symbol rate: Rs [symbols/s]

4. One has memory, i.e. {S(k)} has interdependency; the other is memoryless, i.e. {S(k)} is

independent

• Entropy of memoryless source, H(ml), and entropy of memory source, H(m)

H(ml) ≫ H(m)

– Entropy, a fundamental physical quantity of the source, quantifies average information conveyed

per symbol

• Thus, information rate of memoryless source, R(ml), and information rate of
memory source, R(m)

R(ml) ≫ R(m)

– Information rate, a fundamental physical quantity of the source, tells you how many bits/s of

information the source really needs to send out
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How not to Code Memory Source

• For memoryless source, entropy coding allows us to code {S(k)} most efficiently

– Data rate Rb is as small as possible, close to source information rate R(ml)

• For source with same 1. symbol set, same 2. set of probabilities of occurrence, and
same 3. symbol rate, but has memory, i.e. {S(k)} is not independent

– How should we carry our source coding to convert the symbol sequence {S(k)}
to the bit sequence {bi} ?

• Code memory source {S(k)} directly by entropy coding ? Really bad idea !

– Do so you only get “1-symbol-sequence entropy” H(1), i.e. close to “equivalent”
memoryless source (with same 1., 2. and 3.) entropy H(ml) = H(1)

– So your data rate Rb gets close to Rs ·H
(1), but H(1) ≫ H(m), i.e. far far larger

true source entropy H(m)

– Hence your data rate Rb ≫ R(m) = Rs ·H
(m), i.e. you send at rate far far larger

than true source information rate R(m)
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Comments on Markov Source Model

• Markov process is a most complete model to describe sources with memory; it is a
probabilistic model

• Most widely used Markov process is 1st order Markov process, where

– Pi = P (Xi) is probability of occurrence of state Xi; image starting an experiment
with time index t, at the beginning or t = 0, you can find that the process S(0)
starts from state Xi with probability Pi; hence Pi is a priori probability

– Transition probability pij describes the probability of the process changing from
state Xi to Xj, hence is conditional probability p(S(t) = Xj|S(t−1) = Xi) = pij

• To describe source with memory longer than 1, higher order Markov process is
needed, but this is much more difficult to use

– In practice, simplified parametric model is often used to describe source with
higher-order memory, i.e.

– Use conditional mean E[s(t)|s(t − 1), s(t − 2), · · · , s(t − N)] of realisation

(observation) s(t) to “replace” probabilities of stochastic process S(t)
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Predictive Models

• An N th order predictive model with parameter vector a:

s(k) =E[s(k)|s(k − 1), s(k − 2), · · · , s(k − N)] + ε(k)

=f(s(k − 1), s(k − 2), · · · , s(k − N);a) + ε(k)

• For example, qth order linear autoregressive (AR) model:

3 2

ε

- N - 2 -1

aN a a a 1

( )s k k( )s k( )s

)(ks)(k

s(k) =

N
X

j=1

ajs(k−j)+ε(k)

– Aim is to get residual sequence {ε(k)} uncorrelated and zero-mean
– This parametric model is widely used, for example, in speech source coding

(transmit aj and ε(k) instead of s(k)) – Why does this?
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Summary

• How to model sources with memory – Markov model and predictive model

– How to compute entropy and information rate for sources with memory, at least for 1st-order

Markov sources

• Most importantly, we know for two sources, with

1. Same symbol set: S = {mi, 1 ≤ i ≤ q}
2. Same probability of occurring of mi: pi, 1 ≤ i ≤ q

3. Same symbol rate: Rs [symbols/s]

4. One has memory; the other is memoryless

– Entropy of memoryless source, H(ml), and entropy of memory source, H(m)

H
(ml) ≫ H

(m)

– Information rate of memoryless source, R(ml), and information rate of memory source, R(m)

R
(ml) ≫ R

(m)

– Thus, code memory source {S(k)} directly with entropy coding is inefficient
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