ELEC3203 Digital Coding and Transmission — Overview & Information Theory S Chen

Revision of Lecture 2

e Source is defined by

| digital | (SR} [ source | 1Pi}
Symbol set: S = {m;,1 <1 < g} wource | coding —
Probability of occurring of m;: p;, 1 <1 < g bits/s
Symbol rate: R [symbols/s] symbols's

Interdependency of {S(k)} (memory or

memoryless source)

==

e \We have completed discussion on memoryless source

— Entropy /
— Information rate /

— Efficient coding (entropy encoding) +/
e For source with memory

— Entropy ?
— Information rate ?
— How to code 7

e Question: Two sources have same 1., 2. and 3. but one is memoryless, another
has memory — Which has larger entropy/information rate 7
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Sources with Memory

e Most real world sources exhibit memory, resulting in correlated source signals; this
property is retained during sampling and quantisation

— This implies that the signal exhibits some form of redundancy, which should be exploited when
the signal is coded

— For example, samples of speech waveform are correlated; redundancy in samples is first removed,
as it can be predicted; the resulting residuals, almost memoryless or uncorrelated, can then be
coded with far fewer bits

my {S(k)}

o S(k) e {m;,1 <i <8} but given S(k—1) =ms, S(k—2) =my,---, unlikely
S(k) =17 Or Moy

— there exists interdependency between S (k) and previous samples S(k — j), 7 > 1
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Model Source Memory

e Here memory can be completely modelled by a stochastic probabilistic Markov
process

— Consider source with memory that emits a sequence of symbols {S(k)} with
“time” index k

— First order Markov process: the current symbol depends only on the previous
symbol, p(S(k)|S(k —1))

— N-th order Markov process: the current symbol depends on N previous symbols,

e Alternatively, if S(k) is influenced by S(k — 1) up to S(k — N), then it may be
modelled by predictive model

S(k) = f(S(k—=1),---S(k = N)) +e(k)
— Prediction model f(S(k—1),---S(k — N)) contains information of S(k) that
can be predicted by S(k —1),---S(k— N)

— Innovation (k) contains new information of S(k) that cannot be predicted by

S(k—1),---S(k — N)
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Two-State First Order Markov Process

e Source S(k) can only generate two symbols, X; = 1 and X5 = 2; their probability
explicitly depends on the previous state (i.e. p(S(k)|S(k —1)))

Transition probability matrix 0
12
111/\121
P11 P12
*= o e
b2 b2 " pllc@ @3 P,

P(X P (X
(X) 5 (X)

1

e Probabilities of occurrence (prior probabilities) for states X; and X5: P, = P(X;)
and P, = P(X5) (i.e. p(S(0) = 1) = P(X;) and p(S(0) = 2) = P(Xy))

e Transition probabilities: transition probabilities from state X; are given by the
conditional probabilities p1o = P(X3|X1) and p11 = P(X1]|X1) =1 — P(X2|X4),
etc. (ie. p(S(k) = j|S(k — 1) = 4) = pi;)
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Entropy for 2-State 1st Order Markov Source

e Entropy H; for state X;, 1 = 1, 2:

2
H; = — sz‘j -log, pij = —pi1 - logy pi1 — iz - logy pia  (bits/symbol)
=1

— describes average information carried by the symbols emitted in state X;

e The overall entropy H includes the probabilities P, P> of the states X7, Xo:

2 2
H = Z PZHz = — Z Pz pr . 1Og2p7jj (blts/symbol)
) 1=1 j=1

— For a highly correlated source, it is likely to remain in a state rather than to
change, and entropy decreases as correlation increases

e Information rate R = R, - H (bits/second)
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Entropy for g-State 1st Order Markov Source

e For g-state lst-order Markov source with g symbols plj
X, =1,1 <1 < gq, symbol entropy H; for state X;:
q @
Hi = — Zpij . 10g2 Dij (bits/symbol)
J=1 ﬁ)i

where p;; is transition probability from X; to X

e Source entropy is obtained by averaging all symbol |

entropies with corresponding prior symbol probabilities . . _
Transition probability matrix

q q q

H = Z P H; = — Z P; sz-j-log2 pij (bits/symbol) [ P11 P12 -+ Pig |
i=1 i=1 j=1 r — P21 P22 - P2gq
where P; is the probability of occurrence (prior p;ll p;ﬂ o Dag

probability) of state X;

e With a symbol rate Rs symbols/second, the average source information rate R is

R=R,-H (bits/second)
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A 2-State 1st Order Markov Source — Problem

e Consider the following state diagram with associated probabilities:

pP,=0.1
111 121

T

P,1,=0.9 C@ @ p,,=0.1
\/
B =0.8 R =0.2

P,,=0.9

e Q1: What is the source entropy?

e Q2: What is the average information content in message sequences of length 1, 2,
and 3 symbols, respectively, constructed from a sequence of X; and X5?
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A 2-State 1st Order Markov Source — Solution

e Al: The source entropy is given by H = —0.8 - (0.91og, 0.9 4+ 0.11og, 0.1)
—0.2-(0.910g,0.9 4+ 0.11log, 0.1) = 0.4690 (bits/symbol)

e A2 Average information for

— 1-symbol sequence: H1) = —0.81og, 0.8 — 0.210g, 0.2 = 0.7219 (bits/symbol)

— 2-symbols sequence: P('11") = P, - p;; = 0.72; P("12") = P; - p12 = 0.08;
P("21") = Py - po1 = 0.18; P('22") = Py - pog = 0.02 — average 1.190924 bits
for 2-symbol sequence, hence H(?) = 1.190924/2 = 0.5955 (bits/symbol)

— 3-symbols sequence: P('111") = P('11")-p11 = 0.648; P("112") = P('11")-p12 =
0.072; etc. — H®) = 0.5533 (bits/symbol)

e Consider sequence length of more symbols, which exhibits more memory dependency
of the source, and therefore the average information or entropy decreases; e.g.
H®% = (.4816 bits/symbol

e In the limit: H*) — H for message sequence length k — oo
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A2 Solution Explained

e One-symbol sequences: either “1" or “2" with P(“1") = 0.8 and P("2") = 0.2

Hence average information content (bits or bits/symbol as it is just one symbol)
—P("1") log, P("1") — P("2") log, P("2")
= —0.8log, 0.8 — 0.21log, 0.2 = 0.7219 (bits/symbol)

e Two-symbol sequences: “11", “12", “21" or “22"
— Consider “11": P("11") = 0.8 x 0.9 = 0.72 F)()(1 ):0_8

n.= 0.9

— Average information contents (bits) for 2-symbol sequence:

—P(“11") log, P(“11")—P(“12") log, P(“12")—P(“21") log, P(“21")—P("22") log, P(“22")

— —0.72log, 0.72 — 0.08 log, 0.08 — 0.18 log, 0.18 — 0.02 log, 0.02

= 0.3412304 + 0.2915084 + 0.4453076 + 0.1128771 = 1.1909235 (bits)
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Compare Memory and Memoryless Sources

e [ wo sources with

Same symbol set: S = {m;,1 < i < g}

Same probability of occurring of m;: p;, 1 <1 < g

Same symbol rate: R [symbols/s]

One has memory, i.e. {S(k)} has interdependency; the other is memoryless, i.e. {S(k)} is
independent

==

e Entropy of memoryless source, H(™ and entropy of memory source, H (™)

q7™m > g

— Entropy, a fundamental physical quantity of the source, quantifies average information conveyed
per symbol

e Thus, information rate of memoryless source, R~ 3nd information rate of
memory source, R(™)
Rt > ROm)
— Information rate, a fundamental physical quantity of the source, tells you how many bits/s of
information the source really needs to send out
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How not to Code Memory Source

e For memoryless source, entropy coding allows us to code {S(k)} most efficiently

— Data rate Ry is as small as possible, close to source information rate R(ml)

e For source with same 1. symbol set, same 2. set of probabilities of occurrence, and
same 3. symbol rate, but has memory, i.e. {S(k)} is not independent

— How should we carry our source coding to convert the symbol sequence {S(k)}
to the bit sequence {b;} ?

e Code memory source {S(k)} directly by entropy coding ? Really bad idea !

— Do so you only get “1-symbol-sequence entropy” H1), i.e. close to “equivalent”
memoryless source (with same 1., 2. and 3.) entropy H™) = (1)

— So your data rate Ry, gets close to R, - HD but HV > HM™) je. far far larger
true source entropy H (™)

— Hence your data rate R, > R™) = R,- H™) i.e. you send at rate far far larger
than true source information rate R(™)
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Comments on Markov Source Model

e Markov process is a most complete model to describe sources with memory; it is a
probabilistic model

e Most widely used Markov process is 1st order Markov process, where

— P, = P(X;) is probability of occurrence of state X;; image starting an experiment
with time index ¢, at the beginning or ¢t = 0, you can find that the process S(0)
starts from state X, with probability P;; hence P; is a priori probability

— Transition probability p;; describes the probability of the process changing from
state X; to X, hence is conditional probability p(S(t) = X;|S(t—1) = X;) = pi;

e To describe source with memory longer than 1, higher order Markov process is
needed, but this is much more difficult to use

— In practice, simplified parametric model is often used to describe source with
higher-order memory, i.e.

— Use conditional mean FE|[s(t)|s(t — 1),s(t — 2),---,s(t — N)] of realisation
(observation) s(t) to “replace” probabilities of stochastic process S(t)
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Predictive Models

e An Nth order predictive model with parameter vector a:

s(k) =E[s(k)|s(k —1),s(k —2),--- ,s(k — N)| +e(k)
=f(s(k—1),8(k—2),---,8(k— N);a)+ (k)

e For example, gth order linear autoregressive (AR) model:

ek) s(k)

— 9

N
s(k-N s(k-2) s(k-1) s(k) = Z a;s(k—j)+e(k)

[ E e

T

— Aim is to get residual sequence {(k)} uncorrelated and zero-mean
— This parametric model is widely used, for example, in speech source coding
(transmit a; and (k) instead of s(k)) — Why does this?
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Summary

e How to model sources with memory — Markov model and predictive model

— How to compute entropy and information rate for sources with memory, at least for 1st-order
Markov sources

e Most importantly, we know for two sources, with

Same symbol set: S = {m;,1 < i < ¢}

Same probability of occurring of m;: p;, 1 <1 < g
Same symbol rate: R, [symbols/s]

One has memory; the other is memoryless

= w =

— Entropy of memoryless source, H™ and entropy of memory source, H)

(ml)

— Information rate of memoryless source, R'""’, and information rate of memory source, R™)

— Thus, code memory source {S(k)} directly with entropy coding is inefficient
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