ELEC3203 Digital Coding and Transmission — Overview & Information Theory S Chen

Revision of Lecture 5

e Information transferring across channels

— Channel characteristics and binary symmetric channel
— Average mutual information

e Average mutual information tells us what happens to information transmitted across
channel, or it “characterises’ channel

— But average mutual information is a bit too mathematical (too abstract)
— As an engineer, one would rather characterises channel by its physical quantities,
such as bandwidth, signal power and noise power or SNR

e Also intuitively given source with information rate R, one would like to know if
channel is capable of “carrying” the amount of information transferred across it

— In other word, what is the channel capacity?
— This lecture answers this fundamental question
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A Closer Look at Channel

e Schematic of communication system

MODEM
part
X(K) Y(k) .
sourcel——» BN . »| Sink
(X} (1) y(®) {vi)

Analogue channel
continuous-time

}4— discrete—time channel —»{

— Depending which part of system: discrete-time and continuous-time channels
— We will start with discrete-time channel then continuous-time channel

e Source has information rate, we would like to know “capacity” of channel

— Moreover, we would like to know under what condition, we can achieve error-free
transferring information across channel, i.e. no information loss
— According to Shannon: information rate < capacity — error-free transfer
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Review of Channel Assumptions

e No amplitude or phase distortion by the channel, and the only disturbance is due
to additive white Gaussian noise (AWGN), i.e. ideal channel

— In the simplest case, this can be modelled by a binary symmetric channel (BSC)

e The channel error probability p, of the BSC depends on the noise power Np relative
to the signal power Sp, i.e. SNR= Sp/Np

— Hence p. could be made arbitrarily small by increasing the signal power
— The channel noise power can be shown to be Np = NyB, where Ny/2 is power
spectral density of the noise and B the channel bandwidth

AWGN PSD AWGN power
A N, /2 A

> f > f
B

e Our aim is to determine the channel capacity C', the maximum possible error-free
information transmission rate across the channel
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Channel Capacity for Discrete Channels

e Shannon's channel capacity C' is based on the average mutual information (average
conveyed information across the channel), and one possible definition is

C = max{I(X,Y)} = max{H(Y) — H(Y|X)}  (bits/symbol)

where H(Y) is the average information per symbol at channel output or destination
entropy, and H(Y | X)) error entropy

o Let t; be the symbol duration for X, and ¢,, be the average time for transmission
of a symbol, the channel capacity can also be defined as

C' =max{I(X,Y)/tar} (bits/second)

e (' becomes maximum if H(Y |X) = 0 (no errors) and the symbols are equiprobable
(assuming constant symbol durations t;)

e Channel capacity can be expressed in either (bits/symbol) or (bits/second)
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Channel Capacity: Noise-Free Case

e In noise free case, error entropy H(Y|X)=0and I(X,Y)=H(Y) = H(X)

— But the entropy of the source is given by:
q

H(X)=— Z P(X;)log, P(X;)  (bits/symbol)

— Let t; be symbol duration for X;; average time for transmission of a symbol is
tay = Z P(X;) - t; (second /symbol)

— By definition, the channel capacity is C' = max{H (X)/t,,} (bits/second)

e Assuming constant symbol durations t; = T, the maximum or the capacity is
obtained for memoryless g-ary source with equiprobable symbols

C' =log, q/Ts

— This is the maximum achievable information transmission rate
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Channel Capacity for BSC

e BSC with equiprobable source symbols P(Xy) = P(X;) = 0.5 and variable channel error
probability p. (due to symmetry of BSC, P(Yy) = P(Y1) = 0.5)

e The channel capacity C' (in bits/symbol) is given as

C =1+ (1 — pe) 1Og2(1 - pe) + pe log, pe

08F
0.6F
04F -

02

If po = 0.5 (worst case), C' = 0; and if p = 0 (best case), C' =1
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Channel Capacity for BSC (Derivation)

P(Yy|Xo) =1 — p.

P(Xo) =35 X oY, P(Yo) = 3
P(Yo|X1) = pe
P(Y1]|Xo) = pe

P(X)) =35 X oY; P(Yy) =3

P(Y1]X1) =1 —p.
P(Xo, Yo) = P(Xo)P(Yo|Xo) = (1 = pe)/2, P(Xo,Y1) = P(Xo)P(Y1|Xo) = pe/2

P(Xl,Yo) = p€/2, P(Xl,yl) = (]. _pe)/2

I(X,Y) = P(Xo,Yp)log, Pgogo) + P(Xo, Y1) log, — S?g())
P(Yo| X1) P(Y1|X,)

+P(X1,Y)) log, + P(X1,Y1)log,

P(Yp) P(Y1)

1 1 1 1
= 5 (1 = pe) logy 2(1 — pe) + S pe logy 2pe + Spelogy 2pe + (1 — pe) logy 2(1 — pe)
=14+ (1 — pe)logy(1 — pe) + pe log, pe  (bits/symbol)

Pung Electronics and :"é?:;'gmpton
H H Computer Science
| T

7



ELEC3203 Digital Coding and Transmission — Overview & Information Theory S Chen

Channel Capacity and Channel Coding

e Shannon’s theorem: If information rate R < C, there exists a coding technique
such that information can be transmitted over the channel with arbitrarily small
error probability; if R > C, error-free transmission is impossible

— (' is the maximum possible error-free information transmission rate

— Even in noisy channel, there is no obstruction of reliable transmission, but only
a limitation of the rate at which transmission can take place

— Shannon’s theorem does not tell how to construct such a capacity-approaching
code

e Most practical channel coding schemes are far from optimal, but capacity-
approaching codes exist, e.g. turbo codes and low-density parity check codes

e Practical communication systems are far from near capacity, but recently near-
capacity techniques have been developed — iterative turbo detection-decoding
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Entropy of Analogue Source

e Entropy of a continuous-valued (analogue) source, where the source output x is
described by the PDF p(x), is defined by

+o0
H(z) = - / p(x) logy p(z)da

— o0

e According to Shannon, this entropy attends the maximum for Gaussian PDFs p(x)
(equivalent to equiprobable symbols in the discrete case)

e Gaussian PDF with zero mean and variance o2:

1
p(z) = \/Q—T%

e The maximum entropy can be shown to be

o—(@%/207)

1
Hpax () = logy V2meo, = 5 log, 2meo?
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Gaussian Channel

E
channel\

source ={ Sink

e Signal with Gaussian PDF attains maximum entropy, thus we consider Gaussian channel

e Channel output y is linked to channel input x by

Yy =x+ €

— Channel AWGN ¢ is independent of channel input x, having noise power Np = ag
— Assume Gaussian channel, i.e. channel input = has a Gaussian PDF, having signal power
Sp = 0'2

x

— Basic linear system theory: Gaussian signal operated by linear operator remains Gaussian

e Channel output signal y is also Gaussian, i.e. having a Gaussian PDF with power 05

05=Sp—|—Np:0i—|—0§
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Capacity for Continuous Channels

e Thus channel output y has a Gaussian PDF

_ 1 — (y2/202)
p(y) T \/%O'ye Y

e with power o7 = Sp + Np, and entropy of y attains maximum value

1
Huax(y) = 5 log, 2me(Sp + Np)

e Since I(z,y) = H(y) — H(y|z), and H(y|zr) = H(e) with € being AWGN

H(y|zr) = =log, 2meNp

e Therefore, the average mutual information

I(z,y) = %log2 (1 + %) [bits/symbol]
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Shannon-Hartley Law

e With a sampling rate of fy = 2 - B, the Gaussian channel capacity is given by

Sp

C=fs-I(x,y) =B -log, (1 + —) (bits/second)
Np

where B is the signal bandwidth

— For digital communications, signal bandwidth B (Hz) is channel bandwidth

— Sampling rate f; is the symbol rate (symbols/second)

— Channel noise power is Np = Ny - B, where Ny is the power spectral density of
the channel AWGN

e Two basic resources of communication: bandwidth and signal power
— Increasing the SNR ff—P increases the channel capacity

— Increasing the channel bandwidth B increases the channel capacity

e Gaussian channel capacity is often a good approximation for practical digital
communication channels
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Bandwidth and SNR Trade off

e From the definition of channel capacity, we can trade the channel bandwidth B for
the SNR or signal power Sp, and vice versa

— Depending on whether B or Sp is more precious, we can increase one and reduce
the other, and yet maintain the same channel capacity
— A noiseless analogue channel (Sp/Np = 00) has an infinite capacity

e (' increases as B increases, but it does not go to infinity as B — oo; rather C
approaches an upper limit

Sp Sp Sp NoB/Sp
C = Blog, 1 OP
Og?( + NOB) N, Og?( + NOB)

Recall that ‘ .
lm%(l +o)l/r =
We have o  Sp g
P
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Bandwidth and SNR Trade off — Example

e Q: A channel has an SNR of 15. If the channel bandwidth is reduced by half,
determine the increase in the signal power required to maintain the same channel
capacity

o A:

/

Sp Sp
B-1 B -1
0g2( +NOB> 0g2< +N0B>

4.B:§.10g2 <1_|_ (SP/SP)-SP>

NoB/?2

S/
8 = log, (1 + 30)
Sp

/

S, :
256 = 143022 — S, =859p
Sp
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Summary

e Channel capacity, a fundamental physical quantity, defines maximum rate that
Information can be transfer across channel error-free

— It is based on concept of maximum achievable mutual information between
channel input and output, either defined as [bits/symbol] or [bits/s]

— Channel capacity for discrete channels, e.g. channel capacity for BSC

— Shannon theorem

e Channel capacity for continuous channels

— Continuous-valued signal attains maximum entropy, if its PDF is Gaussian
— Gaussian channel capacity: Shannon-Hartley law

P
Np
where B is channel bandwidth; SNR = ff—i
— Bandwidth and signal power trade off

S .
C = B - log, (1 -+ —) (bits/second)

e Shannon’s information theory provides underlying principles for communication and
information processing systems
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