Revision of Lecture 1

- Major blocks of digital communication system
 - transmitter and receiver (transceiver), and channel
 - CODEC, MODEM, channel
- MODEM responsible for transmission at required rate rate over channel reliably
 - Required rate with required quality
 ⇔ bandwidth and power requirements
- Channel has finite bandwidth and introduces noise: two main factors to consider in design
- Pulse shaping
 - 1. ensures transmitted signal has finite bandwidth, and
 - 2. enables correct recovering of transmitted data symbols

MODEM components

pulse shaping Tx/Rx filter pair

modulator/demodulator

bits $\overset{map}{\leftrightarrow}$ symbols

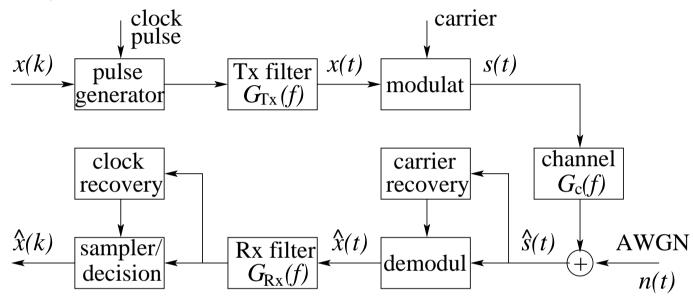
equalisation (distorting channel)

bit error rate and other issues

Since pulse shaping is so fundamental to digital communication, this lecture we will again go through pulse shaping and Tx/Rx filter pair, but in more depth with both theoretical and practical considerations

Baseband System

• Redraw I or Q branch in details:



Assuming a perfect demodulation, we can consider the baseband system:

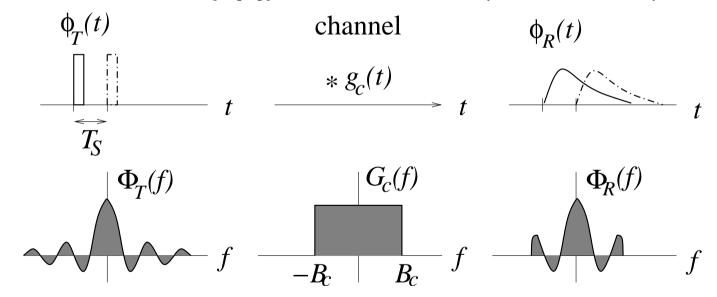
 $G_c(f)$ is equivalent baseband channel

$$x(k) \, \delta(t-kT_S) = G_{\Gamma_X}(f)G_{C}(f)G_{R_X}(f) \qquad y(t)$$

ullet Pulse shaping is about combined response $r(t) = g(-t) \star c(t) \star g(t)$ or R(f)

Pulse Shaping — Finite-Time Pulses

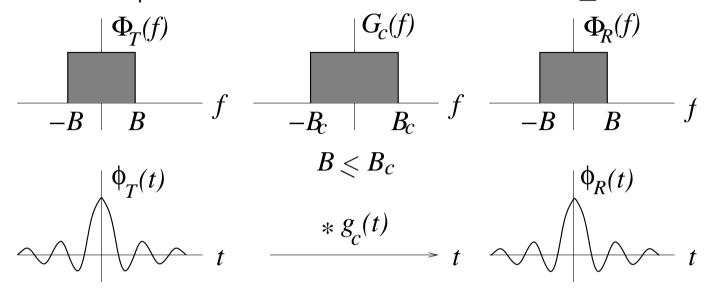
- ullet Narrow-width or rectangular pulses with time support \leq symbol period T_s
 - At $t=kT_s$, we transmit x[k], and $\{x[k]\}$ in $\sum x[k]\Phi_T(t-kT_s)$ will not overlap, right? But $\{x[k]\}$ in $x(t)=\sum x[k]\Phi_R(t-kT_s)$ will overlap!
- Why we cannot transmit $\{x[k]\}$ as narrow-width (or rectangular) pulses:



- Channel has finite bandwidth, and the bandwidth of a narrow pulse is not finite
- The pulses will spread out as their high-frequency components are suppressed, causing interference with neighbouring pulses (symbols) in time

Pulse Shaping — Finite-Bandwidth Pulses

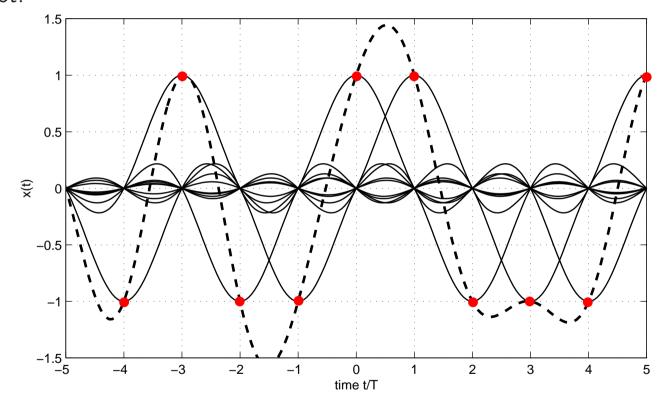
• I know! transmitted pulses should have a finite bandwidth \leq channel bandwidth:



- Then a pulse (symbol) will be passed through channel without distortion
- But **finite bandwidth means infinite time waveform**, and this would cause interference in time domain with neighbouring pulses
 - $\{x[k]\}$ in $x(t)=\sum x[k]\Phi_R(t-kT_s)$ will overlap, as each $x[k]\Phi_R(t-kT_s)$ lasts infinitely long in time
 - It seems no way out, or is it?

Pulse Shaping — Right Pulses

- Finite-bandwidth pulses are **actually** the **right** ones for transmitting $\{x[k]\}$
 - But how you avoid infinite long pulses interfere with each other in time?
 - You cannot!



- All we want is to recover transmitted symbols $\{x[k]\}$ from $x(t) = \sum x[k]\Phi_R(t-kT_s)$
 - Pulse waveform $\Phi_R(t)$ has regular **zero-crossing** at symbol-rate spacings except at t=0
 - Interference from other pulses at $t = kT_s$ are all zero! i.e. $x(t = kT_s) = x[k]\Phi_R(0)!$

InterSymbol Interference (ISI)

- ullet Let a symbol x[k] be transmitted as $x[k]\phi_T(t-kT_s)$ with T_s the symbol period
- ullet Assume that the Tx pulse $\phi_T(t)$ peaks at t=0 with $\phi_T(0)=1$, and it has zero-crossing symbol-rate spacings, i.e. it is a **Nyquist** filter
- The transmitter output waveform is:

$$x(t) = \sum_{k=-\infty}^{\infty} x[k]\phi_T(t - kT_s)$$

- Assume that the Tx pulse $\phi_T(t)$ arrives at the receiver as $\phi_R(t-t_d)$, where the Rx pulse $\phi_R(t)$ peaks at t=0 with $\phi_R(0)=1$, and it is also a **Nyquist** filter
- The receiver output waveform is:

$$y(t) = \sum_{k=-\infty}^{\infty} x[k]\phi_R(t - kT_s - t_d) + n_o(t)$$

- Clearly, all transmitted symbols $\{x[k]\}$ in y(t) are mixed up — ISI

Achieving Zero ISI

• The sampled receiver output at correct sampling instance $t_k = kT_s + t_d$ is:

$$y(t_k) = x[k] + \sum_{m \neq k} x[m]\phi_R((k-m)T_s) + n_o(t_k)$$

- First term: correct symbol, second term: ISI, third term: due to channel noise
- In order to eliminate ISI, the received pulse should satisfy:

$$\phi_R(kT_s) = \begin{cases} 1, & \text{for } k = 0 \\ 0, & \text{for } k \neq 0 \end{cases}$$

• That is, $\phi_R(t)$ has zero-crossing at symbol-rate spacings, leading to:

$$y(t_k) = x[k] + n_o(t_k)$$

• Pulse shaping: achieve a desired finite transmission bandwidth and eliminate ISI

Nyquist Criterion for Zero ISI

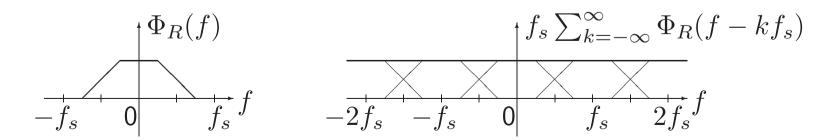
• Recall symbol rate f_s and symbol period T_s ; if $\Phi_R(f) = \mathcal{F}[\phi_R(t)]$ satisfies:

$$\sum_{k=-\infty}^{\infty} \Phi_R(f-kf_s) = ext{constant} \quad ext{for} \quad |f| \leq f_s/2$$

then in time domain, the pulse waveform meets:

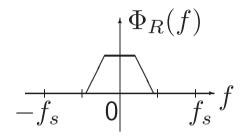
$$\phi_R(kT_s) = \begin{cases} 1, & \text{for } k = 0 \\ 0, & \text{for } k \neq 0 \end{cases}$$

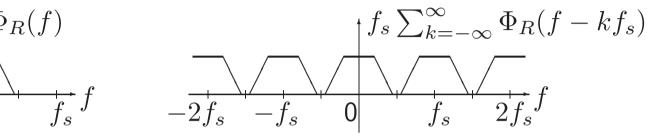
- Filter (system) generates such a pulse is a Nyquist system
- Illustration of condition for zero ISI, seeing from frequency domain:



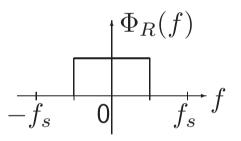
Minimum Transmission Bandwidth

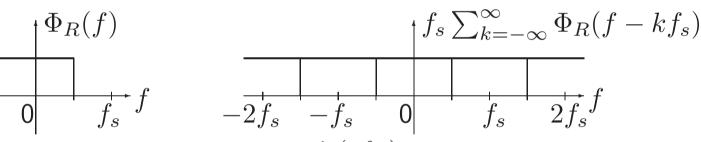
• ISI cannot be removed if the bandwidth of $\Phi_R(f)$ is less than $f_s/2$:





• The minimum required bandwidth of $\Phi_R(f)$ required for zero ISI is $f_s/2$:



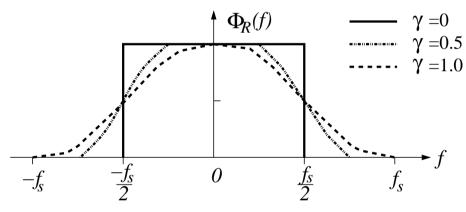


- This is in fact the sinc pulse: $\operatorname{sinc}(f_s t) = \frac{\sin(\pi f_s t)}{\pi f_s t}$, the only Nyquist system with bandwidth $f_s/2$
- From channel capacity: require rate, quality ← bandwidth, power requirements
 - To transmit at symbol rate f_s , required transmission bandwidth must $B_T \geq f_s/2$

Raised Cosine Nyquist System

ullet The required baseband bandwidth: $f_s/2 \leq B \leq f_s$, and the spectrum:

$$\Phi_{R}(f) = \begin{cases}
1 & |f| \le \frac{f_{s}}{2} - \beta \\
\cos^{2}\left(\frac{\pi}{4\beta}|f| - \frac{f_{s}}{2} + \beta\right) & \frac{f_{s}}{2} - \beta < |f| \le \frac{f_{s}}{2} + \beta \\
0 & |f| > \frac{f_{s}}{2} + \beta
\end{cases}$$



• β : the extra bandwidth over the minimum $f_s/2$, and roll-off factor γ :

$$\gamma = \frac{\beta}{f_s/2} = \frac{B - f_s/2}{f_s/2}$$
 or $B = \frac{f_s}{2}(1 + \gamma)$

- Raised cosine pulse is widely used pulse shaping, its time waveform of course satisfies
 - Regular **zero-crossing** at symbol rate spacing, i.e. $\phi_R(kT_s) = 0 \ \forall k \neq 0$
 - Its time waveform $\phi_R(t)$ decays from peak at t=0 much faster than sinc pulse

Effect of Sampling Error

- It is clearly the ability of recovering transmitted symbols $\{x[k]\}$ all depends on sampling the received signal y(t) at correct sampling instance
 - Sampling correctly at $t_k=kT_s+t_d$ leads to (omit noise and use $\phi_R(0)=1$)

$$y(t_k) = x[k] + \sum_{m \neq k} x[m]\phi_R((k-m)T_s) = x[k]$$

– In practice, small sampling error δt unavoidable, and sampling at $t_k = kT_s + t_d + \delta t$ leads to

$$y(t_k) = x[k]\phi_R(\delta t) + \sum_{m \neq k} x[m]\phi_R((k-m)T_s + \delta t) \neq x[k]\phi_R(\delta t)$$

– Two neighbouring symbols x[k-1] and x[k+1] cause the biggest ISI to x[k]

$$y(t_k) = \cdots + x[k-1]\phi_R(T_s + \delta t) + x[k]\phi_R(\delta t) + x[k+1]\phi_R(-T_s + \delta t) + \cdots$$

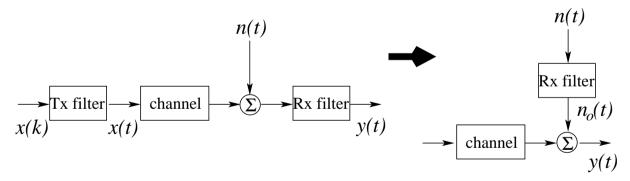
- sinc pulse decays from peak at t=0 at rate of $\frac{1}{t}$
 - Biggest ISI term due to small sampling error δt has magnitude of around $\frac{1}{T_S}$
- ullet Raised cosine pulse with roll-off fact $\gamma=1$ decays from peak at t=0 at rate of $rac{1}{t^3}$
 - Biggest ISI term due to small sampling error δt has magnitude of around $\frac{1}{T_s^3}$
- Raised cosine pulse costs more bandwidth but is less sensitive to sampling error and more practical

Optimal Transmit and Receive Filters

• **Task 1.** Combined Tx/Rx filters provide desired spectrum shape:

$$R(f) = G_{Tx}(f)G_c(f)G_{Rx}(f) = \Phi_R(f)$$

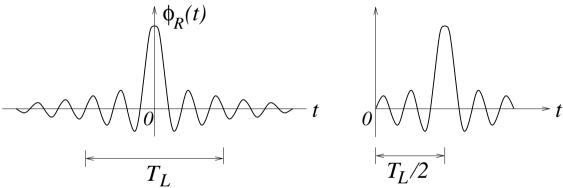
- Assume the (baseband) channel bandwidth $B_c \geq B$, then $G_c(f)=1$ and $R(f)=G_{Tx}(f)G_{Rx}(f)=\Phi_R(f)$, the required spectrum shape
- Hence name 'pulse shaping' for transmit and receive filter pair g(t) and g(-t)
- Task 2. Maximise the receiver output signal to noise ratio (SNR); note:



- This leads to $G_{Tx}(f)=G_{Rx}(f)$, that is, identical as a square-root of Nyquist system $\Phi_R(f)$
- Hence Rx filter g(-t) matches Tx filter g(t), this is, g(-t) is 'mirror' of g(t)

Practical Implementation

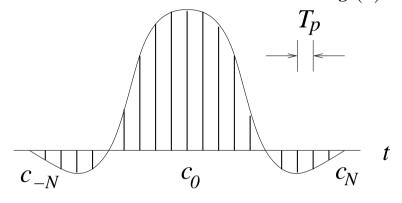
- A true Nyquist system (e.g. raised cosine) has absolute finite bandwidth but the corresponding time waveform is non-causal and lasts infinite long
 - Pulse shaping filters to realize such a true Nyquist system cannot be constructed physically
- A practical way: truncate the pulse to a finite but sufficient length and delay the truncated pulse as shown:



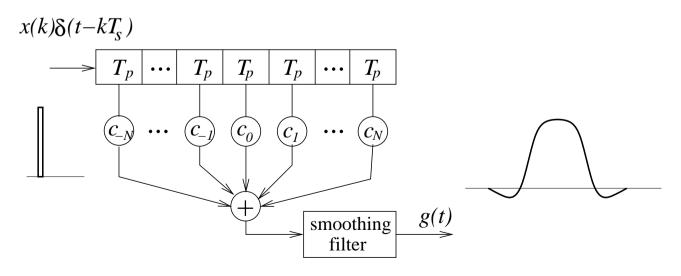
- (a) truncate the pulse to length T_L
- (b) delay the truncated pulse
- The bandwidth of the truncated pulse is no longer finite (e.g. the truncated raised cosine pulse in slide ${f 10}$)
- but if the pulse is selected to decaying rapidly the resulting ISI can be made sufficiently small

Tx / Rx filters Realization

• Sampled values are obtained from the waveform of g(t):



• FIR or transversal filter is used to realize the required Tx / Rx filters:



Summary

- Design of transmit and receiver filters (pulse shaping): to achieve zero ISI and to maximise the received signal to noise ratio
- The combined Tx / Rx filters should form a Nyquist system (regular zero-crossings at symbol-rate spacings except at t=0), and Rx filter should be identical (matched) to Tx filter as a square-root Nyquist system
- Nyquist criterion for zero ISI, to transmit at symbol rate f_s requires at least a baseband bandwidth of $f_s/2$;
- The raised cosine pulse, roll-off factor, and the required baseband transmission bandwidth:

$$B = \frac{f_s}{2}(1+\gamma)$$

(passband bandwidth is doubled)

Practical considerations for implementing pulse shaping filters

