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Revision of Lecture Nine

• AWGN channel: decision variable rk = r̄k + nk = g0sk + nk, where channel g0 is known

– AWGN nk with PSD
N0
2 , average symbol energy Es, average channel SNR eΛ = Es

N0

• Bit error ratio performance of BPSK and QPSK
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• Bit error ratio performance of 16QAM

– 4-ary modulation: two classes of bits, and Pe,2 ≈ 2Pe,1
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• Bit error ratio performance of 64QAM

– 8-ary modulation: three classes of bits, and Pe,3 ≈ 2Pe,2 and Pe,2 ≈ 2Pe,1

– 64QAM Pe = 7
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• This lecture we consider fading channel performance
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Flat Rayleigh Fading Channels

• A narrowband channel is represented by c(t) = α(t) · ejφ(t). Assume that fading is
sufficiently slow, c(t) and φ(t) are symbol invariant → during one symbol period

c = α · ejφ

– We consider uncorrelated Rayleigh fading, i.e. Doppler spread→ ∞

• The Rayleigh fading envelope α has a probability density function

pα(α) =
α

α2
0

exp

(
−

α2

2α2
0

)
, α ≥ 0

and the channel phase φ is uniformly distributed in [−π, π] with PDF

pφ(φ) =

{
1
2π, −π ≤ φ ≤ π
0, otherwise

• Note that Re[c] and Im[c] are i.i.d. Gaussian with variance α2
0, and α has mean

E[α] = ᾱ =
√

π
2α0, 2nd moment E[α2] = 2α2

0 and variance 4−π
2 α2

0
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Flat Fading Performance

• Given the transmitted baseband signal m(t) with average energy Es, the received signal is

r(t) = α · e
jφ · m(t) + n(t)

where n(t) is AWGN with PSD
N0
2

• Define the instantaneous channel SNR

λ = α
2Es

N0

Note that λ > 0 is a chi-square distribution with PDF

pλ(λ) =
1

Λ
e−λ/Λ

• The average channel SNR Λ is defined as

Λ = E[λ] = λ̄ = 2α
2
0

Es

N0

• Let P (λ) be the instantaneous error probability, the average error probability is then defined as

Pe =

Z ∞

0

P (λ)pλ(λ)dλ =
1

Λ

Z ∞

0

P (λ)e−λ/Λdλ
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4QAM Flat Fading Performance

• Fading does not change the decision boundaries I, Q = 0, but I, Q = d becomes I, Q = αd

• Using non-fading result Pe = Q(d/
p

N0/2) → the instantaneous error probability

Pe(λ) = Q
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!
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λ
”

• Note λ ≥ 0 and Λ = E[λ] = 2α2
0Es/N0, the average error probability is
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1

Λ

Z ∞

0

Q
“√

λ
”

e
−λ/Λ

dλ

• Note that λ = α2Es/N0 and Es = 2d2, the close-form solution for Pe is:
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4QAM Flat Fading Performance (Derivation)

• Note

integration formula
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• Letting µ = 1, β =
d α0√
N0/2

and x = α√
2α0

in the above integration formula leads to
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where Λ = 2α2
0
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, Es = 2d2 ⇒ Λ =
4α2

0d2
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4QAM Fading / Non-Fading BER Comparison

• In fading, average SNR Λ = 2α2
0

Es
N0

– Average BER

Pe =
1

2

(
1 −

√
Λ

2 + Λ

)

• Compare with AWGN, average SNR
is defined as Λ̃ = Es/N0

– Average error probability

Pe = Q
(√

Λ̃
)
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• Clearly, fading is “a big killer” limiting communication system’s performance

– Many mobile communication technologies developed in past three decades are
“counter-fading measures”
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16QAM Flat Fading Performance: C1 BER

• Motivate by success of applying non-fading 4QAM to fading 4QAM: try the same to 16QAM?

• For C1 bits, the decision boundaries are not changed:

I, Q > 0 → i1, q1 = 0, I, Q ≤ 0 → i1, q1 = 1

But ±d, ±3d become ±αd, ±3αd. Also Es = 10d2 and Λ = 20α2
0d

2/N0

• Thus, the instantaneous C1 error probability is
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• The average C1 error probability is therefore (success again!)
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16QAM Fading Performance: C2 BER

• For C2 bits, the decision boundaries are changed to:

I, Q > 2ᾱd or I, Q ≤ −2ᾱd → i2, q2 = 1

−2ᾱd < I, Q ≤ 2ᾱd → i2, q2 = 0

Note that the average value of α, i.e. ᾱ, has to be used for decision threshold

• Two cases of i2, q2 = 0 error need consideration

1. i2, q2 = 0 error in case of α < 2ᾱ

– Instantaneous symbols −αd and

αd are within region defined by

two decision boundaries

– Error occurs when noise makes

received signal outside the region

and instantaneous C2 bit = 0

error probability for α < 2ᾱ is
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16QAM: C2 BER (continue)

2. i2, q2 = 0 error in the case of α > 2ᾱ: Instantaneous symbols −αd and αd are outside region

defined by two decision boundaries

– Correct decision occurs only

when noise moves received signal

inside the region

– Thus instantaneous C2 bit = 0

error probability for α > 2ᾱ is
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• Note α > 0, the average error for i2, q2 = 0 is therefore

P2,0 =

Z 2ᾱ

0

P2,0,<2(α)pα(α)dα +

Z ∞

2ᾱ

P2,0,>2(α)pα(α)dα

– There exists closed form solution for this integration but it is very complicated

– So far not too bad
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16QAM: C2 BER (continue)

• Two cases of i2, q2 = 1 error need consideration

1. i2, q2 = 1 error in case of α > 2ᾱ/3

– Instantaneous symbols −3αd

and 3αd are within correct

regions corresponding to

respective decision boundaries

– Error occurs when noise makes

received signal outside the

corresponding region
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– Thus instantaneous C2 bit = 1 error probability for α > 2ᾱ/3 is

P2,1,>2/3(α) = Q

„

d1/
q

N0/2

«

− Q

„

d2/
q

N0/2

«

= Q

 

(3α − 2ᾱ)d
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– Oh, not, nightmare now
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16QAM: C2 BER (continue)

2. i2, q2 = 1 error in case of α < 2ᾱ/3

– Instantaneous symbols −3αd

and 3αd are outside correct

regions defined by respective

decision boundaries

– Correct decision occurs only

when noise moves received

signal to the correct region
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– The instantaneous C2 bit = 1 error probability for α < 2ᾱ/3 is
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• The average error for i2, q2 = 1 is therefore

P2,1 =

Z 2ᾱ/3

0
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Z ∞
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– Really nightmare, too much for me
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16QAM Fading /Non-Fading BER Comparison

• OK, just to continue, we known

– average C2 error probability is

Pe,2 =
1

2
(P2,0 + P2,1)

– Therefore average error probability

for 16QAM is

Pe =
1

2
(Pe,1 + Pe,2)

• Although no closed-form solution for

Pe,2 and Pe, we can still make some

sense out of them

– 16QAM fading / non-fading BER:

– Fading degrades BER performance

seriously ⇒ counter fading measures
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• Alternatively, Monte Carlo simulation is often used to evaluate fading BER

– Recall slide 48 for flat Rayleigh fading channel simulation
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Fading Channel Simulation Considerations

• For uncorrelated fading , Re{c} and Im{c} are i.i.d. Gaussians with zero mean and unit variance

– Channel is simulated by generating such a sequence of {ck}
• For correlated fading, {ck} can be generated by flat Rayleigh fading channel simulator of slide 48

• For AWGN channel BER simulation, at least a few hundred of error counts should be obtained

– For fading channel BER simulation, this is insufficient

magnitude of channel tap

simulation time

simulation time

– If you simulate at pink simulation zone, channel is in a deep fade, you get too bad BER

– If you simulate at green simulation zone, channel gain is high, you get too good BER

• Basically, all magnitude possibilities of channel tap c should be simulated or seen, such a sequence

{ck} can be very very long, and simulation is really time-consuming

– Roughly tens of “cycles” in channel fading envelope should be simulated to get accurate average

fading BER → for slow fading channel, this is very very long
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Summary

• Narrowband Rayleigh fading channel:

– Fading envelope and phase PDFs, instantaneous and average channel SNRs,
instantaneous and average error probabilities

• Fading channel BER performance analysis

– For 4QAM, by applying non-fading BER result, closed-form BER solution of
fading channel is obtained

– Apply same approach to 16QAM is less fruitful, but nevertheless useful insight
can be obtained

– Fading degrades BER performance seriously ⇒ counter fading measures are
necessary

• Practical considerations in Monte Carlo simulation of fading channel performance

– Basically, all magnitude possibilities of channel tap c should be simulated or seen
– This corresponds to roughly tens of “cycles” in channel fading envelope

141


