Realizing Internet above the Cloud: An Enabling Air-to-Air Transmission Technique

Jiankang Zhang and Sheng Chen

Southampton Wireless Group

School of Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ, UK

E-mail: sqc@ecs.soton.ac.uk

University

of Southampton

1

Dreams

- We are **almost** instantaneously connected **anywhere** anytime
 - With coming 5G, our world is supposed to be 'completely' interconnected
- There is **black hole** in our interconnected world when we travel by aeroplane
 - Step on jumbo jet, we disappear into this black hole
- Existing satellite-based and ground-to-air/air-to-ground techniques are very expensive and incapable of supporting Internet above the Cloud
 - Even future L-band digital aeronautical communications system L-DACS1 only offers 273 kbps net user rate for direct aircraft-to-aircraft communication
 - Impossible to build ground stations to cover whole continent or over ocean
- But we have been dreaming to realize Internet above the Cloud
 - How can we 'move' 5G on to the sky to complete interconnected world?

Our Sky

• 'Normal' snapshots of (a) **European airspace**, and (b) **North Atlantic airspace**

(a)

(b)

- China's airspace must be very similar
- American airspace: thousands of jumbo jets over American sky any time

Internet above the Cloud

- Huge number of **people** are travelling by **aeroplane**, and sky is full of jumbo jets
 - we all dream 'Internet above the Cloud'
- Vey important point: we are not talking aeronautical systems for air traffic control, surveillance, safety monitoring, etc
 - We **CANNOT** do anything even **near** to these systems!
- We are thinking commercial **aeronautical ad hoc network** (AANET)
 - which enables us to do usual things at home, at work or travelling on land
- In this globally interconnected AANET, apart from huge amount of higher-layer protocols to be defined,
 - we need to define physical layer enabling transmission protocol: which is the main theme of this talk

Terrestrial Mobile Network

• Hidden from us are **backhaul** transmissions, which really enable us to do our usual things, such as mobile **Internet access**

Aeronautical Ad Hoc Network

- Jumbo jet is a moving 'cell', where 'base station' and all its 'mobiles' or passengers move together
- 'Mobiles' or passengers can access to 'base station' via standard technique, such as WiFi
- Air-to-air transmissions, acting like backhaul, is really key to Internet access

Technical Considerations

- **Spectrum**: Better not use VHF and UHF bands, because
 - Existing air traffic systems mainly use VHF band of 118 MHz to 137 MHz
 - UHF band almost fully occupied by television broadcasting, mobile phones, and satellite communications, including GPS
 - No substantial idle frequency bands in VHF and UHF anyway
- **Potential solution**: Use super high frequency (SHF) band of 3 GHz to 30 GHz, e.g. 5 GHz carrier frequency for AANET application
 - Need international agreement
- Massive MIMO: To achieve high throughput and to maximize spectral efficiency, same bandwidth B_{total} reused by every jumbo jet \Rightarrow to combate interference
 - New antenna technology printing antenna array on aeroplane surface
 - Every jumbo jet is equipped with same large-scale antenna array with N_t 'data-transmitting' antennas and $N_r(< N_t)$ 'data-receiving' antennas

Transmission Technique

- Aeronautical channel characteristics: bad and good
 - Very high **Doppler spread**, owing to very high flight speed
 - Channel is very **clean**: Rician with line-of-sign component dominant
- Unlike terrestrial mobile channel, **no local scatters** around aeroplane en route, due to enforced minimum flight separation distance
 - Spatial correlation matrices of transmit array and receive array remain unchanged
 - Make massive MIMO implementation much easier
- New distance-based adaptive coding and modulation transmission scheme
 - Existing ACM schemes unsuitable, because it is difficult to acquire accurate estimate of instantaneous SNR or other channel-quality measure
 - Achievable throughput of aeronautical channel mainly depends on distance
 - Aeroplane readily has distance information measured accurately

TDD Based System Model

- System adopts **TDD** protocol and OFDM: generically, aircraft a^* is transmitting data to aircraft b^* , in the presence of co-channel interference from other A aircraft
- (a) **Pilot training**: b^* sends pilots from its N_r data-receiving antennas to a^* , which receives transmitted pilots using its N_t data-transmitting antennas
 - To acquire MIMO channel matrix from b^* 's N_r antennas to a^* 's N_t antennas
 - which is reciprocal to MIMO channel matrix from a^* 's N_t antennas to b^* 's N_r antennas
- (b) Data transmission: With precoding based on acquired CSI, a^* transmits data using its N_t data-transmitting antennas to b^* , who receives data using its N_r data-receiving antennas

Pilot Training

- Channel covariance matrix is Kronecker product of spatial correlation matrix of a^* 's N_t antennas and spatial correlation matrix of b^* 's N_r antennas
 - Assumption: every jumbo jet is equipped with same antenna array
 - a^* knows spatial correlation matrix of its N_r antennas, which is the same as spatial correlation matrix of b^* 's N_r antennas
 - Consequently, a^* has channel covariance matrix
- We can apply optimal MMSE or **Bayesian estimator**
 - MSE of channel estimate attains Cramér-Rao lower bound
 - Pilot contamination free, even other aircraft are interfering
- ▼ In terrestrial massive MIMO, coordinated channel estimation with optimal Bayesian estimator is pilot contamination free but impractical
 - Acquisition of channel covariance matrices at BSs is extremely time consuming
 - Sharing them among BSs requires huge amount of back-haul transmissions
- ▲ By contrast, our application of optimal Bayesian estimator is **completely practical and effective**

Air-to-Air Transmission

- Aircraft a^* calculates transmit precoding matrix based on channel estimate
- Aircraft a^* selects an ACM mode to transmit data according to its distance $d_{b^*}^{a^*}$ to b^*

If
$$d_k \leq d_{b^*}^{a^*} < d_{k-1}$$
: choose mode $k; k \in \{1, 2, \cdots, K\}$

 $d_0 = D_{\max}$, maximum communication rage, and $d_{b^*}^{a^*} \ge D_{\min}$ for safety minimum separation

References

- J. Zhang, S. Chen, R.G. Maunder, R. Zhang, and L. Hanzo, "Adaptive coding and modulation for large-scale antenna array based aeronautical communications in the presence of co-channel interference," *IEEE Transactions on Wireless Communications*, vol. 17, no. 2, pp. 1343–1357, Feb. 2018
- J. Zhang, S. Chen, R.G. Maunder, R. Zhang, and L. Hanzo, "Regularized zeroforcing precoding aided adaptive coding and modulation for large-scale antenna array based air-to-air communications," *IEEE Journal on Selected Areas in Communications*, to appear, 2018

System Parameters

Table 1: Default parameters used in simulated aeronautical communication system

System parameters for ACM						
Number of interference aircraft A						
Number of data-receiving antennas N_r						
Number of data-transmitting antennas N_t						
Transmit power per antennas P_t						
Number of total OFDM subcarriers N	512					
Number of CPs $N_{ m cp}$	32					
Rician factor K_{Rice}						
Bandwidth B_{total}						
Frequency of centre subcarrier						
Other system parameters						
Correlation factor between antennas ρ						
Noise figure at receiver F						
Distance between communicating aircraft a^* and b^* $d_{b^*}^{a^*}$						
Maximum communication distance D_{\max}						

Distance-Based ACM

University

of Southampton

5

ACM Design Example

Table 2: Adaptive coding and modulation: system parameters listed in Table 1.

Mode	Modulation	Code	Spectral	Switching	Data rate	Total data
k		rate	efficiency	threshold	per antenna	rate (Mbps)
			(bps/Hz)	$d_k \; (km)$	(Mbps)	
1	BPSK	0.488	0.459	500	2.754	11.016
2	QPSK	0.533	1.000	350	6.000	24.000
3	QPSK	0.706	1.322	200	7.932	31.728
4	8-QAM	0.642	1.809	110	10.854	43.416
5	8-QAM	0.780	2.194	40	13.164	52.656
6	16-QAM	0.731	2.747	25	16.482	65.928
7	16-QAM	0.853	3.197	5.56	19.182	76.728

- To ensure successful transmission, distance **thresholds** $\{d_k\}_{k=1}^K$ are chosen so that
 - Spectrum efficiency of mode k is lower than theoretically achievable rate per data-receiving antenna in distance range of $[d_k, d_{k-1}]$
- In following simulation study
 - Theoretical: asymptotic theoretical derivation for large $N_t
 ightarrow \infty$
 - Approximate: with approximations in asymptotic theoretical result
 - Simulation: result obtained by simulation

Electronics and

Computer Science

- (a) Achievable throughput per data-receiving antenna as function of interfering aircraft number A
 - Distances between interfering aircraft and b^* are uniformly distributed in $\left[d_{b^*}^{a^*}, D_{\max}\right]$
 - Approximate result very closed to theoretical result (approximation is accurate)
 - Simulation result ($N_t = 32$) is 0.2 bps/Hz lower than theoretical result ($N_t \rightarrow \infty$)
- (b) **Complementary cumulative distribution functions** of simulated throughputs per data-receiving antenna for different numbers of interfering aircraft

- (a) Achievable throughput per data-receiving antenna as function of distance $d_{b^*}^{a^*}$
 - Distances between interfering aircraft and b^* are uniformly distributed in $[d_{b^*}^{a^*}, D_{\max}]$, and rest parameters listed in Table 1
- (b) Complementary cumulative distribution functions of simulated throughputs per data-receiving antenna for different $d_{b^*}^{a^*}$

- (a) Achievable throughput per data-receiving antenna as function of N_t
 - Distances between interfering aircraft and b^* are uniformly distributed in $[d_{b^*}^{a^*}, D_{\max}]$, rest parameters listed in Table 1, and for large number of **data-transmitting antennas** ($N_t \ge 140$), simulation result agrees with theoretical one
- (b) Complementary cumulative distribution functions of simulated throughputs per data-receiving antenna for different N_t

- (a) Achievable throughput per data-receiving antenna is reduced as N_r increases, because of increase in inter-antenna interference, while achievable sum rate increases as N_r increases
 - Distances between interfering aircraft and b^* are uniformly distributed in $[d_{b^*}^{a^*}, D_{\max}]$, and rest parameters listed in Table 1
- (b) Complementary cumulative distribution functions of simulated throughputs per data-receiving antenna for different N_r

- (a) Achievable throughput per data-receiving antenna as function of antenna correlation factor ρ
 - Distances between interfering aircraft and b^* are uniformly distributed in $[d_{b^*}^{a^*}, D_{\max}]$, and rest parameters listed in Table 1
 - Large gap between theoretical upper bound and simulation result when $\rho \geq 0.4$
- (b) Complementary cumulative distribution functions of simulated throughputs per data-receiving antenna for different values of ρ

- (a) Achievable throughput per data-receiving antenna as function of Rician factor K_{Rice}
 - Distances between interfering aircraft and b^* are uniformly distributed in $[d_{b^*}^{a^*}, D_{\max}]$, and rest parameters listed in Table 1
 - Higher K_{Rice} leads to higher achievable throughput
- (b) Complementary cumulative distribution functions of simulated throughputs per data-receiving antenna for different values of K_{Rice}

Discussions

- Our massive MIMO aided adaptive coding and modulation scheme capable of supporting future 'Internet above Cloud'
 - 5 GHz carrier and 6 MHz system bandwidth spatially shared by all aircraft:
 - Interfering aircraft A = 14 and distance between desired pair of communicating aircraft $d_{b^*}^{a^*} = 10$ km, our design capable of offering total data rate of 79 Mbps
 - Interfering aircraft A = 4 and distance between desired pair of communicating aircraft $d_{b^*}^{a^*} = 70$ km, our design capable of offering total data rate of 60 Mbps
- Our two key assumptions are **practical**:
 - 1. Each jumbo jet can acquire the distance to its nearest aircraft with aid of airborne radar or GPS
 - 2. Each jumbo jet is equipped with same large-scale antenna array of $N_{\rm total} = N_t + N_r$ antennas, e.g. $N_{\rm total} = 36$ or higher
- Our **physical-layer** scheme particular suitable for aeronautical applications
 - Owing to high velocity of aircraft, no transmission scheme can guarantee successful transmission for every transmission slot
 - Adopt suitable higher-layer measures for enhancing reliable communication
 - Discussing higher-layer protocols is beyond scope of this talk

THE PARTY

University of Southampton

Relay-Assisted Drone Swarm

- Proposed air-to-air transmission technique has many other applications
- Relay-assisted drone swarm communications
 - Swarm of drones over a remote area collecting data with cameras and sensors, termed data collecting drone swarm (DCDS)
 - Direct transmissions of huge volume of data from DCDS to ground station (GS) impossible, no direct DCDS-to-GS link
 - A powerful unmanned aerial vehicle (UAV) acts a relay to ferry data from DCDS to GS, termed as relay-UAV (RUAV)
- This application generates huge volume of data, requires very high air-to-air transmission rate and large buffer at RUAV
- Proposed large antenna-array assisted and distance-based ACM scheme very **suitable** for this task

Protocol

- 1. DCDS-to-RUAV data loading: RUAV stationary at target-area, DCDS transmit collected data to RUAV until its buffer full or all data have loaded
- 2. Heading to GS: RUAV ferries data from target-area to GS, DCDS may transmit new data to RUAV if it is within communication range and its buffer is not full
- 3. RUAV-to-GS data offloading: RUAV may start offloading data to GS when in range, and then stays stationary close to GS for offloading until its buffer empty
- 4. Heading to DCDS: RUAV flies back to target-area for new data, it may start receiving data from DCDS when in communication range
- Generally, end-to-end connectivity is **intermittent**
- If end-to-end connectivity always exists: When direct DCDS-to-RUAV and RUAV-to-GS links exist simultaneously, RUAV may stay stationary at an optimized position to serve as 'conveyor' for collecting data from DCDS and delivering them to GS
- A RUAV may serve **multiple DCDSs** around its route and the route can be optimized according to different requirements of different drone swarm communication tasks

Transmission Scheme

- (a) DCDS-to-RUAV protocol: note receiver combining rather than transmitter precoding
- (b) Example of distance-based ACM design

Simulation Experiment

Receive antennas of GS and RUAV: both $N_r = 64$ Velocity of RUAV: 50 m/s, buffer size: 16 GB, 24 GB8 single transmit-antenna drones, and hence transmit antennas: $N_t = 8$ System bandwidth: $B_{\text{total}} = 6 \text{ MHz}$, carrier frequency: 60 GHzTransmit power per transmit antenna: $P_t = 78 \text{ mW}$ Channel: Rician with Rician factor $K_{\text{Rice}} = 5$ Maximum communication range: 7000 mMinimum separation distance RUAV/DCDS , RUAV/GS: 500 mDistance between GS and DCDS: 20,000 m

- Note that end-to-end connectivity is **intermittent**, even with aid of RUAV
- We define effective data rate as

University

of Southampton

$$\label{eq:Effective} \mbox{ ffective data rate} = \frac{\mbox{Accumulated transmitted data volume}}{\mbox{Time}} [\mbox{GB/s}]$$

Southampton Wireless

- RUAV stationary at 500 m to DCDS for loading data until buffer full
- Heads back to GS, when 7000 m to GS, offloading starts; when 500 m to GS, RUAV becomes stationary to continue offloading until buffer empty
- Head back to DCDS, when 7000 m to DCDS loading starts

Conclusions

- 'Extend terrestrial mobile network to sky' by constructing aeronautical ad hoc network for 'Internet above the Cloud' has been a dream of many
 - Existing physical-layer transmission techniques are incapable of supporting this high-throughput aeronautical communication application
- We have proposed practical massive MIMO assisted adaptive coding and modulation based physical-layer transmission scheme
 - Capable of offering sufficiently high throughput to support air-to-air transmission for realizing 'Internet above the Cloud'
- Challenges remain how to construct reliable higher-layer protocols for enabling aeronautical ad hoc networking to realize dream of 'Internet above the Cloud'
- Proposed air-to-air transmission technique has many smaller scale applications
 - e.g., **Relay** assisted **drone swarm** communications

