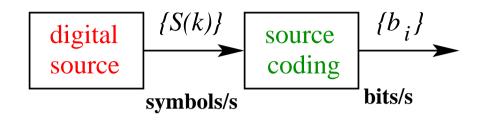
Revision of Lecture 3

- Source is defined by
 - 1. Symbol set: $S = \{m_i, 1 \leq i \leq q\}$
 - 2. Probability of occurring of m_i : p_i , $1 \leq i \leq q$
 - 3. Symbol rate: R_s [symbols/s]
 - 4. Interdependency of $\{S(k)\}$ (memory or memoryless source)



- We have completed discussion on digital sources using information theory
 - Entropy $\sqrt{}$
 - Information rate \surd
 - Efficient coding: memoryless sources \surd ; memory sources how ?
- But we know how not to code memory sources: code a memory source $\{S(k)\}$ directly by entropy coding is a bad idea
 - in fact, information theory we just learnt tell us how to code memory source efficiently

Source Coding Visit

- Transmit at certain rate R_b requires certain amount of resource bandwidth and power
 - The larger the rate R_b , the larger the required resource
- Source coding aims to get R_b as small as possible, ideally close to the source information rate
 - Information rate, a fundamental physical quantity of the source, tells you how many bits/s of information the source really needs to send out
 - If R_b is close to information rate, source coding is most efficient
- Memoryless source $\{S(k)\}$, entropy coding on $\{S(k)\}$ is most efficient, as data rate R_b is as close to source information rate as possible
- For memory source $\{S(k)\},$ information theory also tells us how to code $\{S(k)\}$ most efficiently

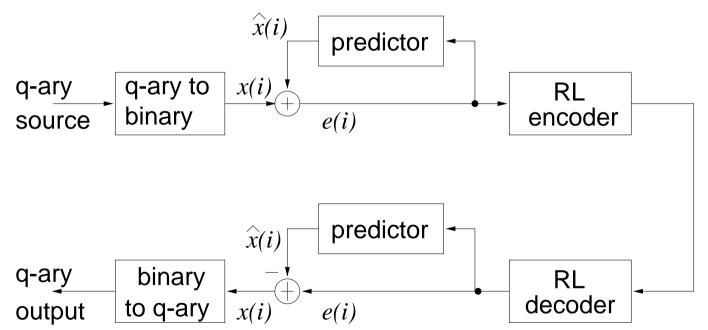
Remove Redundancy

- Key to get close to information rate $H \cdot R_s$ is to remove **redundancy**
 - Part of S(k) can be predicted by $\{S(k-i)\}$, $i \ge 1 \rightarrow$ When coding S(k) this temporal redundancy can be **predicted** from $\{S(k-i)\}$, $i \ge 1$
 - By removing the predictable part, resulting residual sequence $\{\varepsilon(k)\}\$ is near independent or **uncorrelated**, can thus be coded by an entropy coding
- Speech samples are highly correlated, i.e. containing lots of redundancy
 - Predictive speech coding builds a predictive model like $s(k) = \sum_{j=1}^{N} a_j s(k-j) + \varepsilon(k) \rightarrow \varepsilon(k)$ contains new information unpredictable from s(k-j), $1 \le j \le N$ - $\{\varepsilon(k)\}$ can then be coded with far smaller rate, and you send $\{\varepsilon(k)\}$ together with the model parameters a_j , $1 \le j \le N$, not $\{s(k)\}$
- Video, containing a sequence of frames or pictures sent at certain frame rate, has
 - Inter-frame (temporal) redundancy and intra-frame (spatial) redundancy
 - Video coding involves remove these large temporal and spatial correlations

47

Predictive Scheme with Run-Length Coding (RLC)

- Following predictive scheme exploits partial predictability of memory source:
 - Convert $q\text{-}\mathrm{ary}$ source to binary sequence $\{x(i)\}$ by BCD
 - Build a predictor $\{\widehat{x}(i)\}$ for it
 - If prediction is successful, the "residual" binary sequence $\{e(i)\}$ mostly contains zeros, and this property is exploited in RLC



- This scheme widely used in video coding: by removing inter-frame and intra-frame correlations as much as possible, resulting binary sequence contains most zeros
 - RLC then **compresses** it into another much **shorter** binary sequence for transmission

Run Length Coding Table

• Code words with fixed length of n bits are formed from a bit stream (encoder input pattern) of upto $l \le N - 1 = 2^n - 2$ successive zeros followed by a one or zero:

length of 0-run	encoder input pattern	encoder output codeword
l	$(length = \min\{N, l+1\})$	(fixed n bits)
0	1	$00 \cdots 000$
1	01	$00 \cdots 001$
2	001	$00 \cdots 010$
3	0001	$00\cdots 011$
:	÷	:
N-2	$0\cdots 01$	$11 \cdots 101$
N-1	$00\cdots 01$	$11 \cdots 110$
$N = 2^n - 1$	$00 \cdots 00$	$11 \cdots 111$

- Assumption is input bit stream contains mostly "0"s, i.e. p = P("0") is very high
- Thus encoder on average reduces the word length

RLC Efficiency

- Code word length after run length coding: n bits;
- Average code word length d before coding with $N = 2^n 1$:

$$d = \sum_{l=0}^{N-1} (l+1) \cdot p^l \cdot (1-p) + N \cdot p^N = 1 + p + p^2 + \dots + p^{N-1} = \frac{1-p^N}{1-p}$$

where \boldsymbol{p} is the probability of a bit is '0'

- Therefore compression ratio C = d/n
- A numerical example: p = 0.95, n = 5 (N = 31)

$$C = \frac{d}{n} = \frac{1 - p^N}{n(1 - p)} \approx \frac{15.92}{5} \approx 3.18$$

RLC Re-exam Again

• RLC is widely used in various applications, so let us exam RLC more closely

Input patterns have variable lengths, $2^n - 1$ bits to just 1 bit, depending on length of "**0**" runs before "**1**"; while output codewords have fixed length of n bits

Input pattern 01 1 00...0000 00...0001 00...001 ... 2^{n} -3+1 bits 2^{n} -1+0 bits 2^{n} -2+1 bits 1+1 bits 0+1 bits **RLC Output codeword** 11...111 11...110 11...101 00...001 00...000 *n* bits **n** bits **n** bits **n** bits **n** bits

• Shannon-Fano and Huffman: inputs have fixed length while outputs variable lengths

RLC appears very different from Shannon-Fano and Huffman or is it?

• RLC, Shannon-Fano and Huffman encodings are lossless or entropy encodings

Lossless Encodings Comparison

• Lossless or entropy encodings

Input Output

Shannon–Fano Huffman RLC (for binary data most 0s)

• Same principle:

rare input pattern/message/symbol coded with large output codeword large probability coded with small codeword

- Shannon-Fano and Huffman: input fixed length → output variable length
 RLC: input variable length → output fixed length
- It is the ratio $ratio = \frac{output \ length}{input \ length}$ small probability \longrightarrow large ratio $large \ probability \longrightarrow small \ ratio$

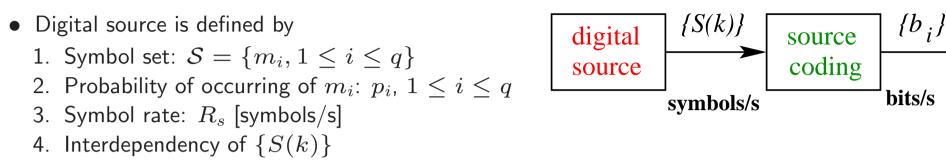
University

of Southampton

Lecture 4 Summary

- According to information theory, key to efficient source coding for digital source with memory is first to remove redundancy
 - Efficient coding means coding rate R_b close to information rate $H \cdot R_s$
 - Predictable part of current S(k) can be constructed and removed from S(k)
 - Resulting "residual" sequence $\varepsilon(k) = S(k) \widehat{S}(k)$ is near white, and entropy coding can be applied to it
- Run-length encoding: a lossless or entropy encoding method
 - For binary digital source, where binary sequence contains most zeros, i.e. Prob(0)is close to 1, and Prob(1) is very small
 - RLC "compresses" such a binary sequence into a much shorter binary sequence
 - Compression ratio of RLC
 - Comparison with Shannon-Fano and Huffman entropy encoding methods

Digital Source Summary



- Information content of alphabet m_i : $I(m_i) = -\log_2(p_i)$ [bits]
- Entropy: quantifies average information conveyed per symbol
 - Memoryless sources: $H = -\sum_{i=1}^{q} p_i \cdot \log_2(p_i)$ [bits/symbol]
 - 1st-order memory (1st-order Markov) sources with transition probabilities p_{ij}

$$H = \sum_{i=1}^{q} p_i H_i = -\sum_{i=1}^{q} p_i \sum_{j=1}^{q} p_{ij} \cdot \log_2(p_{ij}) \text{ [bits/symbol]}$$

- Information rate: tells you how many bits/s information the source really needs to send out
 - Information rate $R = R_s \cdot H$ [bits/s]
- Efficient source coding: get rate R_b as close as possible to information rate R
 - Memoryless source: apply entropy coding, such as Shannon-Fano and Huffman, and RLC if source is binary with most zeros
 - Generic sources with memory: remove redundancy first, then apply entropy coding to "residauls"

