Revision of Lecture 4

- We have discussed all basic components of MODEM
 - Pulse shaping Tx/Rx filter pair
 - Modulator/demodulator
 - Bits $\stackrel{map}{\leftrightarrow}$ symbols
- Discussions assume ideal AWGN channel,
 i.e. channel is non-dispersive (no memory)
- Dispersive channel causes ISI, and results no longer valid

 $MODEM\ components$

pulse shaping Tx/Rx filter pair

modulator/demodulator

 $\mathsf{bits} \overset{map}{\leftrightarrow} \mathsf{symbols}$

equalisation (distorting channel)

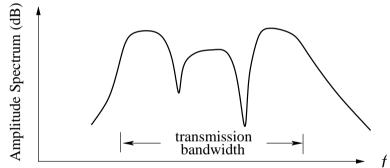
bit error rate and other issues

The problem: the combined impulse response of Tx filter, channel and Rx filter will lose desired property of regular zero crossings at symbol spacing

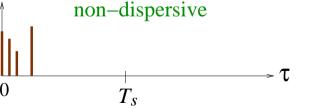
This lecture: equalisation

Dispersive Channel

- Channel for communication is at RF passband, but we consider its equivalent baseband channel
 - We design Tx and Rx filter pair $G_{Rx}(f)G_{Tx}(f)$ to be a Nyquist system, whose impulse response has regular zero crossings at symbol-rate spacing
 - If channel $G_c(f)$ is non-ideal, the combined $G_{Rx}(f)G_c(f)G_{Tx}(f)$ is not a Nyquist system, causing intersymbol interference
- Non-ideal channel has memory, i.e. is dispersive, which can be caused by
 - 1. Restricted bandwidth, i.e. channel bandwidth is insufficient for the required transmission rate



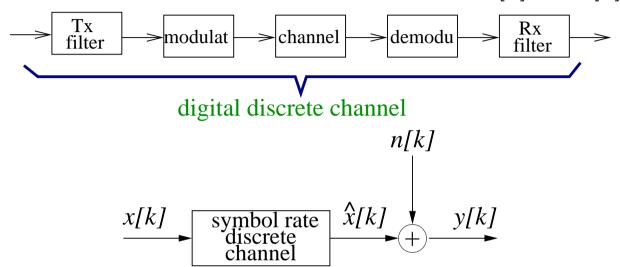
2. Multipath distorting: copies of transmitted signal arrive at receiver with different excess delays



- If excess delay is small compared with symbol period T_s , channel is non-dispersive, i.e. ideal
- If excess delay is big small compared with T_s , channel is dispersive, i.e. having memory

Discrete Channel Model

• Recall slide 16, examine the combined channel model between x[k] and $\hat{x}[k]$:



ullet If physical transmission channel is ideal, y[k] is a noise corrupted delayed x[k]:

$$y[k] = x[k - k_d] + n[k]$$

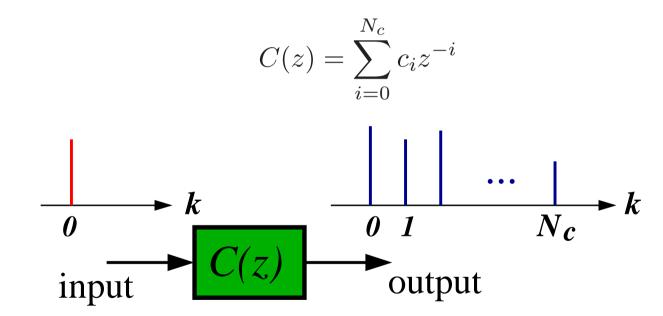
• If physical channel is **dispersive** (note ISI):

$$y[k] = \sum_{i=0}^{N_c} c_i \cdot x[k-i] + n[k]$$

 $\{c_i\}$ are the channel impulse response (CIR) taps, and N_c the length of CIR

Channel Impulse Response

- Continuous-time signal/system → Fourier transform
- Discrete-time signal/system $\rightarrow z$ -transform
- Discrete channel with channel impulse response $\{c_0, c_1, \cdots, c_{N_c}\}$



• In practice, real signal/system are real-valued, but we can use equivalent baseband signal/system (as in QAM system) which are complex-valued

Equalisation — **Solution**

- The system C(z) is the z-transform of the discrete baseband channel model (including Tx and Rx filters, modulation, physical transmission channel, demodulation, and sampling)
- If the channel has severe amplitude and phase distortion, equalisation is required:

$$X(z) \longrightarrow C(z) \xrightarrow{Y(z)} W(z) \xrightarrow{\hat{X}(z)}$$

- We want to find an equalisation filter W(z) such that the recovered symbols $\hat{X}(z)$ are only delayed versions of the transmitted signal, $\hat{X}(z) = z^{-k_d} \cdot X(z)$
- The optimal solution for the noise-free case is (zero-forcing equalisation):

$$W(z) \cdot C(z) = z^{-k_d}$$
 or $W(z) = z^{-k_d} \cdot C^{-1}(z)$

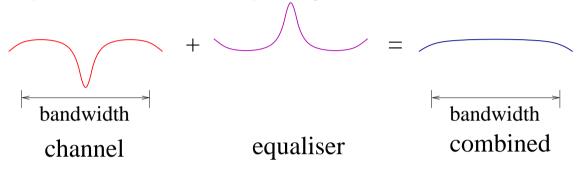
- Since $C(z)=\sum_{i=0}^{N_c}c_iz^{-i}$ is a finite-duration impulse response (FIR) filter, $z^{-k_d}\cdot C^{-1}(z)$ is an infinite-duration impulse response (IIR) filter
- In practice we can only truncate W(z) to a sufficiently long but finite-duration filter

$$W(z) = \sum_{i=0}^{N_e} w_i z^{-i} pprox z^{-k_d} \cdot C^{-1}(z)$$

• Another popular optimal equalisation solution is called minimum mean square error (MMSE) solution

Equalisation — Issues

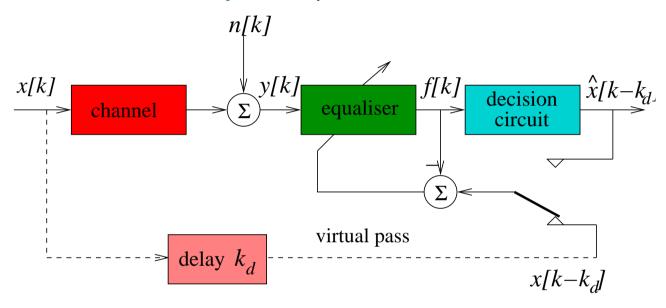
- Equaliser: aims to make the combined channel/equaliser a Nyquist system again
 - Zero-forcing equalisation will completely remove ISI



- But the noise is amplified by the equaliser, and in high noisy condition, ZF equalisation may enhance the noise to unacceptable level $(N(z) \cdot C^{-1}(z))$
- Design of equaliser is a trade off between eliminating ISI and not enhancing noise too much
 - MMSE equalisation provides better trade off between eliminating ISI and enhancing noise
- Also the channel can be time-varying, hence adaptive equalisation is needed
 - Channel $\{c_i\}_{i=0}^{N_c}$ may change, and equaliser $\{w_i\}_{i=0}^{N_c}$ have to follow

Adaptive Equalisation — Architecture

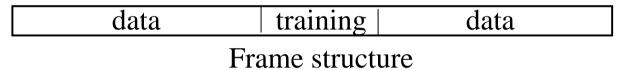
• The generic framework of **adaptive** equalisation:



- ullet Equaliser sets its coefficients w_i to 'match' channel characteristics
 - Training mode: Tx transmits a prefixed sequence known to Rx. The equaliser uses locally generated symbols x[k] as the desired response to adapt w_i
 - * As though, training data $\{x[k]\}$ were sent to receiver via a virtual pass
 - Decision-directed mode: the equaliser assumes the decisions $\hat{x}[k-k_d]$ are correct and uses them to substitute for $x[k-k_d]$ as the desired response

Adaptive Equalisation — **Arrangement**

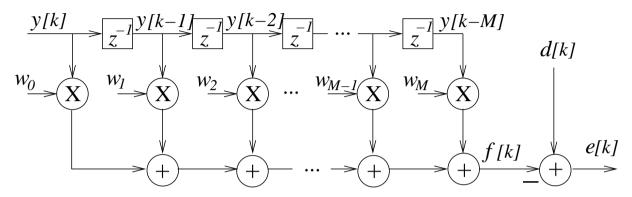
- For fixed (time-invariant) channel, equalisation is done once during link set up
 - During link set up, a prefixed training sequence is sent, and equaliser is trained based on locally generated this training sequence
- For time-varying channel, equalisation must be performed periodically, transmission is organized in time frames, a small part of each frame contains training symbols
 - e.g. GSM mobile phone, middle of each Tx frame contains 26 training symbols



- Receiver uses locally generated training symbols for training equaliser, and the trained equaliser then detects the data in the frame
- Blind equalisation: perform equalisation based on Rx signal $\{y[k]\}$ without access to training symbols $\{x[k]\}$, e.g. multipoint network, digital TV, etc
 - Note training causes extra bandwidth, thus blind equalisation is attractive but is more difficult

Linear Equaliser

• The setup of generic linear equaliser with length $N_e=M$ and filter coefficients w_i :



• The aim of the equaliser is to set its coefficients w_i to produce an output f[k]:

$$f[k] = \sum_{i=0}^{M} w_i^* \cdot y[k-i]$$

- that is as close as possible to the desired signal d[k]:

$$d[k] = \begin{cases} x[k-k_d], & \text{training} \\ \hat{x}[k-k_d], & \text{decision directed} \end{cases}$$

- Conventionally, conjugate w_i^st of w_i is used in producing equaliser output
- Equaliser length M should be sufficiently long to cancel channel induced ISI, but not too long as to amplify noise too much
- Equaliser decision delay k_d depends the zero locations of the channel transfer function C(z): for minimum phase C(z), $k_d=0$; otherwise, $k_d>0$

Mean Square Error

• The formulation of error signal e[k]:

$$e[k] = d[k] - f[k] = d[k] - \sum_{i=0}^{M} w_i^* \cdot y[k-i] = d[k] - oldsymbol{w}^{ ext{H}} \cdot oldsymbol{y}_k$$

with definitions $m{w}^{\mathrm{H}} = \begin{bmatrix} w_0^* \ w_1^* \cdots w_M^* \end{bmatrix}$ and $m{y}_k = \begin{bmatrix} y[k] \ y[k-1] \cdots y[k-M] \end{bmatrix}^{\mathrm{T}}$

• The mean square error formulation:

$$\begin{split} \mathcal{E} \Big\{ |e[k]|^2 \Big\} &= \mathcal{E} \Big\{ |d[k] - \boldsymbol{w}^{\mathrm{H}} \cdot \boldsymbol{y}_k|^2 \Big\} \\ &= \mathcal{E} \Big\{ d[k] \cdot d^*[k] \Big\} - \boldsymbol{w}^{\mathrm{T}} \cdot \mathcal{E} \Big\{ d[k] \cdot \boldsymbol{y}_k^* \Big\} - \boldsymbol{w}^{\mathrm{H}} \cdot \mathcal{E} \Big\{ \boldsymbol{y}_k \cdot d^*[k] \Big\} + \boldsymbol{w}^{\mathrm{H}} \cdot \mathcal{E} \Big\{ \boldsymbol{y}_k \cdot \boldsymbol{y}_k^{\mathrm{H}} \Big\} \cdot \boldsymbol{w} \\ &= \sigma_d^2 - \boldsymbol{w}^{\mathrm{T}} \cdot \boldsymbol{p}^* - \boldsymbol{w}^{\mathrm{H}} \cdot \boldsymbol{p} + \boldsymbol{w}^{\mathrm{H}} \cdot \boldsymbol{R} \cdot \boldsymbol{w} \end{split}$$

- desired signal power $\sigma_d^2 = \mathcal{E}\{\left|x[k]\right|^2\}$; cross-correlation vector $\boldsymbol{p} = \mathcal{E}\{\boldsymbol{y}_k \cdot d^*[k]\}$; autocorrelation matrix $\boldsymbol{R} = \mathcal{E}\{\boldsymbol{y}_k \cdot \boldsymbol{y}_k^{\mathrm{H}}\}$
- A standard optimisation procedure to achieve the minimum MSE yields Wiener-Hopf equation:

$$\frac{\partial}{\partial \boldsymbol{w}} \mathcal{E} \Big\{ |e[k]|^2 \Big\} = \mathbf{0} \ \Rightarrow \ -\boldsymbol{p} + \boldsymbol{R} \cdot \boldsymbol{w} = \mathbf{0}$$

Minimum Mean Square Error

ullet If $oldsymbol{R}$ is invertible, then the optimum filter coefficients $oldsymbol{w}_{ ext{opt}}$ are given by Wiener-Hopf equation as:

$$oldsymbol{w}_{\mathsf{opt}} = oldsymbol{R}^{-1} \cdot oldsymbol{p}$$

- The MMSE solution $oldsymbol{w}_{\mathsf{opt}}$ is unique and is also called the Wiener solution
- The minimum MSE (MMSE) value is $\mathcal{E}\{|e[k]|^2\} |_{m{w}_{ exttt{opt}}} = \sigma_d^2 m{p}^{ ext{H}} \cdot m{R}^{-1} \cdot m{p}$
- ullet Recall channel model in slide ${f 64}$, equaliser input vector ${m y}_k$ is expressed as

$$oldsymbol{y}_k = oldsymbol{C} \cdot oldsymbol{x}_k + oldsymbol{n}_k$$

- $\boldsymbol{x}_k = \begin{bmatrix} x[k] \ x[k-1] \cdots x[k-L] \end{bmatrix}^{\mathrm{T}}$ with length $L = N_c + M$ and symbol power $\mathcal{E}\{|x[k]|^2\} = \sigma_d^2$
- $m{n}_k = \left[n[k] \; n[k-1] \cdots n[k-M] \right]^{\mathrm{T}}$ with noise power $\mathcal{E} \left\{|n[k]|^2 \right\} = 2\sigma_n^2$
- $(L+1) \times (L+1)$ CIR convolution matrix has Toeplitz form

The MMSE equalisation solution is given by

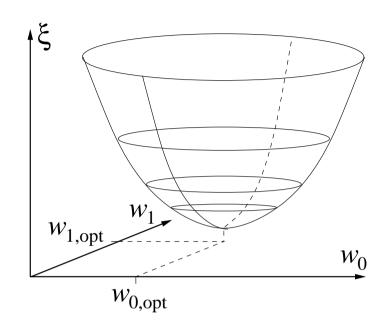
$$oldsymbol{w}_{\mathsf{opt}} = \left(oldsymbol{C} \cdot oldsymbol{C}^{\mathrm{H}} + rac{2\sigma_n^2}{\sigma_d^2} \cdot oldsymbol{I}_{L+1}
ight)^{-1} \cdot oldsymbol{c}_{k_d}$$

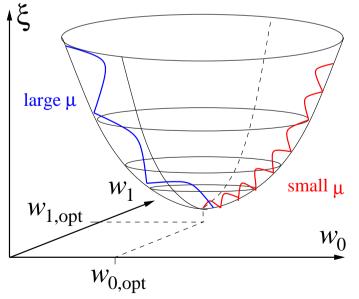
MSE Surface and Iterative Solution

- Example of mean square error surface for 2(M + 1) = 2 real coefficients:
- ullet Being **quadratic** in the filter coefficients $oldsymbol{w}$, the MSE surface $\xi = \mathcal{E}\{|e[k]|^2\}$ is a hyperparabola in 2(M+1)+1 dimensional real space
- Unique MMSE solution is $oldsymbol{w}_{\mathsf{opt}} = oldsymbol{R}^{-1} \cdot oldsymbol{p}$
- MMSE value is at the bottom of this hyperparabola
- If you do not want to calculate matrix inversion
- The solution can alternative be sought iteratively by moving w in the direction of the negative gradient:

$$oldsymbol{w}_{l+1} = oldsymbol{w}_l + \mu \cdot ig(-oldsymbol{
abla} oldsymbol{\xi}_l ig)$$

- gradient vector at l-th iteration is $oldsymbol{
 abla} \xi_l = -2oldsymbol{p} + 2oldsymbol{R}oldsymbol{w}_l$
- μ is the step size
- An initial value of $oldsymbol{w}_0$ is needed
- ullet No more inversion of $oldsymbol{R}$, but statistics $oldsymbol{R}$ and $oldsymbol{p}$ are assumed to be given





Least Mean Square Algorithm

• Rather than using the mean square error $\mathcal{E}\{|e(k)|^2\}$, using an instantaneous squared error $|e[k]|^2$ leads to an instantaneous (stochastic) gradient:

$$\hat{\nabla}\xi_k = \frac{\partial}{\partial \boldsymbol{w}}e[k] \cdot e^*[k] = -2e^*[k] \cdot \boldsymbol{y}_k$$

LMS algorithm — initialisation: given initial weight vector

$$\boldsymbol{w}_0 = \begin{bmatrix} w_0[0] \ w_1[0] \cdots w_M[0] \end{bmatrix}^{\mathrm{T}}$$

- LMS algorithm during the k-th symbol (sample) period, it does
 - 1. filter output:

$$f[k] = \boldsymbol{w}_k^{\mathrm{H}} \cdot \boldsymbol{y}_k = \sum_{i=0}^{M} w_i^*[k] \cdot y[k-i]$$

2. estimation error:

$$e[k] = d[k] - f[k]$$

3. weight adaptation:

$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k + \mu \cdot e^*[k] \cdot \boldsymbol{y}_k$$

Recursive Least Squares Algorithm

- Forgetting factor λ , initial weight vector w_0 and initial covariance matrix $P[0] = \rho I$, ρ being a large positive number
- At sample k
 - Equalize filter error

Kalman gain

$$\boldsymbol{k}(k) = \frac{\lambda^{-1} \boldsymbol{P}[k-1] \boldsymbol{y}_k}{1 + \lambda^{-1} \boldsymbol{y}_k^{\mathrm{H}} \boldsymbol{P}[k-1] \boldsymbol{y}_k}$$

 $e[k] = d[k] - \boldsymbol{w}_{k-1}^{\mathrm{H}} \cdot \boldsymbol{y}_{k}$

- Weight update

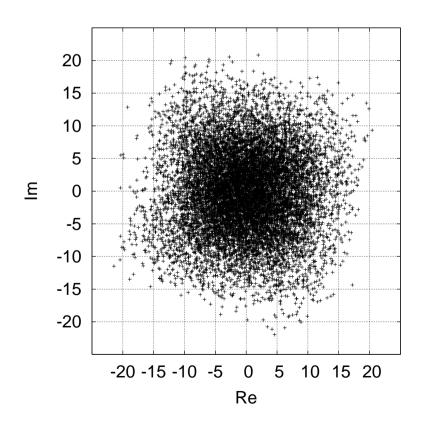
$$\boldsymbol{w}_k = \boldsymbol{w}_{k-1} + \boldsymbol{k}[k]e^*[k]$$

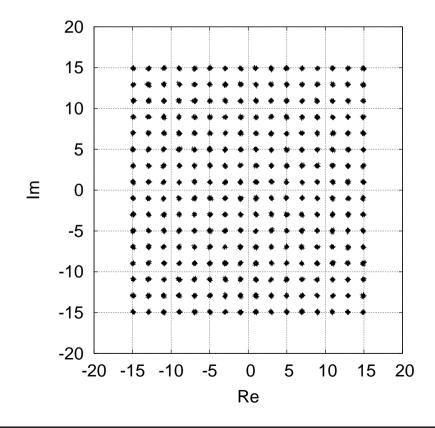
Covariance matrix

$$\boldsymbol{P}[k] = \lambda^{-1} P[k-1] - \lambda^{-1} \boldsymbol{k}[k] \boldsymbol{y}_k^{\mathrm{H}} P[k-1]$$

Blind Equalisation Example

- In blind equalisation, we do not have desired output d[k] = x[k], equaliser must adjust its weights w_i based on channel observation y[k] only and some other known information
- A blind equaliser called constant modulus algorithm aided soft decision directed scheme
 - 256-QAM
 - channel observations y[k] and equaliser outputs f[k] after convergence





Optimal Equalisation: Sequence Estimation

- Linear equalisation is based on **symbol-by-symbol** decision, i.e. at symbol instance k, it estimates symbol $x[k-k_d]$ transmitted at $k-k_d$
- Sequence estimation, i.e. estimate whole transmitted symbol sequence $\{x[k]\}$, is optimal (truly minimum symbol error rate)
 - In channel coding part, you'll learn convolutional coding, and optimal decoding can be done using Viterbi algorithm
 - Channel can be viewed as "convolutional codec", Viterbi algorithm used for "decoding", i.e. estimate transmitted symbol sequence $\{x[k]\}$
- For Example, GSM (QPSK modulation), training symbols used to estimate the channel $\{c_0, c_1, ..., c_6\}$ using for example LMS algorithm
 - Viterbi algorithm then used to "decode" Tx symbol sequence $\{x[k]\}$
 - Thus in GSM mobile phone hand set there are two Viterbi algorithms, one for channel coding, the other for equalisation
- Sequence estimation too complex for high-order modulation and long channel

Summary

- Discrete channel model in the presence of channel amplitude and phase distortion
- Equaliser tries to make the combined channel/equaliser a Nyquist system
- Design of equaliser is a trade off between eliminating ISI and not enhancing noise too much
- Adaptive equalisation structure: training mode and decision directed mode
- Linear equaliser (filter), the MMSE solution, and an iterative algorithm
- Least mean square algorithm
- Equalisation as sequence estimation

