Revision of Lecture Nine

- AWGN channel: decision variable $r_k = \bar{r}_k + n_k = g_0 s_k + n_k$, where channel g_0 is known - AWGN n_k with PSD $\frac{N_0}{2}$, average symbol energy E_s , average channel SNR $\tilde{\Lambda} = \frac{E_s}{N_0}$
- Bit error ratio performance of BPSK and QPSK

- BPSK
$$P_e = Q\left(\sqrt{\frac{2E_s}{N_0}}\right) = Q\left(\sqrt{2\widetilde{\Lambda}}\right)$$
, QPSK $P_e = Q\left(\sqrt{\frac{E_s}{N_0}}\right) = Q\left(\sqrt{\widetilde{\Lambda}}\right)$

- Bit error ratio performance of 16QAM
 - 4-ary modulation: two classes of bits, and $P_{e,2} \approx 2P_{e,1}$

$$- 16 \text{QAM } P_e = \frac{3}{4}Q \left(\sqrt{\frac{E_s}{5N_0}}\right) + \frac{1}{2}Q \left(\sqrt{\frac{9E_s}{5N_0}}\right) - \frac{1}{4}Q \left(\sqrt{\frac{25E_s}{5N_0}}\right) \approx \frac{3}{4}Q \left(\sqrt{\frac{\tilde{\Lambda}}{5}}\right)$$

- Bit error ratio performance of 64QAM
 - 8-ary modulation: three classes of bits, and $P_{e,3}pprox 2P_{e,2}$ and $P_{e,2}pprox 2P_{e,1}$

$$- 64 \text{QAM} \quad P_e = \frac{7}{12} Q \left(\sqrt{E_s/21N_0} \right) + \frac{1}{2} Q \left(3\sqrt{E_s/21N_0} \right) - \frac{1}{12} Q \left(5\sqrt{E_s/21N_0} \right) + \frac{1}{12} Q \left(9\sqrt{E_s/21N_0} \right) - \frac{1}{12} Q \left(13\sqrt{E_s/21N_0} \right) \approx \frac{7}{12} Q \left(\sqrt{\frac{\tilde{\Lambda}}{21}} \right)$$

• This lecture we consider fading channel performance

Flat Rayleigh Fading Channels

• A narrowband channel is represented by $c(t) = \alpha(t) \cdot e^{j\phi(t)}$. Assume that fading is sufficiently slow, c(t) and $\phi(t)$ are symbol invariant \rightarrow during one symbol period

$$c = \alpha \cdot e^{j\phi}$$

- We consider uncorrelated Rayleigh fading, i.e. Doppler spread $\rightarrow\infty$
- \bullet The Rayleigh fading envelope α has a probability density function

$$p_{\alpha}(\alpha) = \frac{\alpha}{\alpha_0^2} \exp\left(-\frac{\alpha^2}{2\alpha_0^2}\right), \quad \alpha \ge 0$$

and the channel phase ϕ is uniformly distributed in $[-\pi, \pi]$ with PDF

$$p_{\phi}(\phi) = \begin{cases} \frac{1}{2\pi}, & -\pi \le \phi \le \pi \\ 0, & \text{otherwise} \end{cases}$$

• Note that $\operatorname{Re}[c]$ and $\operatorname{Im}[c]$ are i.i.d. Gaussian with variance α_0^2 , and α has mean $E[\alpha] = \bar{\alpha} = \sqrt{\frac{\pi}{2}}\alpha_0$, 2nd moment $E[\alpha^2] = 2\alpha_0^2$ and variance $\frac{4-\pi}{2}\alpha_0^2$

Flat Fading Performance

• Given the transmitted baseband signal m(t) with average energy E_s , the received signal is

$$r(t) = \alpha \cdot e^{j\phi} \cdot m(t) + n(t)$$

where n(t) is AWGN with PSD $\frac{N_0}{2}$

Define the instantaneous channel SNR

$$\lambda = \alpha^2 \frac{E_s}{N_0}$$

Note that $\lambda > 0$ is a chi-square distribution with PDF

$$p_{\lambda}(\lambda) = rac{1}{\Lambda} e^{-\lambda/\Lambda}$$

• The average channel SNR Λ is defined as

University

of Southampton

$$\Lambda = E[\lambda] = \bar{\lambda} = 2\alpha_0^2 \frac{E_s}{N_0}$$

• Let $P(\lambda)$ be the instantaneous error probability, the average error probability is then defined as

$$P_e = \int_0^\infty P(\lambda) p_\lambda(\lambda) d\lambda = \frac{1}{\Lambda} \int_0^\infty P(\lambda) e^{-\lambda/\Lambda} d\lambda$$

130

University of Southampton

4QAM Flat Fading Performance

- Fading does not change the decision boundaries I, Q = 0, but I, Q = d becomes $I, Q = \alpha d$
- Using non-fading result $P_e = Q(d/\sqrt{N_0/2}) \rightarrow$ the instantaneous error probability

$$P_e(\lambda) = Q\left(\frac{\alpha d}{\sqrt{N_0/2}}\right) = Q\left(\sqrt{\lambda}\right)$$

• Note $\lambda \ge 0$ and $\Lambda = E[\lambda] = 2\alpha_0^2 E_s/N_0$, the average error probability is

$$P_e = rac{1}{\Lambda} \int_0^\infty Q\left(\sqrt{\lambda}\right) e^{-\lambda/\Lambda} d\lambda$$

• Note that $\lambda = \alpha^2 E_s / N_0$ and $E_s = 2d^2$, the close-form solution for P_e is:

$$P_e = \int_0^\infty Q\left(\frac{\alpha d}{\sqrt{N_0/2}}\right) p_\alpha(\alpha) d\alpha = \int_0^\infty Q\left(\frac{\alpha d}{\sqrt{N_0/2}}\right) \frac{\alpha}{\alpha_0^2} \exp\left(-\frac{\alpha^2}{2\alpha_0^2}\right) d\alpha$$
$$= \frac{1}{2} \left(1 - \sqrt{\frac{2\alpha_0^2 \frac{d^2}{N_0}}{1 + 2\alpha_0^2 \frac{d^2}{N_0}}}\right) = \frac{1}{2} \left(1 - \sqrt{\frac{\Lambda}{2 + \Lambda}}\right)$$

4QAM Flat Fading Performance (Derivation)

• Note

integration formula
$$\int_{0}^{\infty} 2Q\left(\sqrt{2\beta}x\right) e^{-\mu x^{2}} x \, dx = \frac{1}{2\mu} \left(1 - \frac{\beta}{\sqrt{\mu + \beta^{2}}}\right)$$

average error probability
$$P_e = \int_0^\infty Q\left(\frac{\alpha d}{\sqrt{N_0/2}}\right) \frac{\alpha}{\alpha_0^2} \exp\left(-\frac{\alpha^2}{2\alpha_0^2}\right) d\alpha$$

$$= \int_0^\infty 2Q\left(\sqrt{2}\frac{d\alpha_0}{\sqrt{N_0/2}}\frac{\alpha}{\sqrt{2\alpha_0}}\right) \exp\left(-\frac{\alpha^2}{2\alpha_0^2}\right) \frac{\alpha}{\sqrt{2\alpha_0}} d\left(\frac{\alpha}{\sqrt{2\alpha_0}}\right)$$

• Letting $\mu = 1$, $\beta = \frac{d \alpha_0}{\sqrt{N_0/2}}$ and $x = \frac{\alpha}{\sqrt{2}\alpha_0}$ in the above integration formula leads to

$$P_e = \frac{1}{2} \left(1 - \frac{\frac{d \alpha_0}{\sqrt{N_0/2}}}{\sqrt{1 + \left(\frac{d \alpha_0}{\sqrt{N_0/2}}\right)^2}} \right) = \frac{1}{2} \left(1 - \sqrt{\frac{2\alpha_0^2 \frac{d^2}{N_0}}{1 + 2\alpha_0^2 \frac{d^2}{N_0}}} \right) = \frac{1}{2} \left(1 - \sqrt{\frac{\Lambda}{2 + \Lambda}} \right)$$

where
$$\Lambda = 2\alpha_0^2 \frac{E_s}{N_0}$$
, $E_s = 2d^2 \Rightarrow \Lambda = \frac{4\alpha_0^2 d^2}{N_0}$

4QAM Fading / Non-Fading BER Comparison

- In fading, average SNR $\Lambda = 2\alpha_0^2 \frac{E_s}{N_0}$
 - Average BER

$$P_e = \frac{1}{2} \left(1 - \sqrt{\frac{\Lambda}{2 + \Lambda}} \right)$$

- Compare with AWGN, average SNR is defined as $\widetilde{\Lambda}=E_s/N_0$
 - Average error probability

$$P_e = Q\left(\sqrt{\tilde{\Lambda}}\right)$$

University

of Southampton

- Clearly, fading is "a big killer" limiting communication system's performance
 - Many mobile communication technologies developed in past three decades are "counter-fading measures"

16QAM Flat Fading Performance: C1 BER

- Motivate by success of applying non-fading 4QAM to fading 4QAM: try the same to 16QAM?
- For C1 bits, the decision boundaries are not changed:

$$I, Q > 0 \rightarrow i_1, q_1 = 0, \ I, Q \le 0 \rightarrow i_1, q_1 = 1$$

But $\pm d$, $\pm 3d$ become $\pm \alpha d$, $\pm 3\alpha d$. Also $E_s = 10d^2$ and $\Lambda = 20\alpha_0^2 d^2/N_0$

• Thus, the instantaneous C1 error probability is

Computer Science

$$P_{e,1}(\lambda) = \frac{1}{2}Q\left(\frac{\alpha d}{\sigma_n}\right) + \frac{1}{2}Q\left(\frac{3\alpha d}{\sigma_n}\right) = \frac{1}{2}Q\left(\sqrt{\frac{\lambda}{5}}\right) + \frac{1}{2}Q\left(3\sqrt{\frac{\lambda}{5}}\right)$$

• The average C1 error probability is therefore (success again!)

$$P_{e,1} = \frac{1}{\Lambda} \int_0^\infty P_{e,1}(\lambda) e^{-\lambda/\Lambda} d\lambda = \frac{1}{4} \left(1 - \sqrt{\frac{2\alpha_0^2 \frac{d^2}{N_0}}{1 + 2\alpha_0^2 \frac{d^2}{N_0}}} \right) + \frac{1}{4} \left(1 - \sqrt{\frac{18\alpha_0^2 \frac{d^2}{N_0}}{1 + 18\alpha_0^2 \frac{d^2}{N_0}}} \right)$$
$$= \frac{1}{4} \left(1 - \sqrt{\frac{\Lambda}{10 + \Lambda}} \right) + \frac{1}{4} \left(1 - \sqrt{\frac{9\Lambda}{10 + 9\Lambda}} \right)$$
Electronics and

S Chen

16QAM Fading Performance: C2 BER

• For C2 bits, the decision boundaries are changed to:

 $I,Q>2\bar{lpha}d$ or $I,Q\leq -2\bar{lpha}d
ightarrow i_2,q_2=1$

 $-2\bar{\alpha}d < I, Q \le 2\bar{\alpha}d \to i_2, q_2 = 0$

Note that the average value of α , i.e. $\bar{\alpha}$, has to be used for decision threshold

- Two cases of $i_2, q_2 = 0$ error need consideration
- 1. $i_2, q_2 = 0$ error in case of $\alpha < 2\bar{\alpha}$ $\alpha < 2\bar{\alpha}$:
 - Instantaneous symbols $-\alpha d$ and αd are within region defined by two decision boundaries
 - Error occurs when noise makes received signal outside the region and instantaneous C2 bit = 0 error probability for $\alpha < 2\bar{\alpha}$ is

$$P_{2,0,<2}(\alpha) = Q\left(d_1/\sqrt{N_0/2}\right) + Q\left(d_2/\sqrt{N_0/2}\right) = Q\left(\frac{(2\bar{\alpha} - \alpha)d}{\sqrt{N_0/2}}\right) + Q\left(\frac{(2\bar{\alpha} + \alpha)d}{\sqrt{N_0/2}}\right)$$

Electronics and

Computer Science

16QAM: C2 BER (continue)

- 2. $i_2, q_2 = 0$ error in the case of $\alpha > 2\bar{\alpha}$: Instantaneous symbols $-\alpha d$ and αd are outside region defined by two decision boundaries
 - Correct decision occurs o when noise moves received sig inside the region
 - Thus instantaneous C2 bit = error probability for $\alpha > 2\bar{\alpha}$

 $P_{2,0,>2}(\alpha) =$

- Correct decision occurs only
when noise moves received signal
inside the region
- Thus instantaneous C2 bit = 0
error probability for
$$\alpha > 2\bar{\alpha}$$
 is
 $P_{2,0,>2}(\alpha) =$
 $1 - Q\left(d_1/\sqrt{N_0/2}\right) + Q\left(d_2/\sqrt{N_0/2}\right) = 1 - Q\left(\frac{(-2\bar{\alpha} + \alpha)d}{\sqrt{N_0/2}}\right) + Q\left(\frac{(2\bar{\alpha} + \alpha)d}{\sqrt{N_0/2}}\right)$

• Note $\alpha > 0$, the average error for $i_2, q_2 = 0$ is therefore

$$P_{2,0} = \int_0^{2\bar{\alpha}} P_{2,0,<2}(\alpha) p_\alpha(\alpha) d\alpha + \int_{2\bar{\alpha}}^\infty P_{2,0,>2}(\alpha) p_\alpha(\alpha) d\alpha$$

- There exists closed form solution for this integration but it is very complicated
- So far not too bad

S Chen

16QAM: C2 BER (continue)

- Two cases of $i_2, q_2 = 1$ error need consideration
- 1. $i_2, q_2 = 1$ error in case of lpha > 2 ar lpha / 3
 - Instantaneous symbols $-3\alpha d$ and $3\alpha d$ are within correct regions corresponding to respective decision boundaries
 - Error occurs when noise makes received signal outside the corresponding region

– Thus instantaneous C2 bit = 1 error probability for $\alpha > 2\bar{\alpha}/3$ is

$$P_{2,1,>2/3}(\alpha) = Q\left(\frac{d_1}{\sqrt{N_0/2}}\right) - Q\left(\frac{d_2}{\sqrt{N_0/2}}\right) \\ = Q\left(\frac{(3\alpha - 2\bar{\alpha})d}{\sqrt{N_0/2}}\right) - Q\left(\frac{(3\alpha + 2\bar{\alpha})d}{\sqrt{N_0/2}}\right)$$

- Oh, not, nightmare now

S Chen

16QAM: C2 BER (continue)

- 2. $i_2, q_2 = 1$ error in case of lpha < 2 ar lpha / 3
 - Instantaneous symbols $-3\alpha d$ and $3\alpha d$ are outside correct regions defined by respective decision boundaries
 - Correct decision occurs only when noise moves received signal to the correct region

– The instantaneous C2 bit = 1 error probability for $\alpha < 2\bar{\alpha}/3$ is

$$P_{2,1,<2/3}(\alpha) = 1 - Q\left(d_1/\sqrt{N_0/2}\right) - Q\left(d_2/\sqrt{N_0/2}\right)$$
$$= 1 - Q\left(\frac{(2\bar{\alpha} - 3\alpha)d}{\sqrt{N_0/2}}\right) - Q\left(\frac{(2\bar{\alpha} + 3\alpha)d}{\sqrt{N_0/2}}\right)$$

• The average error for $i_2, q_2 = 1$ is therefore

$$P_{2,1} = \int_0^{2\bar{\alpha}/3} P_{2,1,<2/3}(\alpha) p_{\alpha}(\alpha) d\alpha + \int_{2\bar{\alpha}/3}^{\infty} P_{2,1,>2/3}(\alpha) p_{\alpha}(\alpha) d\alpha$$

- Really nightmare, too much for me

16QAM Fading /Non-Fading BER Comparison

OK, just to continue, we known
 average C2 error probability is

$$P_{e,2} = rac{1}{2}(P_{2,0} + P_{2,1})$$

 Therefore average error probability for 16QAM is

$$P_e = \frac{1}{2}(P_{e,1} + P_{e,2})$$

- Although no closed-form solution for $P_{e,2}$ and P_e , we can still make some sense out of them
 - 16QAM fading / non-fading BER:
 - Fading degrades BER performance seriously \Rightarrow counter fading measures
- Alternatively, Monte Carlo simulation is often used to evaluate fading BER
 - Recall slide 48 for flat Rayleigh fading channel simulation

Electronics and

Computer Science

Fading Channel Simulation Considerations

- For uncorrelated fading, Re{c} and Im{c} are i.i.d. Gaussians with zero mean and unit variance
 Channel is simulated by generating such a sequence of {ck}
- For correlated fading, $\{c_k\}$ can be generated by flat Rayleigh fading channel simulator of slide 48
- For AWGN channel BER simulation, at least a few hundred of error counts should be obtained
 - For fading channel BER simulation, this is insufficient

- If you simulate at pink simulation zone, channel is in a deep fade, you get too bad BER
- If you simulate at green simulation zone, channel gain is high, you get too good BER
- Basically, all magnitude possibilities of channel tap c should be simulated or seen, such a sequence $\{c_k\}$ can be very very long, and simulation is really **time-consuming**
 - Roughly tens of "cycles" in channel fading envelope should be simulated to get accurate average fading BER \rightarrow for slow fading channel, this is **very very long**

University

of Southampton

Summary

- Narrowband Rayleigh fading channel:
 - Fading envelope and phase PDFs, instantaneous and average channel SNRs, instantaneous and average error probabilities
- Fading channel BER performance analysis
 - For 4QAM, by applying non-fading BER result, closed-form BER solution of fading channel is obtained
 - Apply same approach to 16QAM is less fruitful, but nevertheless useful insight can be obtained
 - Fading degrades BER performance seriously \Rightarrow counter fading measures are necessary
- Practical considerations in Monte Carlo simulation of fading channel performance
 - Basically, all magnitude possibilities of channel tap c should be simulated or seen
 - This corresponds to roughly tens of "cycles" in channel fading envelope

