Revision of Lecture 2

- Pulse shaping Tx/Rx filter pair
 - Design of Tx/Rx filters (pulse shaping): to achieve zero ISI and to maximise received signal to noise ratio
 - Combined Tx/Rx filters: Nyquist system (regular zero-crossings at symbol-rate spacings except at t = 0), and Rx filter matched (identical) to Tx filter
 - Nyquist criterion for zero ISI; to transmit at symbol rate f_s requires at least a baseband bandwidth of $f_s/2$
 - Raised cosine pulse, roll-off factor, and required baseband transmission bandwidth $B=\frac{f_s}{2}(1+\gamma)$

MODEM components

pulse shaping Tx/Rx filter pair

modulator/demodulator

bits $\stackrel{map}{\leftrightarrow}$ symbols

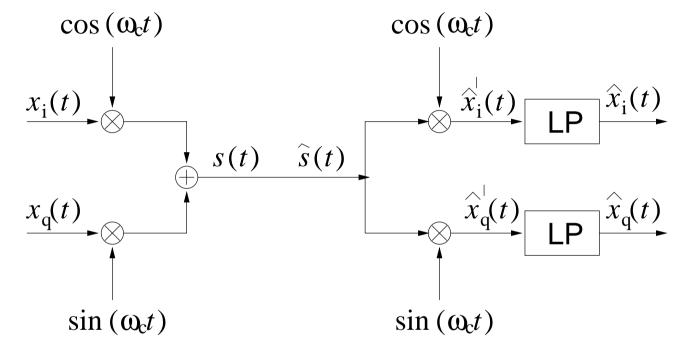
equalisation (distorting channel)

bit error rate and other issues

This lecture: **modulator/demodulator** and system design issues, such as carrier recovery and timing recovery

S Chen

• Recall modulator and demodulator of the QAM scheme (slides **5** and **6**):



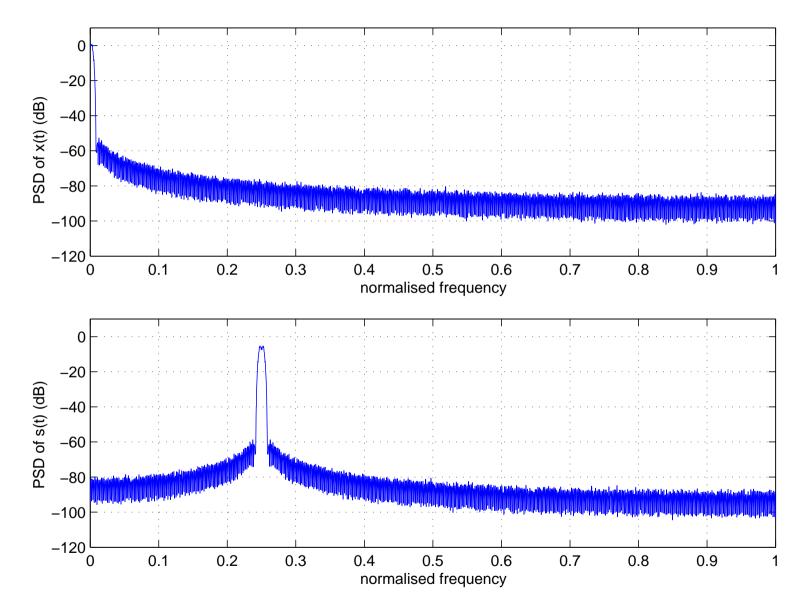
- Carrier modulation at transmitter: low-frequency or baseband analogue signals $x_i(t)$ and $x_q(t)$ are modulated by two carriers
- Carrier demodulation at receiver: two transmitted baseband signals are demodulated or obtained from received carrier signal
 - Inphase and quadrature carriers are orthogonal, and they can be separated at receiver
 - Inphase or quadrature rate is half of original transmission rate, meaning half of bandwidth

QAM — Modulation

- Modulation of "in-phase" and "quadrature" components to carrier frequency ω_c : $x_1(t) = x_i(t) \cdot \cos(\omega_c t)$ $x_2(t) = x_q(t) \cdot \sin(\omega_c t)$
- In-phase and quadrature signals are mixed and transmitted as $s(t) = x_1(t) + x_2(t)$
- To explain demodulation, we assume perfect transmission $\hat{s}(t) = s(t)$
- Real carriers are in hundreds of MHz or in GHz
 - In next slide we have a baseband transmission bandwidth 10 kHz and carrier $f_c=250$ kHz, normalised by 1 MHz in plots
 - Thus, carrier $f_c = 250$ kHz equals to normalised frequency 0.25, and a bandwidth of 10 KHz is equal to a width of 0.01 in normalised frequency

You may like to pause and think: digital communications is about — make analogue signal digital \rightarrow back to analogue for transmission \rightarrow digital again \rightarrow restore to original analogue signal

Why go such a length? or what are the advantages of digital communications as opposed to the original analogue communications?



S Chen

QAM — Demodulation

• **Demodulation** for the in-phase component:

$$\hat{x}_{i}'(t) = s(t) \cdot \cos(\omega_{c}t) = (x_{i}(t) \cdot \cos(\omega_{c}t) + x_{q}(t) \cdot \sin(\omega_{c}t)) \cdot \cos(\omega_{c}t)$$
$$= x_{i}(t) \cdot \cos^{2}(\omega_{c}t) + x_{q}(t) \cdot \sin(\omega_{c}t) \cos(\omega_{c}t)$$
$$= x_{i}(t) \cdot \frac{1}{2} \cdot \left(1 + \cos(2\omega_{c}t)\right) + x_{q}(t) \cdot \frac{1}{2} \cdot \sin(2\omega_{c}t)$$

- If lowpass filter LP in slide **31** is selected appropriately (cut-off frequency $\leq \omega_c$), the components modulated at frequency $2\omega_c$ can be filtered out, and hence:

$$\hat{x}_{i}(t) = \mathsf{LP}\big(\hat{x}'_{i}(t)\big) = \frac{1}{2}x_{i}(t)$$

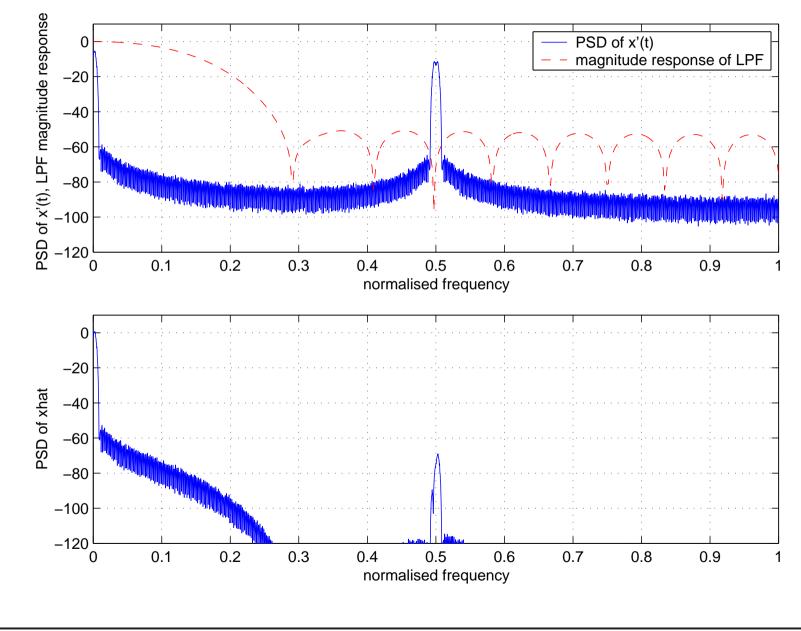
• A similar calculation can be performed for the demodulation of $\hat{x}_{q}(t)$:

$$\hat{x}_{\mathbf{q}}'(t) = \dots = x_{\mathbf{i}}(t) \cdot \frac{1}{2} \cdot \sin(2\omega_c t) + x_{\mathbf{q}}(t) \cdot \frac{1}{2} \cdot \left(1 - \cos(2\omega_c t)\right)$$

– and hence $\hat{x}_{q}(t) = LP(\hat{x}'_{q}(t)) = \frac{1}{2}x_{q}(t)$

34

I or Q Branch Demodulation Example



Complex Notation Representation

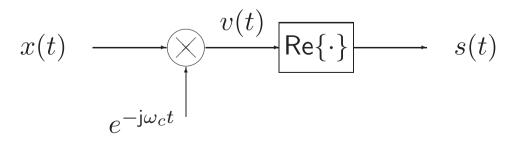
- The modulation/demodulation scheme is often expressed in complex notation
 - in-phase and quadrature components are considered to be real and imaginary parts of the complex signal, in which $j = \sqrt{-1}$ represents imaginary axis

$$x(t) = x_{i}(t) + j \cdot x_{q}(t)$$

- Carrier modulation is viewed as modulating a complex carrier $e^{-j\omega_c t}$ by x(t), where angular frequency $\omega_c = 2\pi f_c$
 - The transmitted signal is obtained by taking the real part of modulated carrier $x(t)e^{-\mathrm{j}\omega_c t}$ $s(t)=\mathrm{Re}\{x(t)\cdot e^{-\mathrm{j}\omega_c t}\}$
- Flow graph of modulator in complex notation

University

of Southampton



36

Modulation — Complex Notation

• Modulation:

$$v(t) = e^{-j\omega_{c}t} \cdot x(t)$$

$$= \left(\cos(\omega_{c}t) - j\sin(\omega_{c}t)\right) \cdot \left(x_{i}(t) + j \cdot x_{q}(t)\right)$$

$$= \underbrace{x_{i}(t) \cdot \cos(\omega_{c}t) + x_{q}(t) \cdot \sin(\omega_{c}t)}_{\text{real}} - \underbrace{jx_{i}(t) \cdot \sin(\omega_{c}t) + jx_{q}(t) \cdot \cos(\omega_{c}t)}_{\text{imaginary}}$$

• Transmitted signal:

$$s(t) = \mathsf{Re}\{v(t)\} = x_{i}(t) \cdot \cos(\omega_{c}t) + x_{q}(t) \cdot \sin(\omega_{c}t)$$

- This is identical to the signal s(t) on slide **32**
- In real world, signals are always real-valued
 - Theoretical analysis and design are often easier and more insights can be gained by adopting complex representations

Demodulation — **Complex Notation**

• Flow graph for the complex representation of the demodulation scheme:

$$\hat{s}(t) \xrightarrow{\hat{x}'(t)} \xrightarrow{\text{LP}} \hat{x}(t)$$

$$s(t) = e^{j\omega_c t}$$

• The demodulated signal: $\hat{x}'(t) = e^{\mathsf{j}\omega_c t} \cdot s(t)$, yielding

$$\hat{x}'(t) = (\cos(\omega_c t) + j\sin(\omega_c t)) \cdot (x_i(t) \cdot \cos(\omega_c t) + x_q(t) \cdot \sin(\omega_c t))$$
$$= x_i(t) \cdot \frac{1}{2} (1 + \cos(2\omega_c t) + j\sin(2\omega_c t)) + jx_q(t) \cdot \frac{1}{2} (1 - \cos(2\omega_c t) - j\sin(2\omega_c t))$$

• Lowpass filter (LP) will again remove components modulated at $2\omega_c$

$$\mathsf{LP}[\hat{x}'(t)] = \frac{1}{2}x_{i}(t) + \mathsf{j}\frac{1}{2}x_{q}(t)$$

which is equivalent to slide $\mathbf{34}$

University

of Southampton

Carrier Recovery — Phase Offset

- Previously, we assume $\hat{s}(t) = x_i(t) \cdot \cos(\omega_c t) + x_q(t) \cdot \sin(\omega_c t)$, and we can use $e^{j\omega_c t} = \cos(\omega_c t) + j\sin(\omega_c t)$ to remove carrier What we really assume:
 - 1. Received carrier signal is $\hat{s}(t) = x_i(t) \cdot \cos(\omega_c t) + x_q(t) \cdot \sin(\omega_c t)$
 - 2. At receiver we can generate a **local** carrier $\tilde{s}(t) = \cos(\omega_c t) + j\sin(\omega_c t) = e^{j\omega_c t}$
 - 3. Hence we can carry out demodulation by $\hat{s}(t) \cdot \tilde{s}(t) \Rightarrow x_i(t) + jx_q(t) = x(t)$
- Most likely, transmitted signal having travelled to receiver will accumulate a random and unknown phase φ :

$$\hat{s}(t) = x_{i}(t) \cdot \cos(\omega_{c}t + \varphi) + x_{q}(t) \cdot \sin(\omega_{c}t + \varphi)$$

- At receiver we may generate a local carrier

 $\tilde{s}(t) = \cos(\omega_c t + \tilde{\varphi}) + j\sin(\omega_c t + \tilde{\varphi}) = e^{j(\omega_c t + \tilde{\varphi})}$

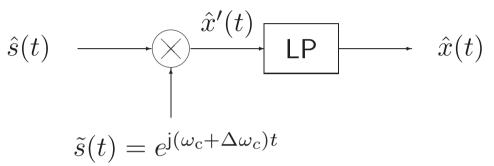
– Demodulation by $\hat{s}(t)\cdot\tilde{s}(t)\Rightarrow x(t)\cdot e^{\mathrm{j}\Delta\varphi}$, where phase offset

$$\Delta arphi = arphi - ilde{arphi}$$

• Unless local carrier $\tilde{s}(t)$ happens to have same phase as incoming carrier signal $\hat{s}(t)$, i.e. phase offset $\Delta \varphi = 0$, you cannot recover x(t)!

Carrier Recovery — Frequency Offset

• Tx and Rx frequency generators are unlikely to match exactly, and consider demodulation with a Rx local "carrier" having a **frequency offset** $\Delta \omega_c$:



- Even assuming $\hat{s}(t) = s(t)$, demodulated signal prior to sampling is $\hat{x}(t) = x(t) \cdot e^{j\Delta\omega_c t}$, not $\hat{x}(t) = x(t)!$
- The effect of carrier frequency mismatch $\Delta \omega_c t$, like the **phase offset** $\Delta \varphi$, has to be compensated at receiver to recover x(t)
- $\Delta \omega_c t + \varphi$ is called **carrier offset** between actual carrier and Rx local carrier
- Thus, the receiver has to "recover" the actual carrier $e^{j(\omega_c t + \varphi)}$ (in fact the phase φ) in order to demodulate the signal correctly
 - Usually, this is done by means of some phase lock loop based carrier recovery

Synchronisation

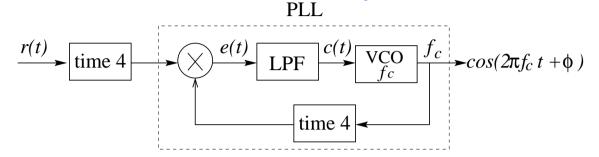
- The process of selecting the correct sampling instances is called synchronisation (timing or clock recovery)
 - Tx and Rx clocks likely to mismatch, clock recovery synchronises receiver clock with transmitter clock to obtain samples at appropriate instances
 - Sampling demodulated signal $\hat{x}(t)$ at appropriate sampling instances is vital for recovering transmitted symbols $\{x[k]\}$, as this is condition for avoiding ISI
 - This is equivalent to replacing sampling impulse train $\sum \delta(t kT_s)$ in slide **6** by $\sum \delta(t kT_s \tau)$, where $0 \le \tau \le T_s$, with correct τ value

$$\hat{x}(t) \longrightarrow \hat{x}[k]$$

- During link initialisation and between data frames, transmitter sends **preamble** which contains known training pseudo noise (PN) sequence
 - Receiver generate local PN sequence, and by oversampling matches it with incoming PN sequence to obtain correct sampling information
- During data transmission, timing recovery has to rely on demodulated baseband signal $\hat{x}(t)$ only

Implementation Notes

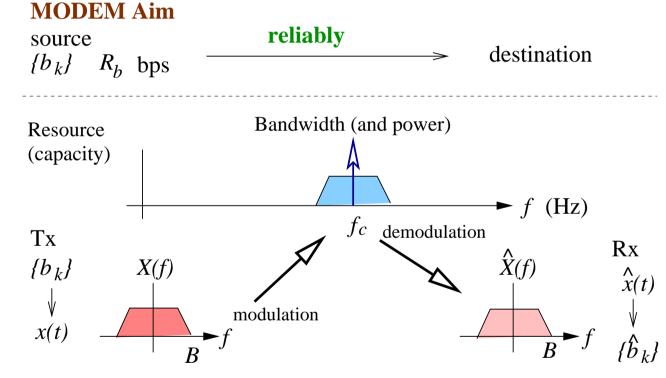
• Carrier recovery matches the phase $\tilde{\varphi}$ of local carrier to the unknown phase φ of incoming carrier, in order to demodulate, and a **time-4 carrier recovery** circuit:



- Electronic circuit for carrier recovery operates at very high carrier frequency, and is expensive
- Receiver with carrier recovery is called **coherent** receiver and performs much better, as it can correctly demodulate the baseband signal x(t), but is more complicated and expensive
- Receiver without carrier recovery is called **non-coherent** receiver, and its performance is poorer but it is less complicated and cheaper
 - Using local carrier to demodulate without carrier recovery generates demodulated baseband signal $x(t)\cdot e^{\mathrm{j}\Delta\varphi}$
 - Other means must be implement in order to remove unknown channel phase, e.g. differential encoding at transmitter and differential detection at receiver
- Timing recovery matches transmitter clock with receiver clock, in order to sample demodulated baseband signal at appropriate sampling instances
 - Timing recovery operates at much lower frequency baseband signal, and it is required for any transceiver, coherent or non-coherent

Summary

- This lecture explains basic operations of modulation and demodulation, including carrier recovery and timing recovery
- The MODEM lectures so far and key issues:



- Shape the spectrum of x(t) by pulse shaping
- Carrier modulation \leftrightarrow demodulation, carrier recovery
- Timing recovery: Rx can then $\hat{x}(t) \rightarrow {\hat{b}_k}$

University

of Southampton