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Revision of Lecture 4

• We have completed studying digital sources from information theory viewpoint

– We have learnt all fundamental principles for source coding, provided by
information theory

– Practical source coding is guided by information theory, with practical constraints,
such as performance and processing complexity/delay trade off

– When you come to practical source coding part, you can smile – as you should
know everything

• Information theory does far more, in fact it provides guiding principle for everything
in communications

– For example, what happens to information transmitted through channel?

source (Tx) - channel - destination (Rx)
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Information Across Channels

• For conveying information across a transmission channel, a suitable model is:

channel
input output

AWGN

• The channel itself introduces amplitude and phase distortion, is potentially time-
varying, and has a limited bandwidth B

• Error-free reception of symbols is additionally impeded by additive white Gaussian
noise (AWGN); it severeness is described by the signal-to-noise ratio (SNR)

• Therefore, dependent on the above parameters, we are interested in determining
the maximum possible error-free information transmission (channel capacity C)

• We will see that C depends on B and SNR
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Characteristics of Channel

• The channel can be described by its impulse response h(t) or equivalently its
frequency response H(jω) = A(ω) · ejΦ(ω) with amplitude response A(ω) and
phase response Φ(ω); h(t) and H(jω) are Fourier pair

• Ideal channel (pure delay): h(t) = δ(t − T ) → A(ω) = 1, Φ(ω) = −ωT

(ω)A
(ω)Φ

ω
0 B

1

0

ωB

1
T

– Flat magnitude and linear phase ( = constant group delay G(ω) = −∂Φ(ω)/∂ω)
– The only impairment caused by an ideal channel is AWGN

• Non-ideal channel: channel is dispersive, causing intersymbol interference
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Additive White Gaussian Noise

• Noise is uncorrelated with
the signal

• Gaussian noise has a
bell shaped probability
density function (normally
distributed)

p(x) =
1√
2πσ

e
−(x−µ)/2σ2

with mean µ and variance
σ2

• White noise has zero mean,
and channel noise is usually
modelled as an AWGN
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White Noise

• White noise is characterised by a flat power spectral density function, N(ω), or
equivalently, its impulse-shaped auto-correlation function, R(τ)
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• N(ω) and R(τ) are a Fourier pair:

R(τ) =
1

2π

Z ∞

−∞
N(ω)e

jωτ
dω N(ω) =

Z ∞

−∞
R(τ)e

−jωτ
dτ

• Two-side spectrum is usually used for convenience, and N0 is the noise power
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Physic Basis of Channel

• Transmitted signal is amplified to required power level and launched from transmit
antenna to channel

– Signal power is attenuated, as it travels in distance – path loss
– Copies of signal arrive at receiver with different attenuation and delays, which

may cause dispersive and fading (power level fluctuates rapidly) effects

• Received signal at receiver is very weak, and needs to be amplified to required
power level in order to detect digital information contained

– While receiver amplifier amplifies receive signal, it also introduces thermal noise
– AWGN in our channel model in fact models this noise
– How much noise introduced by amplifier is specified by its noise figure

• Depending on communication carrier frequency, channel bandwidth and actual
communication conditions, channel may be modelled as:

– AWGN channel, i.e. channel is nondispersive or memoryless
– Or dispersive channel, i.e. channel has memory
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Binary Symmetric Channel (BSC)

• BSC is the simplest model for information transmission via a discrete channel
(channel is ideal, no amplitude and phase distortion, only distortion is due to
AWGN):
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P (Xi): probability of occurrence of

Xi at source output, a priori probability

P (Yj|Xi): conditional probability of

Rx Yj given Tx Xi

“Symmetric” refers to P (Y1|X0) =

P (Y0|X1) = pe, pe being channel

error probability

• The joint probability P (Yj, Xi) (Tx Xi and Rx Yj) is linked with the conditional
probabilities P (Yj|Xi) by Bayes’ rule:

P (Yj,Xi) = P (Xi) · P (Yj|Xi) = P (Yj) · P (Xi|Yj)

= P (Xi, Yj)
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Binary Symmetric Channel – Example

• Consider a BSC:
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P (X =′ 0′) = 0.3

P (X =′ 1′) = 0.7

0
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TX RX

1 − pe = 0.98

1 − pe = 0.98

pe = 0.02

pe = 0.02

• This has a non-equiprobable source with P (X =′ 1′) = 0.7 and P (X =′ 0′) = 0.3:
on average, 70% of transmitted bits are ’1’ and 30% are ’0’

• Channel’s error probability pe = 0.02: on average, bit error rate is 2%
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Binary Symmetric Channel – Example (continue)

• Probability of correct reception: Pcorrect = P (Y =′ 1′, X =′ 1′) + P (Y =′ 0′, X =′ 0′) =

0.98, as

P (Y =′ 1′, X =′ 1′) = P (X =′ 1′) · P (Y =′ 1′|X =′ 1′) = 0.7 · 0.98 = 0.686

P (Y =′ 0′, X =′ 0′) = P (X =′ 0′) · P (Y =′ 0′|X =′ 0′) = 0.3 · 0.98 = 0.294

• Probability of erroneous reception: Perror = P (Y =′ 1′, X =′ 0′) + P (Y =′ 0′, X =′ 1′) =

0.02, as

P (Y =′ 1′, X =′ 0′) = P (X =′ 0′) · P (Y =′ 1′|X =′ 0′) = 0.3 · 0.02 = 0.006

P (Y =′ 0′, X =′ 1′) = P (X =′ 1′) · P (Y =′ 0′|X =′ 1′) = 0.7 · 0.02 = 0.014

• Total probability of receiving a ’1’ (or a ’0’):

P (Y =
′
1
′
) = P (X =

′
1
′
) · P (Y =

′
1
′|X =

′
1
′
) + P (X =

′
0
′
) · P (Y =

′
1
′|X =

′
0
′
)

= 0.7 · 0.98 + 0.3 · 0.02 = 0.692

P (Y =′ 0′) = P (X =′ 0′) · P (Y =′ 0′|X =′ 0′) + P (X =′ 1′) · P (Y =′ 0′|X =′ 1′)

= 0.3 · 0.98 + 0.7 · 0.02 = 0.308
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A Close Look at Channel

• For above (binary symmetric channel) example

P(X  )=0.7 P(Y  )=0.692

P(X  )=0.3 P(Y  )=0.3080

1

0

1

• Something happens in channel to “information”

– How to describe this ?

• Yi and Xj are connected → They have something in common or “mutual”

X

X

i

jP(X  )

P(X  )i

j

Y i
P(Y  |X  )i i

P(Y  |X  )ji

P(Y  )i
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Mutual Information

• Definition of mutual information of Xi and Yj:

I(Xi, Yj) = log2

P (Xi|Yj)

P (Xi)
(bits)

• Perfect, noiseless channel: Yi = Xi, i.e. P (Xi|Yi) = 1 and

I(Xi, Yi) = log2

1

P (Xi)

– This is the information of Xi, hence no information is lost in the channel

• Extremely noisy channel with error probability 0.5 → Yi is independent of Xi,
hence

P (Xi|Yi) =
P (Xi, Yi)

P (Yi)
=

P (Xi) · P (Yi)

P (Yi)

– Therefore I(Xi, Yi) = log2 1 = 0, meaning all information is lost in the channel

• In general, I(Xi) > I(Xi, Yi), some information is lost in the channel
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Mutual Information – Example

• Consider the earlier BSC example:
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P (X0|Y0) = 0.9545

P (X1|Y1) = 0.9913

P (X1|Y0) = 0.0455

P (X0|Y1) = 0.0087

• Here, the mutual information results in:
I(X1, Y1) = 0.502 bits I(X0, Y0) = 1.670 bits

(source info: I(X1) = 0.515 bits I(X0) = 1.737 bits)
(destin info: I(Y1) = 0.531 bits I(Y0) = 1.699 bits)

I(X0, Y1) = −5.113 bits I(X1, Y0) = −3.945 bits

– Destination info contents are more balanced then source info contents
– The negative quantities represent “mis-information”

66



ELEC3203 Digital Coding and Transmission – Overview & Information Theory S Chen

Average Mutual Information

• Based on received symbols Yj given transmitted symbols Xi through a BSC,
average mutual information is defined as:

I(X,Y ) =
∑

i

∑

j

P (Xi, Yj) · I(Xi, Yj)

=
∑

i

∑

j

P (Xi, Yj) · log2

P (Xi|Yj)

P (Xi)
(bits/symbol)

• This gives the average amount of source information acquired per received
symbol by the receiver, and should be distinguished form the average source
information (entropy H(X))

• Note that due to Bayes:

P (Xi|Yj)

P (Xi)
=

P (Xi, Yj)

P (Xi) · P (Yj)
=

P (Yj|Xi)

P (Yj)
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Imperfect Channel: Information Loss

• Consider re-arranging the mutual information between transmitted symbol Xi and
received symbol Yj:

I(Xi, Yj) = log2

P (Xi|Yj)

P (Xi)
= log2

1

P (Xi)
− log2

1

P (Xi|Yj)

= I(Xi) − I(Xi|Yj)

I(Xi, Yj) is the amount of information conveyed to receiver when transmitting
Xi and receiving Yj, I(Xi) is the source information of Xi, and I(Xi|Yj) can be
regarded as the information loss due to the channel

• Therefore,

I(Xi)
︸ ︷︷ ︸

Source Inf.

− I(Xi, Yj)
︸ ︷︷ ︸

Inf. conveyed to rec.

= I(Xi|Yj)
︸ ︷︷ ︸

Inf. loss

• 0 ≤ I(Xi|Yj) ≤ I(Xi), see for example the previous cases of pe = 0 and pe = 0.5
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Imperfect Channel: Average Mutual Information

• Average mutual information is given by:

I(X, Y ) =
X

i

X

j

P (Xi, Yj) · log2

P (Xi|Yj)

P (Xi)
(bits/symbol)

– But this average conveyed information

I(X, Y ) =
X

i

X

j

P (Xi, Yj) · log2

1

P (Xi)
−
X

i

X

j

P (Xi, Yj) · log2

1

P (Xi|Yj)

=
X

i

0

@

X

j

P (Xi, Yj)

1

A · log2

1

P (Xi)
−
X

j

P (Yj) ·
 

X

i

P (Xi|Yj) · log2

1

P (Xi|Yj)

!

=
X

i

P (Xi) · log2

1

P (Xi)
−
X

j

P (Yj) · I(X|Yj) = H(X) − H(X|Y )

I(X, Y )
| {z }

av. converyed information

= H(X)
| {z }

av. source information

− H(X|Y )
| {z }

av. information lost

• A similar re-arrangement leads to:

I(X, Y )
| {z }

av. converyed information

= H(Y )
| {z }

destination entropy

− H(Y |X)
| {z }

error entropy
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Summary

• General consideration for transferring information across channels

– Channel characteristics or channel model
– Binary symmetric channel → assumptions

• Mutual information between channel input X(k) ∈ {Xi} and channel output
Y (k) ∈ {Yi} characterises how information is transferring across channel

– Average mutual information I(X,Y )

I(X,Y )
︸ ︷︷ ︸

av. conveyed information

= H(X)
︸ ︷︷ ︸

source entropy

− H(X |Y )
︸ ︷︷ ︸

av. information lost

I(X,Y )
︸ ︷︷ ︸

av. conveyed information

= H(Y )
︸ ︷︷ ︸

destination entropy

− H(Y |X)
︸ ︷︷ ︸

error entropy
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