# **Digital Communication System**

- Purpose: communicate information at required rate between geographically separated locations reliably (quality)

  - Information theory provides guiding principles for everything in communication
- Major components: a pair of transmitter and receiver called transceiver
  - "Horizontal" partition: transmitter, receiver and channel (transmission medium)
  - "Vertical" partition: CODEC, MODEM and channel





S Chen

#### **Recap of Channel Capacity**

• Information theory provides us basic theory for communication system design, including MODEM



– Assuming AWGN channel with Gaussian signal s(t), channel capacity

$$C = B_p \log_2 \left( 1 + \frac{P_s}{N_0} \right) \quad [bps]$$

- Maximum rate could be achieved, i.e. upper limit
- MODEM responsible: transfer the bit stream at required rate over the communication medium reliably
  - Required rate [bps] with required quality ↔ spectral bandwidth and power requirements
- Carrier communication: s(t) is radio frequency signal, because low frequency signal cannot travel far, also spectral resource (channels) are in RF



2

# **Channel Partition**

- Frequency division multiple access: system spectral band is divided into frequency slots
  - A user is assigned with a frequency slot (channel), who can transmit continuously in time, but its signal spectrum must be inside its allocated frequency slot



- Time division multiple access: transmission in time frames, and each frame divided into time slots
  - A user is assigned with a time slot (channel), who can only transmit in time bursts, i.e. in its allocated time slots, and its signal spectrum can occupy whole system spectral band



University

of Southampton

# **Digital Modulation**

- In old day, communications were *analogue*, analogue modulation techniques include
  - amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM)
- Communications today are all *digital*, and equivalent digital modulation forms
  - amplitude shift keying (ASK), frequency shift keying (FSK), and phase shift keying (PSK)
- Carrier signal in digital communication is sin waveform  $A \sin (2\pi f_c t + \theta)$ , specified by amplitude A, frequency  $f_c$ , and phase  $\theta$ 
  - Use amplitude, frequency, or phase of the carrier to "carry" information leads to ASK, FSK, or PSK
  - A large number of digital modulations are in use, and often combinations of these three basic ways are employed
- We will consider quadrature amplitude modulation (QAM), which is a combination of ASK and PSK



#### **Quadrature Amplitude Modulation**



Note: e.g. odd bits go to form  $x_i(k)$  and even bits to form  $x_q(k)$ ;  $x_i(k)$  and  $x_q(k)$  are in-phase and quadrature components of the  $x_i(k) + jx_q(k)$  QAM symbol;  $x_i(k)$  and  $x_q(k)$  are *M*-ary symbols

D/A conversion is not "correct name", should be "transmit filter", part of pulse shaping filter pair



# **Quadrature Amplitude Demodulation**

• At receiver



QAM demodulation

symbol detection

bit recovery

In-phase and quadrature branches are "identical"

University

of Southampton

- many issues, such as design of Tx/Rx filters g(t)/g(-t), carrier recovery, synchronisation, can be studied using one branch



# **Channel Characteristics**

- Between modulator and demodulator is medium (channel)
- **Passband** channel and **baseband** (remove modulator/demodulator) equivalence:



- Baseband channel bandwidth  $B \leftrightarrow$  passband channel bandwidth  $B_p = 2B$ 

- Communication is at passband channel but for analysis and design purpose one can consider equivalent baseband channel
- Channel has **finite** bandwidth, **ideally** phase spectrum is linear and amplitude spectrum is flat:





# **Channel Noise**

- **Bandwidth** is a prime consideration, and another consideration is **noise** level
  - At receiver, power amplifier amplifies weak received signal also introduces noise
  - How serious power amplifier introducing noise is quantified by noise figure of amplifier



- Power is the area under PSD, so a white noise has infinitely large power
- But communication channels are **bandlimited**, so noise is also bandlimited and has a finite power
  - Noise n(t) introduced by power amplifier passes through Rx filter who has a bandwidth of B
  - Thus noise at the receive signal,  $n_B(t)$ , has a power of  $N_0 \cdot B$





 $\xrightarrow{N_0/2} f$ 

# Pulse Shaping — Starting Point

- Unless transmission symbol rate  $f_s$  is very low, one cannot use impulse, narrow pulse or rectangular pulse to transmit data symbols
  - Such pulses have very large (infinite) bandwidth, but we only have finite baseband bandwidth B
- Discrete samples have to be **pulse shaped** 
  - $\{x[k]\}$ : transmitted symbols
  - $-\sum \delta(t-kT_s)$ : pulse clock (every  $T_s$  s a symbol is transmitted)
  - r(t): combined impulse response of Tx/Rx filters, and channel

$$r(t) = g(-t) \star c(t) \star g(t) \text{ or } R(f) = G_R(f) \cdot C(f) \cdot R_T(f)$$

- Baseband (received) signal, assuming no noise

$$\begin{aligned} x(t) &= r(t) \star \left( \sum x[k] \delta(t - kT_s) \right) = \int \sum r(t - \tau) \cdot x[k] \delta(\tau - kT_s) \, d\tau \\ &= \sum_{k = -\infty}^{+\infty} x[k] \cdot r(t - kT_s) \end{aligned}$$

- What are the requirements for r(t)? or how should we choose this combined impulse response r(t)so that we can retrieve the original data sample x[k] from x(t)?
- To transmit at symbol rate  $f_s$  needs certain bandwidth  $B_T$  and  $B_T$  depends on which pulse shaping used — does the channel bandwidth B enough to accommodate signal bandwidth  $B_T$ ?



#### Pulse Shaping — Time Domain



• 1. square: last one  $T_s$ ; 2. sinc: assume  $t \to \pm \infty$ ; and 3. raised cosine: truncate to 8  $T_s$ s

- Time support of square is one  $T_s$ , looks suitable for continuously sending  $\{x[k]\}$  at  $t = kT_s$  or is it?
- Time supports of sinc and truncated raised cosine last many  $T_s$ , how could we send continuously  $\{x[k]\}$  at  $t = kT_s$ ? Mixed up!
- All these filters have regular zero-crossing at symbol-rate spacing except t = 0 (Nyquist system)





- Remember channel bandwidth B is finite, and signal bandwidth  $B_T$  must fit in it
  - square pulse produces considerable large excess bandwidth well beyond symbol rate  $f_s$
  - sinc pulse has exactly finite bandwidth of  $f_s/2$ , but impractical to realize
  - truncated raised cosine has main bandwidth within  $f_s$ , and easy to realize

# **Right Pulse Shaping**

- Recall we are discussing how to choose r(t) so that we can recover  $\{x[k]\}$  from x(t)
- Example binary (±1) {x[k]}, each is transmitted as a sinc pulse: the peak of different shifted sinc functions (different x[k]) coincide with zero crossings of all other sincs (other data symbols)



- At receiver, sampling at correct symbol rate enables recovery of transmitted x[k]!
- Right pulse shaping seems: combined impulse response r(t) has regular zero-crossing at symbol-rate spacing except it peaks at t = 0, a Nyquist filter



#### **Transmit and Receive Filters**

- Pulse shaping fulfils two purposes
  - limit the transmission bandwidth  $B_T$  so it fits in channel bandwidth B, and
  - enable to recover the correct sample values of transmitted symbols
- Such a pulse shaping  $r(t) = g(-t) \star c(t) \star g(t)$  is called a Nyquist system
  - 1. (Infinite) sinc has a (baseband) bandwidth  $B_T = f_s/2$ , (infinite) raised cosine has  $f_s/2 \le B_T \le f_s$  depending on roll-off factor
  - 2. A Nyquist time pulse have regular zero-crossing at symbol-rate spacings to avoid interference with neighbouring pulses at correct sampling instances
- Assuming ideal channel c(t), Nyquist system r(t) is separated into transmit filter g(t) and receive filter g(-t)
  - 1. The filter g(-t) in the receiver is also called a matched Filter (to g(t)); g(t) and g(-t) are basically identical (square-root of r(t))
  - 2. This division of r(t) enables suppression of out-of-band noise and results in the maximum received signal-to-noise ratio (SNR)



### Summary

- Revisit major blocks of a digital communication system
  - "Horizontal" partition: transmitter and receiver (transceiver), and channel
  - "Vertical" partition: CODEC, MODEM, and channel
- MODEM: responsible for transferring the bit stream at required rate rate over the communication medium reliably
  - Required rate [bps] with required quality ↔ spectral bandwidth and power requirements, as highlighted by channel capacity
  - Transmission channel (medium) has finite bandwidth and introduces noise, two factors that have to be considered in design
- Purpose of pulse shaping, how to design transmit and receive filters
  - limit the transmission bandwidth so it can fit in channel bandwidth
  - enable to recover the correct sample values of transmitted symbols